[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58171558A - Tough nitriding steel - Google Patents

Tough nitriding steel

Info

Publication number
JPS58171558A
JPS58171558A JP5265282A JP5265282A JPS58171558A JP S58171558 A JPS58171558 A JP S58171558A JP 5265282 A JP5265282 A JP 5265282A JP 5265282 A JP5265282 A JP 5265282A JP S58171558 A JPS58171558 A JP S58171558A
Authority
JP
Japan
Prior art keywords
nitriding
steel
toughness
less
tough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5265282A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kobayashi
一博 小林
Takashi Sakagami
高志 坂上
Kazuichi Tsubota
坪田 一一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Sanyo Tokushu Seiko KK
Original Assignee
Sanyo Special Steel Co Ltd
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Sanyo Tokushu Seiko KK filed Critical Sanyo Special Steel Co Ltd
Priority to JP5265282A priority Critical patent/JPS58171558A/en
Publication of JPS58171558A publication Critical patent/JPS58171558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To obtain a tough nitriding steel with increased resistance to temper brittleness during nitriding by adding proper amounts of C, Ni, Cr, Mn, Mo, V, etc. and a very small amount of sol. Al to Fe. CONSTITUTION:This tough nitriding steel consists of, by weight, 0.25-0.50% C, <=0.50% Si, <=1.00 Mn, <=0.020% P, <=0.020% S, 1.50-2.50% Ni, 1.50-2.50% Cr, 0.20-0.70% Mo, 0.05-0.20% V, 0.010-0.10% sol. Al, <=0.0020% O, and the balance Fe with inevitable impurities. said proper amounts of C, Ni, Cr, Mo, V, etc. are added to provided high toughness to the steel, and Al deteriorating the toughness is restructed to said very small amount. The amounts of P and S are reduced, the amounts of Si, Mn, Ni and Cr are made proper, and Mo and V are effectively added to enhance the tempering resistance. Cr, Mo and V are added by said proper amounts to enhance the nitriding characteristics.

Description

【発明の詳細な説明】 本発明鋼は、特定成分を有することにより、高い強靭性
を有し、かつ窒化処理中やそれに先立つ焼もどし時にお
こる靭性の低下(いわゆる焼もどし脆性)に対する高い
抵抗性を有する強靭窒化用鋼に関するものである。
[Detailed Description of the Invention] The steel of the present invention has high toughness due to the presence of specific components, and is highly resistant to deterioration in toughness (so-called tempering brittleness) that occurs during nitriding treatment or during tempering prior to the nitriding treatment. The present invention relates to a tough nitriding steel having the following characteristics.

焼入れを行なった鋼材を450〜600C前後の温度範
囲に焼もどす場合、加熱中或は冷却中に、靭性0低下が
起こることは古くから知られており、燐もどし脆性と呼
ばれている。
It has been known for a long time that when a hardened steel material is tempered to a temperature range of about 450 to 600 C, the toughness decreases to zero during heating or cooling, and this is called phosphorus reversion embrittlement.

蛾近、AES (オージェ電子分光器)等の分析機器の
発達によりPやSなどの不純物元素の粒界への析出が焼
もどし脆性の原因となっていることが判ってきた。
With the development of analytical instruments such as mochi chika and AES (Auger electron spectrometer), it has become clear that the precipitation of impurity elements such as P and S at grain boundaries is a cause of temper brittleness.

