JPS5818669A - Method and device for controlling luminous intensity of fluorescent lamp for copying machine - Google Patents
Method and device for controlling luminous intensity of fluorescent lamp for copying machineInfo
- Publication number
- JPS5818669A JPS5818669A JP56118622A JP11862281A JPS5818669A JP S5818669 A JPS5818669 A JP S5818669A JP 56118622 A JP56118622 A JP 56118622A JP 11862281 A JP11862281 A JP 11862281A JP S5818669 A JPS5818669 A JP S5818669A
- Authority
- JP
- Japan
- Prior art keywords
- lamp
- fluorescent lamp
- luminous intensity
- light
- cold cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/04—Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
- G03G15/04036—Details of illuminating systems, e.g. lamps, reflectors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/04—Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
- G03G15/043—Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Discharging, Photosensitive Material Shape In Electrophotography (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Control Or Security For Electrophotography (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は光導電性感光体(以後感光体と略称する)を用
いる静電複写装置(以後複写機と称する)において、感
光体表面の静電荷の除去等に#!いるルー極螢光灯の光
度の制御に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is an electrostatic copying apparatus (hereinafter referred to as a copying machine) using a photoconductive photoreceptor (hereinafter referred to as photoreceptor), and is used to remove static charges on the surface of the photoreceptor. Concerning the control of the luminous intensity of fluorescent lamps.
感光体を用い九複写機にお−て嬬、感光体表面に均一に
静電荷を与え、続いて画像様露光を与えて静電荷を画像
様に除去して靜電潜僚を形成し。Using a photoconductor, a photoconductor is used to uniformly apply an electrostatic charge to the surface of the photoconductor, and then imagewise exposure is applied to remove the static charge in an imagewise manner to form a static charge.
該静電潜像を現像して感光体表面にトナー像を生成し、
続いて皺トナー像を転写紙等の転写材料に転写、j!に
定着することによつて複写の目的を達する。developing the electrostatic latent image to form a toner image on the surface of the photoreceptor;
Next, transfer the wrinkled toner image to a transfer material such as transfer paper, j! The purpose of copying is achieved by fixing on the image.
第1rlJK本発嘴に係る複写機部分を示す。10は感
光体(ドラムとして例示)、101Fiコロナ放電等の
帯電器、102は静電潜像を形成するための光学系露光
器、103はトナー像を生成するための穏曹器、P杜給
紙鳳に載置された転写紙、10411転写紙デを感光体
top面に供給する給紙E’−7,10!Sはトナー像
の転写紙tへの転写およびトナー像が転写された転写紙
Pil感゛光体to−111面からの分離を行う転写分
離電極、1oeizトナー像転写後の感光体lO@@か
ら残雪トナーを除去するクリーナである。残響静電荷の
除去は良好な画像をえるために轡に1111?7、一般
に光導電性を利用して感光体10表Wを露光する4ζ・
とによって行われる(以後光除電と称する)、光除電は
帯電器101による帯電に先立1て静電的に均一な感光
体lOを整備する目的KWA−もれるだけでなく、感光
体10表面の原稿領域外にある静電荷の除去、あるいは
転写前に余分なトナー像以外の静電荷を除去するために
も利用される。The copying machine part related to the 1st rlJK main beak is shown. 10 is a photoreceptor (exemplified as a drum), a charger such as 101Fi corona discharge, 102 is an optical exposure device for forming an electrostatic latent image, 103 is an atomizer for generating a toner image, and a P. Paper feed E'-7, 10 that supplies the transfer paper placed on the paper holder, 10411 transfer paper, to the top surface of the photoreceptor! S is a transfer separation electrode that transfers the toner image to the transfer paper t and separates the transfer paper Pil to which the toner image has been transferred from the photoconductor to-111 surface; This is a cleaner that removes residual snow toner. In order to obtain a good image, the reverberant static charge is removed using 1111-7, and generally the surface of the photoreceptor 10 is exposed to light using photoconductivity.
(hereinafter referred to as photostatic charge removal), the purpose of optical charge removal is to maintain an electrostatically uniform photoconductor 10 prior to charging by the charger 101. It is also used to remove static charges outside the original area, or to remove static charges other than excess toner images before transfer.
第1図において、11は帯電器101の前に位置して感
光体10H面の静電荷を除去または感光体lOの疲労度
を均一化するための光除電@、12は光学系の戻p時、
Toるいは縮小複零時に原稿領域外に帯電し九静電荷を
除去することによって、複写に役立つことなくmsの黒
枠となって画質を損9た抄また複写に供されないトナー
が感光体10表面に付着し持去られ消耗されるのを避け
るための部分露光器である。また13はiAg#510
3と転写分離電極1050閲に位置して感光体10表面
の静電荷の帯電量を調節し、トナー像の転写率、転写紙
の分離率を向上する丸めの転写前露光器である。In FIG. 1, reference numeral 11 is a photostatic charge removal @ located in front of the charger 101 to remove static charges on the surface of the photoreceptor 10H or to equalize the degree of fatigue of the photoreceptor 10, and 12 is the time when the optical system is returned. ,
In addition, toner that is not used for copying is transferred to the surface of the photoreceptor 10 by charging the outside of the document area and removing the static charge at the time of reduction/copying. This is a partial exposure device to prevent the material from sticking to the surface and being removed and wasted. Also, 13 is iAg#510
3 and the transfer separation electrode 1050 is a round pre-transfer exposure device that adjusts the amount of electrostatic charge on the surface of the photoreceptor 10 and improves the transfer rate of the toner image and the separation rate of the transfer paper.
