[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58189024A - Moving bed type reactor for carbonaceous adsorbent - Google Patents

Moving bed type reactor for carbonaceous adsorbent

Info

Publication number
JPS58189024A
JPS58189024A JP57070360A JP7036082A JPS58189024A JP S58189024 A JPS58189024 A JP S58189024A JP 57070360 A JP57070360 A JP 57070360A JP 7036082 A JP7036082 A JP 7036082A JP S58189024 A JPS58189024 A JP S58189024A
Authority
JP
Japan
Prior art keywords
gas passage
moving bed
exhaust gas
reactor
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57070360A
Other languages
Japanese (ja)
Other versions
JPS6358606B2 (en
Inventor
Seiichi Takeuchi
竹内 成一
Hiromi Tanaka
田中 裕実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57070360A priority Critical patent/JPS58189024A/en
Publication of JPS58189024A publication Critical patent/JPS58189024A/en
Publication of JPS6358606B2 publication Critical patent/JPS6358606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To miniaturize a desulfurization and denitration reactor, by a method wherein an adsorbent moving bed is divided into a front and a rear stages by a vertically directed partition wall and the gas passage of the outer side or the inner side of the moving bed is blocked while an NH3 injection port is provided to the unblocked gas passage. CONSTITUTION:A moving bed 1 for a carbonaceous adsorbent having an inverted U- shaped vertical cross sectional area is partitioned into a front and a rear two stages by a vertically directed partition wall 4 and an outside gas passage 10 is formed between the moving bed 1 and an outer casing 3 while an inside gas passage 11 is formed between both leg parts of the moving bed 1. The inside gas passage 11 is blocked by a partition wall 12 while an NH3 injection port P is opened into the outside gas passage 10. An exhaust gas introduced into a reactor from an inlet 13 is divided into two streams which in turn pass across the front stage moving bed 1 from the inside gas passage 11 and enter the outside gas passage 10 and, during this time, SOx in the exhaust gas is removed. In the next step, the exhaust gas passes across the rear stage moving bed 1 along with NH3 injected from a point P to enter the inside gas passage 11 and, during this time, NOx in the exhaust gas is removed. The combined exhaust gas subjected to desulfurization and denitration treatment is exhausted from an outlet 14.

Description

【発明の詳細な説明】 本発明はボイラーなどから排出される燃焼排ガスを脱@
as2Mする綜に使用される炭素質吸着剤移動層反応器
の改良に関する。
[Detailed Description of the Invention] The present invention eliminates combustion exhaust gas emitted from boilers, etc.
This invention relates to improvements in carbonaceous adsorbent moving bed reactors used in AS2M heddles.

燃焼排ガスを脱硫脱硝する場合には、活性炭で代表され
るような炭素質吸着剤の移動J−に、排ガスを直交流で
接触させる形式の反応器が使用されている。以下、この
形式の反応器を炭素質吸着剤移動層反応器と呼ぶが、こ
の反応器は器内に炭素質吸着剤の移動層をlfi設けた
ものが一般的であって、移動層の層高とj−犀は、炭素
質@層剤が円滑に層内を渡下でき、移動層管通過する排
ガスに過大な圧力損失を生じない範囲内に割繊される丸
め、盾部や層厚を余シ増大できないのが通例である。4
jEって、大量の排ガスを一挙に脱倣脱硝処理せんとす
る場合には、多数個O脚素質吸着剤移動層反応器を並列
に設置しなければならないので、反応器を全体としてコ
ンパクト化することが難しい。
When desulfurizing and denitrating combustion exhaust gas, a reactor is used in which the exhaust gas is brought into contact with a moving carbonaceous adsorbent such as activated carbon in a cross flow. Hereinafter, this type of reactor will be referred to as a carbonaceous adsorbent moving bed reactor, but this reactor is generally equipped with a moving bed of carbonaceous adsorbent lfi inside the reactor. Taka and J-Sai are used for rounding, shielding, and layer thickness, which allow the carbonaceous layer agent to pass smoothly through the layer, and to split the fibers within a range that does not cause excessive pressure loss to the exhaust gas passing through the moving bed pipe. As a general rule, it is not possible to increase the amount. 4
jE, if a large amount of exhaust gas is to be denitrified and denitrified at once, it is necessary to install a large number of O-legged elemental adsorbent moving bed reactors in parallel, so the reactor as a whole must be made more compact. It's difficult.