電化処理は、一般に500〜580c前後の最も焼もど
し脆性の発生し易い温度領域において、数時間ないし、
長い場合には100時間以上の長時間にわたって処理さ
れる。そこで窒化中におこる靭性の低下を防止するため
に、一般にMOの添加が行なわれている。例えば、JI
S’jji化鋼の8ACM645では、Mo−0,15
〜0.30%が添加されている。しかし、とのMoの添
加によっても、窒化処理中に、コア部の靭性の低下が起
こることが確認されている。例えば日本金属学会編[新
制金属講座、新版材料編、鉄鋼曹」の333頁にも明記
されている〇 一般に、雪化処理は、耐摩耗性や疲労強度を向上させる
目的で施されることが多く窒化中におこる靭性の低下は
、これまで実用止金くといっていい糧問題にされなかっ
た。
The electrification treatment is generally carried out for several hours at a temperature range of around 500 to 580C, where tempering brittleness is most likely to occur.
In some cases, the treatment is carried out for a long time, 100 hours or more. Therefore, in order to prevent the decrease in toughness that occurs during nitriding, MO is generally added. For example, J.I.
In 8ACM645 of S'jji steel, Mo-0,15
~0.30% is added. However, it has been confirmed that the addition of Mo also causes a decrease in the toughness of the core portion during the nitriding process. For example, it is clearly stated on page 333 of the Japan Institute of Metals (New Metal Course, New Edition Materials Edition, Tekko So).In general, snow treatment is performed for the purpose of improving wear resistance and fatigue strength. Until now, the decrease in toughness that often occurs during nitriding has not been considered a practical problem.

しかしながら耐摩耗性や耐焼付性の上に耐くり返し衝撃
性の要求される機械部品に窒化処理f:施して用いる場
合、専用の窒化用鋼では高い表面硬さによって耐摩耗性
や耐焼付性は得られるが、靭性が低いために、くり返し
衝撃により破損に到る。
However, when applying nitriding treatment to machine parts that require repeated impact resistance in addition to wear resistance and seizure resistance, the special nitriding steel has a high surface hardness that reduces wear resistance and seizure resistance. However, due to its low toughness, repeated impacts can lead to breakage.

雪化処理は、専用の窒化用銅以外に、クロム鋼やクロム
モリブデン鋼などの一般の強靭鋼に施こす場合も多い。
Snow treatment is often applied to ordinary strong steels such as chromium steel and chrome-molybdenum steel, in addition to specialized nitriding copper.

しかし、この場合には、窒化後の表面硬さが低いために
、耐摩耗性や耐焼付性が不足する。また、窒化中に起こ
る焼もどし脆性のために、予期した靭性が得られない場
合屯ある。
However, in this case, since the surface hardness after nitriding is low, wear resistance and seizure resistance are insufficient. Additionally, due to temper brittleness that occurs during nitriding, the expected toughness may not be obtained in some cases.

本発明鋼は以上のような耐摩耗性や耐焼付き性の上に〈
シ返し[r撃性の要求される用途に適した材料として開
発した本のであり、その要旨とするところは、重量比で C:  0.25〜0.50% St:   0.50S以下 Mn:   1.00−以下 P:   0.020チ以下 S:   0.0201以下 Ni:   1.50〜2.50チ以下Cr:   1
.50〜2.50%以下Mo:  0.20〜0.7(
1% V :  0.05〜0.20S so4At:  0.010〜0.10 %0:   
0.0020−以下 残部Feおよび不可避の不純物からなることをSaとし
た、強靭性を有し、かつ窒化中におζる焼もとし脆性に
対する抵抗性の高い窒化用鋼である。
The steel of the present invention has the above-mentioned wear resistance and seizure resistance.
This book was developed as a material suitable for applications requiring high impact resistance, and its gist is that C: 0.25 to 0.50% St: 0.50S or less Mn: 1.00 or less P: 0.020 or less S: 0.0201 or less Ni: 1.50 to 2.50 or less Cr: 1
.. 50 to 2.50% or less Mo: 0.20 to 0.7 (
1% V: 0.05~0.20S so4At: 0.010~0.10%0:
This is a nitriding steel that has strong toughness and high resistance to tempering embrittlement that occurs during nitriding, with Sa being 0.0020 or less with the remainder being Fe and unavoidable impurities.

次に、本発明鋼の化学成分の限定理由について述べる。Next, the reason for limiting the chemical composition of the steel of the present invention will be described.