前記・した光除電器、111部分露光器12$1−よび
転写前露光器13の光源としては、719メントの白鴎
発党による白熱電球、ライトエイ−ティングダイオード
CパL鳶D)、あるいは
光灯等が用−られる。The light sources for the above-mentioned optical static eliminator, 111 partial exposure device 12$1-, and pre-transfer exposure device 13 may be an incandescent light bulb made by Hakuoh-Hatsu of 719 Ment, a Light Eighting Diode (C, L, D), or a light lamp. etc. are used.
これら光源のうち、白熱電球およびy■は所要面積を照
射するために複数領を並べる必要があるので光度分・布
が不均一になり、光除電むらを生じたり、感光啄に光疲
労むらを生ずろ等の欠点を有する。會た′*熱熱電線、
その発する高熱の九めに感光体に劣化を部間する危険性
がある。Among these light sources, incandescent bulbs and Y■ require multiple areas to be lined up in order to irradiate the required area, resulting in uneven luminous intensity distribution, causing uneven photostatic removal and uneven photo fatigue during exposure. It has disadvantages such as raw sludge. We met′*thermal heating wire,
There is a danger that the high heat generated may cause deterioration of the photoreceptor.
−1螢光灯は、前記し九欠点がないことでは嵐好な光除
電光源である。しかし管内に封入しである水・銀の蒸気
圧が温INKよって大勇゛く変化するため一管内温l!
に発光光fが強′く依存する゛。その状況を第2図に示
し光。縦軸拡管壁温度が菊℃の時を100とした相対光
度、横軸線温度である。但し温度は管内温度Kf!V比
例する管壁温度を用いた。-1 Fluorescent lamp is an excellent optical static elimination light source in that it does not have the above-mentioned nine drawbacks. However, the vapor pressure of the water and silver sealed inside the tube changes dramatically depending on the temperature INK, so the temperature inside the tube is l!
The emitted light f strongly depends on. The situation is shown in Figure 2. The vertical axis is the relative luminous intensity with the expansion tube wall temperature set at 100°C, and the horizontal axis is the temperature. However, the temperature is the tube internal temperature Kf! A tube wall temperature proportional to V was used.
11KII“らかをようKlθ℃〜φ℃間にお−て相対
光度で#を鵞ω%O質験を示している。11KII indicates the relative luminosity between θ°C and φ°C.
普党灯の管内温度は一′複零機内の条件、設置場所ある
vhは挙11IIIIIから、定型る螢光灯の周一温度
、盲九自熱電球より発熱は少ないけれども自らの放電々
流の大めに生ずる熱による管内温度上昇によって変動す
る。The temperature inside the tube of a universal lamp is 1', the installation location is 11III, the temperature inside the tube is 1', the installation location is 11III, the circumferential temperature of a standard fluorescent lamp is 9, and although it generates less heat than a blind self-heating bulb, its own discharge current is large. It fluctuates due to the rise in the temperature inside the pipe due to the heat generated.
螢光灯を光除電光源として用いた場合のかぶ9発生、ト
ナー転写効率低下あるいは転写紙の分離し1所謂ジヤミ
ング)等の不都合は、曽光灯の管内温度の低い時に多く
発生するものであ抄、資え放電々流による発熱のため点
灯時間によって、その状況線ばらつく。When a fluorescent lamp is used as a light source for optical static elimination, disadvantages such as fogging, reduced toner transfer efficiency, or separation of transfer paper (so-called jamming) often occur when the temperature inside the tube of a solar light lamp is low. Due to the heat generated by the discharge current, the situation varies depending on the lighting time.
しかし、前記し大壁光灯光度の本確定iをIgIllF
するめに好都合渣ものとして冷陰極型壁光灯(以後ルー
電灯と略称する)が参る。このルー電灯のランプ電流と
相対光度との間KFi喪好な直線関係がある。第4図に
5mムのランプ電流に対する光ンスδの2次備の出力や
抵抗Rを変え゛る゛ことKよって簡単Km丸ることがで
きる。However, as mentioned above, the final determination of the luminous intensity of the large wall lamp is IgIllF
Cold cathode wall lamps (hereinafter referred to as lou electric lamps) are a convenient option. There is a linear relationship between the lamp current and the relative luminous intensity of this electric lamp. In FIG. 4, Km can be easily rounded by changing the output of the secondary equipment and the resistance R of the luminance δ for a lamp current of 5 mm.
1また、ルー電灯は瞬間点灯性であり、更に畳通の螢光
灯に比べ約Hの小容積で、しかも点灯補助器を必要とし
ないことから廉価である。1. In addition, the Lou electric light can be turned on instantly, has a smaller volume of about H than the Tatami-dori fluorescent light, and is inexpensive because it does not require a lighting auxiliary device.