而して本発明は移動層を複数個に区画して一反応器を収
めたコンパクトな脱硫脱硝処理用炭素實吸着剤移動階反
応器を提供するものであって、その時做とするところは
、縦断面が逆U字形の炭素質吸着剤移動層に縦向き隔壁
を設けて該移動層を前後2段に区画し、各段の上部に炭
素質吸着剤の供給口を、下部にその排出口を設け、前記
の移動層を外ケーシングに収容して紘ケーシングと移動
層との間に外側ガス通路を形成させると共に、移動層の
内側には移IIJJ鳩に挾まれた内側ガス通路を形成さ
せ、両カス通路に接する移@階の側壁を通気性とし、前
記した縦向き隔壁に対応する位置で外側ガス通路又は内
側ガス2Iil路を隔檀によって遮断し、連断されてい
ないガス通路内の前記位置にアンモニア注入口を開口さ
せ、外側ガス通路又は内側ガス通路に通じる排ガスの出
入口を前記外ケーシングの前後に設けたことにある。
Therefore, the present invention provides a compact moving bed reactor for carbonaceous adsorbent for desulfurization and denitrification treatment in which the moving bed is divided into a plurality of parts and one reactor is housed therein. A vertical partition wall is provided in the carbonaceous adsorbent transfer layer having an inverted U-shaped vertical cross section to divide the transfer bed into two stages, front and rear, with a supply port for the carbonaceous adsorbent at the top of each stage and a discharge port for the carbonaceous adsorbent at the bottom. The moving layer is housed in an outer casing to form an outer gas passage between the casing and the moving layer, and an inner gas passage sandwiched between the moving layers is formed inside the moving layer. , the side wall of the transfer floor in contact with both gas passages is made permeable, the outer gas passage or the inner gas passage is blocked by a partition at the position corresponding to the vertical partition wall, and the gas passage in the uninterrupted gas passage is An ammonia inlet is opened at the above position, and exhaust gas ports leading to the outer gas passage or the inner gas passage are provided at the front and rear of the outer casing.