CFi、焼入性の向上、焼入焼もどし後の硬さおよび強
度を維持する上で、重要な役割を演する最も基本的な元
素である。Cが増加するにつれて、強度は上昇するが、
50チを越えると飽和するようになり、一方靭性は低下
する。また、Cが多くなると窒化性をも阻害する。そこ
で上限を0.50%とする。
CFi is the most basic element that plays an important role in improving hardenability and maintaining hardness and strength after quenching and tempering. As C increases, the intensity increases, but
When it exceeds 50 inches, it becomes saturated, and on the other hand, the toughness decreases. Moreover, when C increases, nitriding properties are also inhibited. Therefore, the upper limit is set to 0.50%.

一方Cは、少ない程、窒化時の窒素の侵入深さが深くな
るが、必要とする焼入性や強度が得られなくなるために
、下限を0.25 %とする。
On the other hand, the lower the C content, the deeper the penetration depth of nitrogen during nitriding, but since the required hardenability and strength cannot be obtained, the lower limit is set at 0.25%.

Stは脱酸剤として用いられ、また、焼入性の向上や、
フェライト地への固溶による強化に有効であるが、その
効果は余9大きくなり、多すぎる場合、靭性が低下し、
耐焼もどし脆性に対しても少ないほうが好ましい。また
、窒化性も阻害するため、上限をo、 s o sとす
る。
St is used as a deoxidizing agent, and also improves hardenability.
It is effective in strengthening the ferritic ground by solid solution, but the effect increases by 9%, and if it is in too much, the toughness decreases.
In terms of tempering brittleness, it is also preferable to have a smaller amount. Furthermore, since it also inhibits nitriding properties, the upper limit is set to o and s o s.

MnはSS と同様、脱阪剤としても用いられるが、焼
入性を向上嘔せる効果が大きく、焼入焼もどし後の硬さ
、強度を向上させ、窒化性に対しても有効に作用するが
、多すぎる場合、切削性や熱間加工性を低下させる。ま
た焼もどし脆性に対しても少ない方が好ましい、従って
、上限を1. OO*とする。
Like SS, Mn is also used as a descaling agent, but it has a great effect on improving hardenability, improves hardness and strength after quenching and tempering, and also has an effective effect on nitriding properties. However, if the amount is too large, the machinability and hot workability are reduced. Also, for temper brittleness, less is better, so the upper limit is set to 1. Let it be OO*.

P及びSはともに靭性を著しく低下させ、また、粒界へ
偏析することにより、焼もとし脆性の原因となり、でき
るだけ少ない事が望ましい。
Both P and S significantly reduce the toughness, and by segregating to the grain boundaries, cause brittleness due to burning, so it is desirable to reduce the amount as much as possible.

生殖性も考1’?l して0.020 %以下とする。Reproductive potential as well? 1 and 0.020% or less.

Niは、焼入性や靭性を向上させるために添加するが、
特に靭性の改善に有効でおる。しかし、多すぎた場合、
焼なまし硬さが高くなシ、加工性を著しく低下させる。
Ni is added to improve hardenability and toughness, but
It is particularly effective in improving toughness. However, if there are too many
High annealing hardness significantly reduces workability.

また、窒化性を阻害し、焼もどし脆性に対しても感受性
が増加する。
It also inhibits nitriding properties and increases susceptibility to temper brittleness.

本発明鋼においてNiは、後述のcr%Mo、vとの関
連において1650〜2. s o %の範囲内におい
て、これらの特性のバランスした最良値が得られる。
In the steel of the present invention, Ni is 1650-2. Within the range of s o %, the best balanced value of these properties is obtained.

Orは、焼入性および強度を向上させる効果が大きく、
また、窒化性に対しても大きな効果を有し、多い根室化
層の表面硬さと駿化深さを共に増大させる。しかし多く
なりすぎると、強固な窒化層を形成するようKなるため
、窒素の侵入がさまたげられ、逆に硬化深さは低下する
ようになる。耐摩耗性や耐焼付性に必要な硬さとともに
深い硬化深さを得るには、Niおよび後述(DMo、V
との関、運1cオイテ1.50〜2.50%C1範囲と
する。
Or has a great effect of improving hardenability and strength,
It also has a great effect on nitriding properties, increasing both the surface hardness and the nitriding depth of the numerous Nemuro-kai layers. However, if the amount is too high, K forms a strong nitrided layer, which prevents nitrogen from penetrating and, conversely, reduces the hardening depth. To obtain the hardness and deep hardening depth necessary for wear resistance and seizure resistance, Ni and the following (DMo, V
The connection with the luck 1c weight should be in the 1.50-2.50% C1 range.