該ルー電灯および周囲の回路をlIB’図に示す拳11
に−いて題はルー電灯、21は冷陰極灯加の螢光管、2
2および22Iは螢光管乙の両端に設けた電極、田およ
びる′は口金である。24は近接導体と称するものであ
りて1票3図の例示においてi方の電極nの方から他方
の電極n′の方へ、螢光管4の外壁(大気側)K沿って
延長され、電極22’に接触することなく近接して付設
された導体塗膜である。2はルー電灯20に電流を4#
戦す埼トランス、Bはトランスbと冷陰極灯加との間に
挿入し九うング電5i11制御tゐためam杭である。The electric light and the surrounding circuit are shown in Figure 11
The title is Lou electric lamp, 21 is a cold cathode fluorescent tube, 2
2 and 22I are electrodes provided at both ends of the fluorescent tube B, and Tadaru' is a cap. 24 is called a proximity conductor, and in the example shown in Figure 1, it extends along the outer wall (atmospheric side) K of the fluorescent tube 4 from the i side electrode n to the other electrode n'. This is a conductive coating film attached close to the electrode 22' without contacting it. 2 is the current to the lou electric light 20 4#
Battle Sai transformer B is an AM stake inserted between transformer B and cold cathode lamp to control nine electric power 5i11.
電極nと22Iとの間K A C300〜700 V
ノミ圧を加えると近接導体瀕と、これが近接している電
筋22I、め間に放電現象を生じ、これがトリガとなっ
て瞬間的に電極nと4′の間に継続的な放電が生じ点灯
される。前記継続的放電に必要なルー電灯のランプ電流
社1〜IQ mAであって、通常の螢光灯の2ノブ電流
数百鳳ムに比べると著しく小さいので、ランプ電流によ
る自己発熱は殆ど無視され、螢光管4の温度は周囲温度
に殆ど等しい。K AC between electrode n and 22I: 300 to 700 V
When chisel pressure is applied, a discharge phenomenon occurs between the nearby conductor and the nearby electric wire 22I, which triggers a continuous discharge between electrodes n and 4', which lights up. be done. The lamp current required for the above-mentioned continuous discharge is 1~IQ mA, which is significantly smaller than the two-knob current of several hundreds of mA for a normal fluorescent lamp, so self-heating due to the lamp current is almost ignored. , the temperature of the fluorescent tube 4 is almost equal to the ambient temperature.
ルー電灯は前述し九ように通常の螢光灯に比べ多くの利
点を有するが1発光原理が通常の螢光灯と同じである以
上、その発光する光度が温度に依存することは第2図に
示し゛たと同様である。但しルー電灯において社自己発
熱紘殆ど無視されるとともに相対光度がランプ電流にほ
ぼ比例するのでランプ電流を制御することKよって皺壁
光灯の光支障を回避するKFi第1図に拠って述べ先光
除電器ll1部分露光器12および転写前露光器13等
からの感光体上への照、射光の光量は、実用許容幅内に
抑える必要がある。しかるに従来これら光除電に関わる
光源の光度または照射される光量を継続的にある一定範
囲に保つと言う提案社ない。As mentioned above, electric lamps have many advantages over ordinary fluorescent lamps, but since the principle of light emission is the same as that of ordinary fluorescent lamps, the luminous intensity depends on the temperature as shown in Figure 2. It is the same as shown in . However, in the light lamp, the self-heating effect is almost ignored and the relative luminous intensity is almost proportional to the lamp current, so the lamp current must be controlled to avoid the light disturbance of the wrinkled wall lamp. The amount of light irradiated onto the photoconductor from the optical static eliminator 111 partial exposure device 12, the pre-transfer exposure device 13, etc. must be suppressed within a practical allowable range. However, there has been no proposal to continuously maintain the luminous intensity of the light source or the amount of irradiated light within a certain range, which is involved in optical static elimination.
度を継続的に一定(所定の光度)K保つ方法を提供する
ことであり、更に前記方法に基づいて該光度を継続的に
一定に保り装置を提供することKある。 ・
前記した本発明の目的は、光導電性感光体を弔いる複写
装置において、光導電性感光体表面の静電荷除去に冷陰
極置螢光灯を用い、骸ルー極型螢光灯の周囲温度を検知
する第1の過1と、l[第1の過1の検知出力に@轟す
る出力を人力6[。Another object of the present invention is to provide a method for continuously keeping the luminous intensity constant (a predetermined luminous intensity), and further to provide a device for continuously keeping the luminous intensity constant based on the method. - The object of the present invention described above is to use a cold cathode fluorescent lamp to remove static charge from the surface of a photoconductive photoreceptor in a copying machine that uses a photoconductive photoreceptor, and to remove the static charge from the surface of the photoconductive photoreceptor. The first sensor detects the temperature, and the detection output of the first sensor is human-powered.
前記冷陰極皺壁光灯の2ンプ電流を制御する第2の過程
とを連繋されることからなる複写鋏置用螢光灯の光度制
御方法と、更に光導電性感光体を用−る1写装置KTh
いて、光導電性感光体表面の静電荷除去に冷陰極蓋壁光
灯を弔い、*冷陰極型警光灯の周囲温度を検知するS度
検知手段−と、該温度検知手段の出力に相当する出力を
人力として。1. A method for controlling the luminous intensity of a fluorescent lamp for copying scissors, the method comprising: a second step of controlling the two-amp current of the cold cathode crinkled wall lamp; Photography device KTh
In order to remove static charge from the surface of the photoconductive photoreceptor, a cold cathode cover wall light is used. output as human power.
前記冷陰極蓋壁光灯のランプ電流を制御するランプ電流
制御手段とを連繋させてなる複′JI懺置用螢光灯の光
度制御装置によって達成することができる。This can be achieved by a luminous intensity control device for a double JI installation fluorescent lamp which is connected to a lamp current control means for controlling the lamp current of the cold cathode cover wall lamp.