図面にそって本発明〇一実施例に係る炭素質吸着剤移動
層反応器の構成を説明すると、該反応器は、第1図及び
第2図に示す通り、縦断面が逆U字形O炭素質吸着剤移
動層1を、外ケーシング3に収容した構造である。移動
層1は゛縦向きWh11!4によって縦断面が逆U字形
の前後2段に区画されておシ、各段の上部には炭素質吸
着剤の供給口5が、を九下部には排出口6.♂が設けら
れる。そして排出口6.6′の上方には移動層1内を流
下する吸着剤の整流体7,7′が設けられ、下方にはロ
ータリーフィダーの如き排出機8,8′が設置される″
。この場合、排出口a 、 c1%%ft、体r 、 
7′及ヒ排出機s 、 tハ、各段の全長に皿って設け
られていることを町とする。尚、符号9は移動層lから
排出された吸着剤のホッパーを示す。縦向き隔114で
前後2段に区−された移動層lは、既述し九通夛、外ケ
ーシング3に収められるが、これによって移動層1と外
ケーシング3との間には外側ガス通路10が形成され、
移動層10内側には移動層に挾tt′L九内匈ガス通路
11が形成される。この場合、両ガス通路に接する移動
層の両@壁は、外孔板、ルーバーなど任意の通気性板状
体で構成される。前記の外側ガス通路又は内側ガス通路
は、移動層1を前後2段に区画する縦向II隔壁に対応
する位置で遮断され、遮断されていないガス通路内の前
記位置にはアンモニア注入口Pが開口されるが、第2図
に示す実施例では、内側ガス通路11が隔壁12で虜断
され、外側ガス通路10内にアンモニア注入口Pが開口
されている。そして内−ガス通路11に通じる排ガスの
出入口13.14が外ケーシング3の前後に開口される
。従って、第2図に示され九実施例に於ては例えば入口
13から反応器内に導入され圧排ガスは、内側ガス通路
11がも前段の移動層1を横断して外側ガス通路1Gに
入p1その間に排ガス中の硫黄酸化物が除去される。
The structure of the carbonaceous adsorbent moving bed reactor according to Example 1 of the present invention will be explained with reference to the drawings. As shown in FIGS. 1 and 2, the reactor has an inverted U-shaped O carbon This structure has a solid adsorbent moving layer 1 housed in an outer casing 3. The moving bed 1 is divided into two stages, front and rear, with an inverted U-shape in vertical cross section by vertically oriented Wh11!4, and a carbonaceous adsorbent supply port 5 is provided at the top of each stage, and a discharge port is provided at the bottom of each stage. 6. A male will be provided. A flow regulator 7, 7' for the adsorbent flowing down in the moving bed 1 is provided above the discharge port 6, 6', and a discharge machine 8, 8' such as a rotary feeder is installed below.
. In this case, outlet a, c1%%ft, body r,
7' and ejectors shall be provided along the entire length of each stage. Incidentally, the reference numeral 9 indicates a hopper for the adsorbent discharged from the moving bed 1. The moving layer 1, which is divided into two stages, front and rear, by a vertical gap 114, is housed in the outer casing 3, as described above, and there is an outer gas passage between the moving layer 1 and the outer casing 3. 10 is formed,
Inside the moving layer 10, a gas passage 11 is formed in the moving layer. In this case, both walls of the moving layer that are in contact with both gas passages are composed of any permeable plate-like body such as an external hole plate or a louver. The outer gas passage or the inner gas passage is blocked at a position corresponding to the longitudinal partition wall II that divides the moving layer 1 into two stages, front and back, and an ammonia inlet P is provided at the position in the unblocked gas passage. However, in the embodiment shown in FIG. 2, the inner gas passage 11 is interrupted by the partition wall 12, and the ammonia inlet P is opened in the outer gas passage 10. Exhaust gas inlets and outlets 13 and 14 communicating with the inner gas passage 11 are opened at the front and rear of the outer casing 3. Therefore, in the nine embodiments shown in FIG. 2, for example, the compressed exhaust gas introduced into the reactor from the inlet 13 crosses the moving bed 1 in the preceding stage and enters the outer gas passage 1G. During p1, sulfur oxides in the exhaust gas are removed.

次いで排ガスは点Pよp注入されるアンモニアと共に後
段の移動層を横断して内側ガス通路11を入り、その間
に排ガス中のg木酸化物が除去される。このようにして
説伏脱硝処理された排ガスは出口14から排出されるの
である。
The exhaust gas then crosses the downstream moving bed and enters the inner gas passage 11 together with the ammonia injected from point P, during which the g-wood oxides in the exhaust gas are removed. The exhaust gas that has been denitrified in this way is discharged from the outlet 14.

第a1gには別の実施例が水平#面図で示されている。A further embodiment is shown in horizontal view #a1g.