M、は、焼入性や強度、靭性を向上させ、窒化性に対し
ても有効に作用する。特に焼もどし脆性に対しては、者
しい効果を有しているが、多すぎる場合、加工性が低下
し、0.70%を越すと、逆に焼もとし脆性に対する抵
抗性が減するようになる。従って上限を0.701とす
る。また、0.201未満の添加では、焼もどし脆性の
抵抗が不十分である。そこで下限を0.20%とする。
M improves hardenability, strength, and toughness, and also has an effective effect on nitriding properties. In particular, it has a significant effect on temper brittleness, but if it exceeds 0.70%, the workability decreases, and if it exceeds 0.70%, the resistance to temper brittleness decreases. become. Therefore, the upper limit is set to 0.701. Further, if the addition amount is less than 0.201, resistance to temper brittleness is insufficient. Therefore, the lower limit is set to 0.20%.

■は、焼もどし軟化抵抗性が大きく、焼入性および強度
や靭性を向上させ、窒化性も向上させる。iた、結晶粒
を微細化させる効果も6,6、この点からも靭性を向上
させる。
(2) has high resistance to temper softening, improves hardenability, strength and toughness, and improves nitriding properties. In addition, it also has the effect of making the crystal grains finer6,6, which also improves toughness.

しかし、これらの効果を示すにはo、oss以上の添加
が必要であり、また、0.20%以上になると、@撃遷
移温度が上昇するようになる。
However, in order to exhibit these effects, it is necessary to add o, oss or more, and when it exceeds 0.20%, the @ shock transition temperature begins to rise.

従って、上限を0.20 %とし、下限を0.05チと
する。
Therefore, the upper limit is set to 0.20% and the lower limit is set to 0.05%.

5ojAtFi、kLNとして析出することによ多結晶
粒を微細化し靭性を向上させる。また窒化鋼の基本元素
の一つであり、窒化層の表面硬さを著しく向上させるが
、コア部の靭性も低下させる。従って、靭性を重視する
本発明では、窒化層の表面硬さは、 Or%MO1■の
他の元素で向上させ、Atは結晶粒を微細化させるため
に添加する。0.010n以下では焼入時の加熱によシ
、結晶粒が粗大化し易いため、下限を0.010チとす
る。まft、、0+10−以上では結晶粒は再び粗大化
し易い傾向となり、地鉄中の5oLklが増加するにつ
れ、靭性は低下するので、上限をo、 i o sとす
る。
By precipitating as 5ojAtFi, kLN, polycrystalline grains are refined and toughness is improved. It is also one of the basic elements of nitrided steel, and although it significantly improves the surface hardness of the nitrided layer, it also reduces the toughness of the core. Therefore, in the present invention, which emphasizes toughness, the surface hardness of the nitrided layer is improved with other elements such as Or%MO1, and At is added to refine the crystal grains. If it is less than 0.010n, crystal grains tend to become coarse due to heating during quenching, so the lower limit is set to 0.010n. Above 0+10-, the crystal grains tend to become coarse again, and as the 5oLkl in the steel base increases, the toughness decreases, so the upper limits are set as o and ios.

Oは、一般に酸化物系の介在物として存在し、この酸化
物系介在物は応力集中源として作用するために、靭性や
疲労強度を低下させる。従って、0は低い程望ましいが
、現在、工業的レベルにおいて常時実現可能な上限は0
.00201程度でお夛、本発明鋼においては、0.0
020−以下であれば、十分その目的は達せられる。従
って00上限を0.0020チとする。
O generally exists as oxide-based inclusions, and since these oxide-based inclusions act as stress concentration sources, they reduce toughness and fatigue strength. Therefore, the lower the value of 0, the more desirable it is, but currently the upper limit that can be realized at any time on an industrial level is 0.
.. 00201, and in the steel of the present invention, it is 0.0
If it is 020- or less, the purpose can be sufficiently achieved. Therefore, the upper limit of 00 is set to 0.0020.