を九、該光度制御装置の好ましい実施態様と・しては、
所定の光度と該光度を生ず為ランプ電流とを対応させる
ぺ〈1整可能に構成し九aとであり。(9) A preferred embodiment of the light intensity control device is as follows:
The lamp is configured such that a predetermined luminous intensity and a lamp current for producing the luminous intensity correspond to each other.
★た、所定の光度を有する時の温度検知手段の検知出力
を基準出力として、これをランプ電流制御手段の基準人
力とすることである。*Also, the detection output of the temperature detection means when the lamp has a predetermined luminous intensity is used as a reference output, and this is used as the reference human power of the lamp current control means.
次に本発明を第5図にブロック図として示す。The present invention is now illustrated as a block diagram in FIG.
図において団はルー電灯、団は本発明の光度制御方法を
実施するシステムを意味し、56Aはルー電灯の周囲温
度を検知しく矢印aK相当)、それにはぼ比例した出力
を出す第一1の過程で、56Bは第1の過程の出力(矢
印bK相!!&)を所定の光度(光Il!に相当する電
圧等)と比較して冷陰極灯団のランプ電流を制御する(
矢印cK111轟)第2の過程である。57および詔は
第1の過@郭ム、第2の過@5611を外部より調整し
てやるための入力端である。In the figure, 56A means a system for implementing the luminous intensity control method of the present invention, and 56A indicates a system for implementing the luminous intensity control method of the present invention. In the process, 56B compares the output of the first process (arrow bK phase!!&) with a predetermined light intensity (voltage corresponding to light Il!, etc.) to control the lamp current of the cold cathode lamp group (
Arrow cK111) This is the second process. 57 and 5611 are input terminals for adjusting the first overload and the second overload 5611 from the outside.
まずルー電灯■が適正の光量、すなわち感光体上の静電
荷の除電等に適した光度である時のルー電灯ωの周囲温
度を第1の過程で人力し、その時の出力を基準値として
第2の過1!に入力し、第2の過程ではこの第1の過程
からの入力に対し、前記ルー電灯が適正光度となるよう
にランプ電流を制御するよう調整されている。適正光度
に対する適正ランプ電流の調整は、前記第2の過程であ
つ影響を与える周囲温度が変化し、第1の過程への人力
が蜜化する。従って第1の過程から第2の過程への人力
が蜜化し、第2の過程で鉱この変化し九入力を前記適正
光度に対応した基準値と比較し、その変位量をランプ電
流にフィードバックするように動作する。First, in the first step, the ambient temperature of the Lou electric lamp ω when the Lou electric lamp ■ is at the appropriate light intensity, that is, the luminous intensity suitable for removing static charges on the photoreceptor, etc., is manually determined, and the output at that time is used as the reference value. 2 over 1! In the second step, the lamp current is adjusted based on the input from the first step so that the lamp has an appropriate luminous intensity. Adjustment of the appropriate lamp current for the appropriate luminous intensity is the second process, and the ambient temperature that affects it changes, which requires less manpower for the first process. Therefore, the manual effort from the first process to the second process is reduced, and in the second process, the nine inputs that change ore are compared with the reference value corresponding to the appropriate luminous intensity, and the amount of displacement is fed back to the lamp current. It works like this.
同様に本発明の温度検知手段を有する光度制御装置線絡
5図と同じプ09り図で説明できる。Similarly, it can be explained using the same diagram as diagram 5 of the wiring diagram of the light intensity control device having the temperature detection means of the present invention.
第5図において団は冷陰極灯、56は本発明の光度制御
装置である。聞ム紘温度検知手段、56Bはランプ電流
制御手段である。冷陰極打開と光度制御装置56鉱別電
11[Kよって作動する、温度検知手段郭ム扛ルー電打
開の周囲温度を検知し、(矢印■に相識)、検知結果な
適当な大きさの電気信号に変換してランプ電流制御手段
56Bに人力する(矢印OK相当)。2ンプ電流制御手
段rABFi皺人力の大きさ、制御の方向(促進ま光は
抑1111)K基づいて冷陰極灯(資)の抵抗、電圧を
制御しく矢印OK相当)、ランプ電流を減少、維持また
は増加せしめ、該2ンプ電流と直線関係にある冷陰極灯
の光の光度を制御する。In FIG. 5, numeral 56 represents a cold cathode lamp, and numeral 56 represents a light intensity control device of the present invention. 56B is lamp current control means. Cold cathode breakthrough and luminous intensity control device 56 Minebetsu electric power 11 [K operates by means of temperature detection means, which detects the ambient temperature of the cold cathode breakthrough and light intensity control device (see the arrow ■), detects the appropriate size of electricity as a result of the detection. It is converted into a signal and manually inputted to the lamp current control means 56B (corresponding to the OK arrow). 2 lamp current control means rABFi The magnitude of the force, the direction of control (promote or suppress the light), control the resistance and voltage of the cold cathode lamp (corresponding to the arrow OK), reduce and maintain the lamp current or increase, controlling the luminous intensity of the light of the cold cathode lamp, which is linearly related to the two-amp current.
陶1本発明は第2図において説明したように冷陰極打開
の発する光度が螢光管内温度に強く依存し、冷陰極打開
においては放電々流による自己発熱が殆どなく、螢光管
内温度、螢光管壁温度が殆ど周囲温度に等しいことを利
用して、周囲温度を冷陰極灯の発する光度の指標として
活用するものである。1 As explained in FIG. 2, the luminous intensity emitted by the cold cathode breakthrough strongly depends on the temperature inside the fluorescent tube, and in the cold cathode breakthrough, there is almost no self-heating due to the discharge current, and the luminous intensity generated by the cold cathode breakthrough strongly depends on the temperature inside the fluorescent tube and the fluorescent tube. By taking advantage of the fact that the light tube wall temperature is almost equal to the ambient temperature, the ambient temperature is used as an index of the luminous intensity emitted by the cold cathode lamp.