すなわち、この実施例Fi縦向き隔壁4によってIiI
]恢2段に区画された縦断面が逆U字形である炭素質吸
着剤移動層lか、外ケーシング3に収容されている点で
先の実施例と異ならナイが、外ケーシング3に設けられ
る排ガスの出入口13.14が外側ガス通路1oに通じ
、その外側ガス通路1oが隔−12によって連断され、
アンモニア注入口Pが内側ガス通路内に開口されている
。Qで先の実施例と相違する。しかし、第3図に水平断
面図で示される反応器の縦@1図#′i第1図と貞質的
に同一である。第3図に示す反応器では入口13から反
応器内に導入された排ガスは、外側ガス通路10.内側
ガス通路11、外側ガス通路10の順序で前後2段の移
wJmlを横断し、途中アンモニア注入口入けながら脱
VL説硝処理されて、出口14が−ら排出される。
That is, by this embodiment Fi vertical partition wall 4, IiI
]The outer casing 3 is different from the previous embodiment in that the carbonaceous adsorbent transfer layer 1, which is divided into two stages and has an inverted U-shaped vertical cross section, is accommodated in the outer casing 3. The exhaust gas inlet/outlet 13.14 communicates with the outer gas passage 1o, and the outer gas passage 1o is connected by a gap -12,
An ammonia inlet P opens into the inner gas passage. Q is different from the previous embodiment. However, it is essentially identical to the longitudinal view of the reactor shown in horizontal cross-section in FIG. In the reactor shown in FIG. 3, the exhaust gas introduced into the reactor from the inlet 13 is passed through the outer gas passage 10. The inner gas passage 11 and the outer gas passage 10 traverse the two stages of transport wJml in the order of front and rear, and while an ammonia inlet is inserted along the way, the VL denitrification process is performed, and the gas is discharged from the outlet 14.

以上述べて来たところから明らかな通p1本発明の炭素
質吸着剤移動層反応器は、縦断面が逆U字形の移動層を
外ケーシングに収容し、咳移動I―を隔壁によって前後
2段に区画したものでめっで、この反応器に導入された
排ガスFiまず外側ガス通路又は内側ガス通路で2分さ
れ、分割されたガスはそれぞれ前段及び後段で処理され
た後、再び外側ガス通路又は内側ガス通路で合体して反
応器から排出されることになる。
It is clear from the above that the carbonaceous adsorbent moving bed reactor of the present invention houses a moving bed with an inverted U-shaped longitudinal section in the outer casing, and the cough movement I- is separated into two stages, front and rear, by partition walls. The exhaust gas Fi introduced into this reactor is first divided into two parts in the outer gas passage or the inner gas passage, and the divided gases are processed in the front and rear stages, respectively, and then passed through the outer gas passage again. Or they will combine in the inner gas passages and be discharged from the reactor.

これに対して、上記した−のと同じ処理を従来型の炭素
質吸着剤移動層反応器で行なう場合には、都合4基の反
応器を必要とするうえに、反応器相互を直列及び並ν1
jに接続するためのガス配管を必要とし、さらにまた畿
素質吸看剤の供給排出機構を反応器毎に設置しなければ
ならない。従って、本発明によれば、炭素質吸着剤移動
層反応器を極めてコンバク)Kできる利点がある。
On the other hand, if the same process as mentioned above is carried out using a conventional carbonaceous adsorbent moving bed reactor, a total of four reactors are required, and the reactors are connected in series and in parallel. ν1
A gas pipe is required to connect to the reactor, and a mechanism for supplying and discharging the carbonaceous absorbent must be installed for each reactor. Therefore, according to the present invention, there is an advantage that the carbonaceous adsorbent moving bed reactor can be extremely compacted.

を九、従来型の炭素質吸着剤移動−反応器を使用して排
ガスの脱調脱硫を同時に行なう場合には、少なくとも2
基の反応器を直列に接続し、その接続配管に設けたアン
モニア注入口からアンモニアを供給しながら、ガス流か
ら見て上流−の反応器を説伏器として、下流側の反応器
を脱調器として機能させているが、本発明の反応器によ
れば、コンパクトな1基の反応器で排ガスの脱硝脱硫を
同時に行なうことができる。本発明0反応益は脱硫脱硝
を同時に何なう場合だけでなく、アンモニアの注入を省
いて脱硫処理のみを対象とする場合に4便用可能であっ
て、こO場合にはより高い脱硫率を得ることができる−
(9) If conventional carbonaceous adsorbent transfer-reactor is used to perform deregulated desulfurization of exhaust gas at the same time, at least two
Two reactors are connected in series, and while supplying ammonia from the ammonia inlet installed in the connecting piping, the upstream reactor is used as a feeder when viewed from the gas flow, and the downstream reactor is deregulated. However, according to the reactor of the present invention, denitrification and desulfurization of exhaust gas can be performed simultaneously with one compact reactor. The zero reaction benefit of the present invention can be used not only when desulfurization and denitrification are performed at the same time, but also when ammonia injection is omitted and only desulfurization treatment is targeted, and in this case, the desulfurization rate is higher. can be obtained −