本発明鋼は従来の窒化用鋼に比べて、一段と優れた強靭
性を有しており、また一般の強靭鋼に比べても、針部も
どし脆性に優れ、さらに、窒化処理によって高い表面硬
さと硬化深さの得られることを特徴としている。このよ
うに、高い強靭性を有するとともに、窒化処理中あるい
はそれに先だつ焼もどし時における靭性の低下に対する
高い抵抗性を4有した窒化用鋼は従来例をみないもので
おる。
The steel of the present invention has superior toughness compared to conventional nitriding steels, and also has excellent needle-recovery brittleness compared to general tough steels. Furthermore, the nitriding treatment provides high surface hardness. It is characterized by the ability to obtain a hardening depth. As described above, there is no conventional steel for nitriding that has high toughness and high resistance to deterioration in toughness during nitriding or during tempering prior to nitriding.

本発明鋼の成分における特徴は、 (1)  高い強靭性を持たせるために、C,Ni、 
Or。
The characteristics of the composition of the steel of the present invention are as follows: (1) In order to have high toughness, C, Ni,
Or.

M、、V  等の合金元素を適量添加し、靭性をそこな
うAtを微量添加にとどめた。
Appropriate amounts of alloying elements such as M and V were added, and only a trace amount of At, which impairs toughness, was added.

(2)針部もどし脆性を向上させるために%P%S等の
不純物元素を低減させるとともに、 St、Mn%Ni
、Cr  量の適量制限およびMO1■の有効添加をは
かった。
(2) In order to improve needle return brittleness, impurity elements such as %P%S are reduced, and St, Mn%Ni
, the amount of Cr was appropriately limited, and MO1■ was added effectively.

(3)窒化特性を向上させるためにCr、Mo、Vの適
量添加した。
(3) Appropriate amounts of Cr, Mo, and V were added to improve the nitriding properties.

ことにより、これらの%徴を併せ持たせることに成功し
たものでおる。
By doing so, we were able to successfully combine these percentage characteristics.

次に本発明−の特性を実施例とともに説明する。Next, the characteristics of the present invention will be explained together with examples.

第1表に、本発明鋼と比較鋼の化学成分および500 
CX20 hr−+530UX40hrめガス窒化処理
を施した場合の窒化層の表面硬さく表面より25μの位
置の硬さ)および1(V−550での有効硬化深さ、貞
S特性および脆化特性のデーターも併せて示す。第1図
は上記の窒化条件によるー化層の硬さ分布を示したもの
である。図に見るとおりSACM 645は、Atを含
有しているために、高い表面硬さが得られるものの、硬
さ分布の勾配が非常に急になっている。従って、良好な
耐摩耗性を示すが、繰返し衝撃荷重に対しては、窒化層
が剥離し易く、この剥離を起点として疲労破壊に至υ易
い傾向におる。一般の強靭鋼の場合、表面硬さは、高々
HV−650程度であり、t*硬化深さ本あまり深くな
い。これに対し、本発明鋼ではav−goo前後の表面
硬さが得られており、また硬化深さが深く良好な窒化特
性を有していることがわかる。
Table 1 shows the chemical composition and 500% of the invention steel and comparative steel.
CX20 hr-+530UX 40 hr Surface hardness of nitrided layer when gas nitriding treatment is applied (hardness at a position 25μ from the surface) and 1 (data on effective hardening depth, steel S properties and embrittlement properties in V-550) Figure 1 shows the hardness distribution of the nitrided layer under the above nitriding conditions.As seen in the figure, SACM 645 has high surface hardness because it contains At. However, the gradient of the hardness distribution is very steep.Thus, it shows good wear resistance, but the nitride layer tends to peel off under repeated impact loads, and this peeling becomes the starting point. It tends to easily lead to fatigue failure.In the case of general strong steel, the surface hardness is at most about HV-650, and the t* hardening depth is not very deep.On the other hand, the steel of the present invention has a hardness of HV-650. It can be seen that a surface hardness of about 100% was obtained, and that the hardening depth was deep and good nitriding properties were obtained.