温度検知手段郭ムは、冷陰極打印の周囲温度を検知する
温度検知素子および該温度検知素子が周囲温度を検知す
ることによって発生する電気的出力を適切な大きさの値
に変換する回路および補助回路から成り、温度検知素子
としては、本実施例ではサーミスタを用いたが、その他
論電対、セラ建!り温度センサ、ダイオード温度センサ
ある−はトランジス、り温度センサ等が利用できる。The temperature detecting means includes a temperature detecting element that detects the ambient temperature of the cold cathode mark, a circuit and an auxiliary circuit that converts the electrical output generated by the temperature detecting element into a value of an appropriate size. In this example, a thermistor was used as the temperature sensing element, but other types such as thermocouples and ceramics can also be used. Temperature sensors, diode temperature sensors, transistors, temperature sensors, etc. can be used.
を喪、本発明に係る温度検知素子は、既に述ぺたようK
Mli!I温度を検出できれば充分であるので検知対象
に対して接触型であっても非接触型であってもよく、更
に他の温度検体(例えば感光体等)の温度センサを本発
明に係る温度検知素子として共通利用することもできる
。As mentioned above, the temperature sensing element according to the present invention
Mli! Since it is sufficient to detect the I temperature, it may be a contact type or a non-contact type for the detection target, and the temperature sensor of another temperature specimen (for example, a photoreceptor, etc.) according to the present invention can be used for temperature detection. It can also be used in common as an element.
fi&機知手段56AK使用する回路KFi、各種の回
路がl111@可能であるが、−例として第6図の如く
、冷陰極灯の周囲温度変化をサーミスタによって抵抗値
の変化として検知することで、この抵抗ランプ電流制御
手段56Bは、皺手段からの出力によって冷陰極灯の作
動電源回路の抵抗あるいは電圧を調整し、ランプ電流を
増減することKよって光度を制御するもので1例えばラ
ンプ電流制御手段の中にフォトカプラーあるいはトラン
ス電流制−回路勢を組入れて冷陰極灯のラング電流を制
御し′It角皮調塾をし?Φよい。The circuit KFi and various circuits used in the fi & detection means 56AK can be used. For example, as shown in Figure 6, this can be achieved by detecting changes in the ambient temperature of the cold cathode lamp as changes in resistance using a thermistor. The resistance lamp current control means 56B adjusts the resistance or voltage of the operating power supply circuit of the cold cathode lamp according to the output from the wrinkle means, and controls the luminous intensity by increasing or decreasing the lamp current. Incorporate a photocoupler or transformer current control circuit inside to control the rung current of the cold cathode lamp. ΦGood.
を走、温度検知手段56Aの温度検知素子において、珍
重電灯周囲からの温度人力によって生ずる電気信号が適
当な大きさKWI4整されて、56Aより検知出力とし
て出力し、ランプ電流制御手段56Bに人力し、冷陰極
打開のランプ電流制御用の出力になる時、前記両手段に
組込まれた温度検知素子、等→制御素子、回路の組合せ
Kよっては、ランプ電流制御手段56Bの作動方向が制
御目的に合致するように、即ち冷陰極打印の光度が落ち
た時にはランプ電流が増し、光度が上った時にはランプ
電流が減るように切換回路を光度制御装置間の中に組込
む。In the temperature detecting element of the temperature detecting means 56A, the electrical signal generated by manual temperature control from around the valuable lamp is adjusted to an appropriate size KWI4, outputted as a detection output from 56A, and then manually input to the lamp current control means 56B. , when the output is for the lamp current control of cold cathode breakthrough, the temperature sensing element incorporated in both means, etc. → control element, circuit combination K. Accordingly, the operating direction of the lamp current control means 56B is determined for control purposes. A switching circuit is installed between the luminous intensity control devices so that the lamp current increases when the luminous intensity of the cold cathode marking decreases, and decreases when the luminous intensity increases.
前記本発明の光度制御方法を実施し、を九光度制御装置
を実用する際には、前記光除電器、部分露光器あるいは
転写前露光器等の光源を最も好ましい、即ち規定通りの
除電を行なうことのできる所定の光度に調節する必要が
ある。即ち、冷陰極灯、感光体あるいは本発明の光度制
御装置に各々製品毎の性能のバラツキがあり、且つ該バ
ラツキは使用度、期間によって変化するからである。When carrying out the light intensity control method of the present invention and putting the light intensity control device into practical use, the light source such as the optical static eliminator, partial exposure device or pre-transfer exposure device is most preferable, that is, static electricity is removed as specified. It is necessary to adjust the luminous intensity to a predetermined value that can be used. That is, there are variations in the performance of cold cathode lamps, photoreceptors, and the light intensity control device of the present invention, and these variations vary depending on the degree of use and period of use.
本発明においては、前記各種性能のバラツキを総合的に
排除して所定の光度を設定するために温度検知手段56
AI111節するとか、聞ムとランプ電流制御手段56
mの間の回路の抵抗(図示せず)を増減するとか、ある
いは56B内の比較制御回路を調整するととKよって、
ランプ電流制御手段56Bが作動し、ルー電灯に所定光
度を生ぜしめるランプ電111(規定電流と略称する)
を通電させることができる。In the present invention, the temperature detection means 56 is used to set a predetermined luminous intensity while comprehensively eliminating variations in the various performances.