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明〇一実施例である炭素質吸着剤移動層反
応器の縦wTIffi図であり、第2図は第1図02−
2−に於ける水平断面図である。第3図は本発明の別の
実施側圧ゐ反応器の水平断面図である。
Figure 1 is a vertical wTIffi diagram of a carbonaceous adsorbent moving bed reactor according to Example 1 of the present invention, and Figure 2 is a diagram of Figure 102-
2- is a horizontal cross-sectional view at 2-. FIG. 3 is a horizontal sectional view of another embodiment of the side pressure reactor of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、 炭素質吸着剤の移動層と排ガスとが直交流で接触
する炭素質吸着剤移動層反応器に於て、縦断面が逆U字
形の縦素質吸着剤移動層に縦向き隔壁を設けて該移動層
を前後2段に区幽し、各Rの上部に炭素質吸着剤0供給
口を、下部にその排出口を設け、前記の移動層を外ケー
シングに収容して該ケーシングと移動層の間に外側ガス
通路を形成させると共に、移動層の内側には移動層に挾
まれた内側ガス通路を形成させ、両ガス通路に接する移
動層の側壁を通気性とし、前記した縦向き隔壁に対応す
る位置で外側ガス通路又は内側ガス通路を隔壁によって
遮断し、燗断されていないガス通路内の前記位置にアン
モニア注入口を開口させ、外側ガス通路又は内側ガス通
路に通じる排ガスの出入口を前記の外ケーシングO#l
l1lV−設は九ことを4I黴とする炭素質吸着剤移動
層反応器。
1. In a carbonaceous adsorbent moving bed reactor where a carbonaceous adsorbent moving bed and exhaust gas are in cross-flow contact, a vertical partition wall is provided in the vertical adsorbent moving bed with an inverted U-shaped longitudinal section. The moving bed is divided into two stages, front and rear, and a carbonaceous adsorbent 0 supply port is provided at the top of each R, and its discharge port is provided at the bottom. An outer gas passage is formed between them, and an inner gas passage sandwiched between the moving layers is formed inside the moving layer, and the side wall of the moving layer in contact with both gas passages is made permeable, and the vertical partition wall is The outer gas passage or the inner gas passage is blocked by a partition wall at the corresponding position, the ammonia inlet is opened at the position in the unsintered gas passage, and the exhaust gas inlet/outlet leading to the outer gas passage or the inner gas passage is opened at the said position. Outer casing O#l
111V-set up is a carbonaceous adsorbent moving bed reactor that uses 4I mold.
JP57070360A 1982-04-28 1982-04-28 Moving bed type reactor for carbonaceous adsorbent Granted JPS58189024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57070360A JPS58189024A (en) 1982-04-28 1982-04-28 Moving bed type reactor for carbonaceous adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57070360A JPS58189024A (en) 1982-04-28 1982-04-28 Moving bed type reactor for carbonaceous adsorbent

Publications (2)

Publication Number Publication Date
JPS58189024A true JPS58189024A (en) 1983-11-04
JPS6358606B2 JPS6358606B2 (en) 1988-11-16

Family

ID=13429183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57070360A Granted JPS58189024A (en) 1982-04-28 1982-04-28 Moving bed type reactor for carbonaceous adsorbent

Country Status (1)