Section AI111 refers to the lamp current control means 56.
If you increase or decrease the resistance (not shown) of the circuit between m or adjust the comparison control circuit in 56B, then K.
The lamp current control means 56B operates to generate a predetermined luminous intensity in the lamp electric lamp 111 (abbreviated as specified current).
can be energized.
を九1本発明において社、前記所定光fK対応度検知手
段の出力の変位に対応して、前記所定光度を保つため2
ンプ電流を増大あるいは減少させるランプ電流制御手段
とすることができる。例えば次に本発明を実施例にりい
て説明する。第6図はルー電灯の周囲温度検知素子とし
てサーミスタを用い、2ンプ電流制御手段番畳をLED
と硫化カドンワムから成るフォトカプラーを用いた本発
明の実施例である。91 In the present invention, in order to maintain the predetermined luminous intensity in response to the displacement of the output of the predetermined light fK compatibility detection means,
The lamp current control means can increase or decrease the lamp current. For example, the present invention will now be described with reference to Examples. In Figure 6, a thermistor is used as the ambient temperature detection element of the electric light, and an LED is used as the 2-amp current control means.
This is an example of the present invention using a photocoupler made of cadmium sulfide and cadmium sulfide.
第6図において、sob冷陰ルー電灯はトランス。In Figure 6, the sob cold shade lamp is a transformer.
lFi螢光管ωとトランス部の間の回路に設けた保―抵
抗である。66は本発明の光度制御装置、641増減し
たり、比較、調整等する回路部である。This is a holding resistor installed in the circuit between the lFi fluorescent tube ω and the transformer section. 66 is a light intensity control device of the present invention, and 641 is a circuit unit for increasing/decreasing, comparing, adjusting, etc.
663はLIDおよび硫化カドミクムセルから成るフォ
トカプラーで硫化カドミウムセルはルー電灯ωの回路抵
抗となっており、LEDからの元をうけて抵抗を変化さ
せランプ電流を変化させる。rは可変抵抗であって所定
光度に対応し、回路662の出力0t)Tが一定の時、
フォトカプラー663のLEDへの電流を調整し、該光
度を与える規定電流となるようKこの光度制御装置の系
を設定する。663 is a photocoupler consisting of an LID and a cadmium sulfide cell, and the cadmium sulfide cell serves as a circuit resistance for the electric lamp ω, and receives the source from the LED to change the resistance and change the lamp current. r is a variable resistor corresponding to a predetermined luminous intensity, and when the output 0t)T of the circuit 662 is constant,
The current of the photocoupler 663 to the LED is adjusted, and the system of the luminous intensity control device is set so that it becomes a specified current that provides the luminous intensity.
光度制御装置6およびサーミスタ661は感光体(図示
せず)表面へのルー電灯ωの投光に支障のない仁愛に設
置されている。勿論サーミスタ661の設置位置は冷陰
極打釦の中央部近くの管壁の近傍が好ましい。例えばラ
ンプ電流が電源変動等のために規定電流から減少した9
、ルー電灯ωの劣化等によって光度が所定光度から落ち
ると、ルー電灯ωの管壁温度も低下し、サーミスタ66
1の抵抗値社大きくなる。この変化が回路部662を介
して、その出力OUTを低下せしめる。結果的に7オト
カプj−663のLEDの点灯電流が増加し、その発光
光度を増し、これKよってルー電灯の回路抵抗をなして
いるフォトカプラー663の硫化カドミワムセルの抵抗
を減少させ、ランプ電流を増加させて、ルー電灯を所定
(適正)光度になるよう制御する。The light intensity control device 6 and the thermistor 661 are installed at a position that does not interfere with the projection of the light ω onto the surface of a photoreceptor (not shown). Of course, the thermistor 661 is preferably installed near the tube wall near the center of the cold cathode button. For example, if the lamp current decreases from the specified current due to power supply fluctuations, etc.9
, when the luminous intensity falls from a predetermined luminous intensity due to deterioration of the lou electric lamp ω, the temperature of the tube wall of the lou electric lamp ω also decreases, and the thermistor 66
The resistance value of 1 increases. This change causes the output OUT to decrease via the circuit section 662. As a result, the lighting current of the LED of 7 Otocap J-663 increases, increasing its luminous intensity, which reduces the resistance of the cadmium sulfide cell of the photocoupler 663, which forms the circuit resistance of the light bulb, and increases the lamp current. The luminous intensity is increased to control the luminous intensity to a predetermined (appropriate) level.
ルー電灯のランプ電流が規定電流より増大し九砂、周囲
温度の変化のためにルー電灯の光量が増加し九場合には
上記と逆の作動を行なう。If the lamp current of the lamp increases beyond the specified current, or if the amount of light from the lamp increases due to a change in ambient temperature, the operation is the opposite of the above.
次Kga図の破−m11んだ光度制御装置団の一実施例
を第7図に示す。76は光度制御装置で、761はサー
ミスタで%7g8 Uフォトカプラ一部である。FIG. 7 shows an embodiment of the light intensity control device group, which is a break from the Kga diagram. 76 is a light intensity control device, and 761 is a thermistor that is part of a %7g8U photocoupler.
ここで温度低下等何らかの原因でルー電灯の光度が低下
、ひいては光量が低下すると、その近傍に設けられた温
度検知素子のサーミスタの抵抗値が増大するため、VA
電圧は上昇しオペアンプOP等を用いた反転増幅回路へ
の入力端子が上昇する。If the luminous intensity of the electric lamp decreases due to some reason such as a decrease in temperature, and the amount of light decreases, the resistance value of the thermistor of the temperature detection element installed in the vicinity increases, so the VA
The voltage rises and the input terminal to the inverting amplifier circuit using an operational amplifier OP or the like rises.
その結果VB電圧は下降し、フォトカプラー763のL
I D 7631への電流を増加させる。すると、ル
ー電灯の通電回路に入っているCd8セル7632の抵
抗を減少せしめ、もってランプvL流を増加しルー電灯
の光度を高めて所定の光量を維持するよ説明したが勿論
前記実施例に限定するもので社なく、種々の受光素子、
回路構成、調整方式、2ンプ電流制御手段を適用できる
ものである。As a result, the VB voltage drops, and the L of the photocoupler 763
Increase the current to ID 7631. Then, it was explained that the resistance of the Cd8 cell 7632 included in the energizing circuit of the Lou electric lamp is reduced, thereby increasing the lamp vL current, increasing the luminous intensity of the Lou electric lamp, and maintaining a predetermined light amount, but of course, this is limited to the above embodiment. Various light receiving elements,
The circuit configuration, adjustment method, and two-amp current control means can be applied.
本発明によって感光体上の静電荷の除電を光でもって行
なう場合、光度制御のし易いルー電灯を用いるとともに
、感光体表両に最適の照射光量を与えるため、ルー電灯
の温度を検知し、その変動をルー電灯のランプ電流に正
しくライ−ドパ!りすることによって達成できることと
なった。同様に原稿露光用のランプにルー極螢光灯を用
いた場合の露光用光源の光量制御に本発明が適用できる
のは言うまでもない。When the static charge on the photoreceptor is removed by light according to the present invention, a light bulb whose luminous intensity can be easily controlled is used, and in order to provide the optimum amount of irradiation light to both sides of the photoreceptor, the temperature of the light is detected, Correctly control the fluctuations in the lamp current of the electric light! This can be achieved by doing the following: It goes without saying that the present invention is similarly applicable to controlling the light amount of the exposure light source when a Loud fluorescent lamp is used as the original exposure lamp.
第1図は一般の複写機の構成の部分説明図、第2図は螢
光灯の温度、−相対光度曲線、第3図は冷陰極灯説明図
、第4図は螢光灯のランプ電流−相対光度曲線である。
纂5図は本発明の方法および装置を説明する丸めのプロ
ヤク図、第6図は本発明の一実施例の機能説明図である
。#!7図は第6図における光度制御装置部分の具体的
な回路の一例である。
lO・・・感光体、11・・・光除電器、12・・・部
分露光器、13・・・転写前露光器、加、父およびω・
・・ルー電灯。
21・・・螢光管、ム・・・近接導体、δおよび6・・
・トランス、団および6・・・光度制御装置、団ム・・
・温度検知手段、56B・・・2ンプ電流制御手段、6
61および761・・・サーミスタ、662・・・回路
部、663および763・・・フォトカブラ−0
代理人 桑 原 義 灸
¥11閉
第2図
一一一一一一一弓、1f壁″M(中うぐ11pンに!5
50
bu
@61!]
第7閉Figure 1 is a partial illustration of the configuration of a general copying machine, Figure 2 is the temperature and -relative light curve of the fluorescent lamp, Figure 3 is an illustration of the cold cathode lamp, and Figure 4 is the lamp current of the fluorescent lamp. - is a relative light curve. FIG. 5 is a rounded diagram explaining the method and apparatus of the present invention, and FIG. 6 is a functional explanatory diagram of an embodiment of the present invention. #! FIG. 7 is an example of a specific circuit of the light intensity control device portion in FIG. 6. 1O...Photosensitive member, 11...Photostatic eliminator, 12...Partial exposure device, 13...Pre-transfer exposure device, addition, father and ω・
...Lou electric light. 21...Fluorescent tube, M...Proximity conductor, δ and 6...
・Trans, group and 6...light intensity control device, group...
・Temperature detection means, 56B...2 Lamp current control means, 6
61 and 761...Thermistor, 662...Circuit section, 663 and 763...Photocoupler-0 Agent Yoshi Kuwahara Moxibustion ¥11 Closed Figure 2 1111111 Bow, 1F wall''M (Nakaugu 11p! 5
50 bu @61! ] 7th close
Claims (1)
性感光体表面の静電荷除去に冷隘極臘螢光灯を用い、皺
ルー極型螢光灯の周囲温度を検知するallの過程と、
皺第1の過1の検知出力に相識する出力を1人力とじて
前記冷陰極−螢光灯の2ンプ電流を制御する第20過寝
とを連111−jせることからなる複写装置用螢光灯の
光度制御方法。 (2)先導電性感光体を用いる複写装置におりて先導電
性感光体表面の静電荷除去に冷陰極蓋螢光灯を咽vh%
蒙ルー極瀝螢光灯の周囲温度を検知すゐ温度検知手段と
、該温度検知手段の出力に相識する出力を人力として、
前記冷Ik@臘螢光灯のランプ電流を制御するランプ電
流制御手段とを連繋させてなる複写装置用螢光灯の光度
制御装置。 (3) 前記冷陰極盤螢光灯が所定の光度である時。 前記ランプ電流制御手段が該光度に対応するランプ電流
を通電できるように調整可能に構成した特許請求の範囲
第2項記載の複写装置用螢光灯の光度制御装置。 (4)前記冷陰極皺壁光灯が所定の光度を有する時の前
記温度検知手段の出力を基準出力として、鎖基準出力か
らの検知出力の変位量を入力とするランプ電流制御手段
を有する特許請求の範囲第2項または第3項記載の複写
装置用螢光灯の光度制御装置。[Claims] (11) In a copying machine using a photoconductive photoreceptor, a cold polar fluorescent lamp is used to remove static charge from the surface of the leading conductive photoreceptor, and the ambient temperature of the wrinkled polar fluorescent lamp is all processes of detecting;
111-j for controlling the cold cathode-fluorescent lamp 2 pump current by manually combining outputs corresponding to the detection outputs of the first and second folds; How to control the brightness of a light lamp. (2) In a copying machine using a leading conductive photoreceptor, a cold cathode fluorescent lamp is used to remove static charge from the surface of the leading conductive photoreceptor.