Country Link
JP (1) JPS58189024A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254521A (en) * 1992-08-03 1993-10-19 University Of North Dakota Energy And Environment Research Center Foundation Leonardite char adsorbents
US5405593A (en) * 1992-08-03 1995-04-11 University Of North Dakota Energy And Environmental Research Center Foundation Leonardite char adsorbents
US5494500A (en) * 1990-11-26 1996-02-27 The Social Welfare Foundation Hokkaido Rehabily Activated carbon, production thereof and adsorption using activated carbon
US20120058017A1 (en) * 2009-03-02 2012-03-08 J-Power EnTech Inc. Adsorption tower of dry exhaust gas treatment device
US11571655B2 (en) 2016-12-29 2023-02-07 Institute Of Process Engineering, Chinese Academy Of Sciences Activated carbon adsorption tower and gas purification device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494500A (en) * 1990-11-26 1996-02-27 The Social Welfare Foundation Hokkaido Rehabily Activated carbon, production thereof and adsorption using activated carbon
US5620506A (en) * 1990-11-26 1997-04-15 The Social Welfare Foundation Hokkaido Rehabily Activated carbon, production thereof and adsorption using activated carbon
US5254521A (en) * 1992-08-03 1993-10-19 University Of North Dakota Energy And Environment Research Center Foundation Leonardite char adsorbents
US5405593A (en) * 1992-08-03 1995-04-11 University Of North Dakota Energy And Environmental Research Center Foundation Leonardite char adsorbents
US20120058017A1 (en) * 2009-03-02 2012-03-08 J-Power EnTech Inc. Adsorption tower of dry exhaust gas treatment device
US8647418B2 (en) * 2009-03-02 2014-02-11 J-Power Entech, Inc. Adsorption tower of dry exhaust gas treatment device
US11571655B2 (en) 2016-12-29 2023-02-07 Institute Of Process Engineering, Chinese Academy Of Sciences Activated carbon adsorption tower and gas purification device

Also Published As

Publication number Publication date
JPS6358606B2 (en) 1988-11-16

Similar Documents

Publication Publication Date Title
CN101240900B (en) Combustion container
JPS5713211A (en) Minute particle purifier for internal combustion engine
US10099174B2 (en) Process and system for the purification of waste gases charged with nitrogen oxides
JP4462556B2 (en) Exhaust gas purification device for internal combustion engine
CN105903330A (en) System and method for efficient combined desulfurization and denitration
JPS5843222A (en) Method for removing sulfur oxide and nitrogen oxide from waste gas
US4867953A (en) Method for the selective elimination of nitrogen oxides from exhaust gases
CN102341155B (en) Adsorption tower of dry exhaust gas treatment device
US4218422A (en) Converter structure
EP0751816B1 (en) Treating exhaust gas from a pressurized fluidized bed reaction system
CN105716100A (en) Denitrating coal economizer high-temperature bypass device
JPS58189024A (en) Moving bed type reactor for carbonaceous adsorbent
DE69511482T2 (en) System and method for reducing NOx emissions in a fluidized bed reactor
US5687656A (en) Denitration apparatus for a caol-fired boiler
CN111121472A (en) Sintering machine flue gas internal and external combined cycle purification and waste heat utilization system
US4405561A (en) Drain and sampling valve assembly for a fluidized bed reactor
JPS54134214A (en) Catalytic converter for purifying exhaust gas of automobile
JPS58207928A (en) Composite reactor for desulfurization and denitration
AU718019B2 (en) Exhaust gas treatment process
CN208911824U (en) A kind of system of the wide temperature SCR denitrating flue gas of integrated form
ES8204832A1 (en) Fluid bed combustor and process of producing a non-agglomerating vanadium coated particle.
CN211328931U (en) Waste gas purification device is used in production of PVC heat stabilizer
JPH0251657B2 (en)
KR20200059117A (en) Exhaust gas treatment method
CN213610658U (en) A high-efficient SOx/NOx control device for industrial flue