A temperature detecting means for detecting the ambient temperature of the ultra-low temperature fluorescent lamp and an output corresponding to the output of the temperature detecting means are manually operated.
A light intensity control device for a fluorescent lamp for a copying machine, which is connected to lamp current control means for controlling the lamp current of the cold Ik@fluorescent lamp. (3) When the cold cathode plate fluorescent lamp has a predetermined luminous intensity. 3. A light intensity control device for a fluorescent lamp for a copying machine according to claim 2, wherein said lamp current control means is adjustable so as to supply a lamp current corresponding to said light intensity. (4) A patent for lamp current control means that uses the output of the temperature detection means when the cold cathode wrinkled wall lamp has a predetermined luminous intensity as a reference output, and inputs the amount of displacement of the detection output from the chain reference output. A light intensity control device for a fluorescent lamp for a copying machine according to claim 2 or 3.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56118622A JPS5818669A (en) | 1981-07-28 | 1981-07-28 | Method and device for controlling luminous intensity of fluorescent lamp for copying machine |
US06/400,392 US4463284A (en) | 1981-07-28 | 1982-07-21 | Method and apparatus for controlling luminous intensity of fluorescent lamp of reproducing apparatus |
GB08221393A GB2106282B (en) | 1981-07-28 | 1982-07-23 | Method and apparatus for controlling luminous intensity of fluorescent lamp of reproducing apparatus |
DE3228020A DE3228020C2 (en) | 1981-07-28 | 1982-07-27 | Device for controlling the brightness of a fluorescent lamp in an electrophotographic copier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56118622A JPS5818669A (en) | 1981-07-28 | 1981-07-28 | Method and device for controlling luminous intensity of fluorescent lamp for copying machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5818669A true JPS5818669A (en) | 1983-02-03 |
JPS6340315B2 JPS6340315B2 (en) | 1988-08-10 |
Family
ID=14741083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56118622A Granted JPS5818669A (en) | 1981-07-28 | 1981-07-28 | Method and device for controlling luminous intensity of fluorescent lamp for copying machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5818669A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63129387A (en) * | 1986-11-19 | 1988-06-01 | Konica Corp | Electrostatic recorder |
-
1981
- 1981-07-28 JP JP56118622A patent/JPS5818669A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63129387A (en) * | 1986-11-19 | 1988-06-01 | Konica Corp | Electrostatic recorder |
Also Published As
Publication number | Publication date |
---|---|
JPS6340315B2 (en) | 1988-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4463284A (en) | Method and apparatus for controlling luminous intensity of fluorescent lamp of reproducing apparatus | |
US9575456B2 (en) | Image forming apparatus having fixing portion including independently controllable first and second heat generating elements | |
US4536082A (en) | Transfer type electrostatic reproducing apparatus | |
US4101807A (en) | Method and apparatus for controlling the temperature of low pressure metal or metal halide lamps | |
JPS58132758A (en) | Process kit and image formation device using said process kit | |
JPS5818669A (en) | Method and device for controlling luminous intensity of fluorescent lamp for copying machine | |
CA1107813A (en) | Method of and device for charging by corona discharge | |
JPS5818668A (en) | Method and device for controlling luminous intensity of fluorescent lamp for copying machine | |
JPS6039234B2 (en) | Charging method and device using corona discharge | |
JP2004258664A (en) | Method for determination of altitude in electrostatic printer | |
JPH04338790A (en) | electrophotographic recording device | |
JP2001265072A (en) | Image forming device | |
JPS5830774A (en) | Copying device | |
KR100312724B1 (en) | Method for controlling of developing bias voltage level in image forming apparatus | |
JPS62229177A (en) | Destaticizing and electrifying device for copying machine | |
JP2002049250A (en) | Electrophotographic printer | |
JPH0746241B2 (en) | Temperature correction device in automatic image density control device | |
JPH055552Y2 (en) | ||
JPS63158575A (en) | Image forming device | |
JPS5535331A (en) | Transfer method of electrophotographic copier | |
JPS5928167A (en) | Temperature controlling device of photoreceptor of electrophotographic copying machine | |
JPS60149062A (en) | Control device of copying machine | |
JPS5930551A (en) | Adjusting method of image density | |
JPH05232772A (en) | Copying machine | |
JPS5838969A (en) | Electrophotographic copying machine |