次に硬さが1(RC35になるように焼入焼もどしをし
た場合および脆化特性を調べるために、その後500(
1’X100hrの等温脆化処理を行なった場合のシャ
ルピー衝撃試験(、Tl53号試験片:2闘Uノツチ)
の結果を第2図に示す。
Next, in order to investigate the case where the hardness was quenched and tempered to 1 (RC35) and the embrittlement characteristics, it was then hardened to 500 (
Charpy impact test after 1'X100hr isothermal embrittlement treatment (Tl53 test piece: 2-U notch)
The results are shown in Figure 2.

本供試鋼は、通常の焼入焼もどし状態においても、また
、等温脆化処理を受けた状態においても、高い衝撃値を
示し、強靭性ならびに針部もどし脆性に慶れていること
がわかる。
This test steel exhibits high impact values both in normal quenching and tempering conditions as well as in isothermal embrittlement treatment, indicating that it has excellent toughness and needle reversibility embrittlement. .

くに衝撃的な繰返し荷重のかかる機械部品への適応性を
調べるために行なった、窒化状暢(焼もどし条件は第2
図と同じ)で松材式繰返し衝撃疲労試験の結果を第2表
に示す。第2表には芯部の耐衝撃疲労特性を調べるため
に焼入焼もどしの1まで窒化を施さない場合の結果も併
せて示す。この結果からも、本発明鋼は、比較鋼に比べ
て、芯部だけについても、ま九、芯部と窒化層を含めた
全体での繰返し衝撃性にも優れていることが判る。
In order to investigate the adaptability to mechanical parts that are subjected to particularly shocking repeated loads, the nitriding conditions were
Table 2 shows the results of the pine wood type cyclic impact fatigue test using the same material as shown in the figure. Table 2 also shows the results when nitriding was not performed up to 1 of quenching and tempering in order to investigate the impact fatigue properties of the core. This result also shows that the steel of the present invention is superior to the comparative steel in terms of repeated impact resistance both for the core and for the entire core including the nitrided layer.

第2表 松材式衝撃試験結果 (打撃エネルギー: 30に/−cs)以上に述べたと
おシ、本発明鋼は高い靭性と共に優れた針部もどし脆性
を併せ備え、更にその製造についても何ら特別の手段に
よることなく通常の製一方法により容易に製造し得るも
ので、各種の耐摩耗性を必要とする機械部材用として正
に適切であシ、当兼界に大いに貢献するものである。
Table 2 Pine wood impact test results (Impact energy: 30/-cs) As stated above, the steel of the present invention has both high toughness and excellent needle reversibility brittleness, and there is no special manufacturing process. It can be easily manufactured by ordinary manufacturing methods without using other means, and is therefore suitable for use in various mechanical parts that require wear resistance, and will greatly contribute to the industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋼と比較鋼の窒化層の硬さ分布を示す図
、第2図は本発明鋼と比較−を脆化処理したときの脆化
程度を比較して示した図でおる。
Figure 1 is a diagram showing the hardness distribution of the nitrided layer of the inventive steel and comparative steel, and Figure 2 is a diagram comparing the degree of embrittlement when the inventive steel and comparative steel are subjected to embrittlement treatment. .

Claims (1)

【特許請求の範囲】 重量比で C:  O40〜0.50’1l st:   o、so  −以下 Mn :   1.0 G  −以下 p:   o、ozo−以下 8:   0.02096以下 Ni:  1.50〜2.50チ Cr:  1.50〜2.501 Mo:  0.20〜0.70S V:  0.05〜0.20チ 5otAt: 0.010〜0.10チ〇二  0.0
02056以下 残部reおよび不可避の不純物からなることを特徴とし
た、強靭性を有し、かつ窒化中におこる焼もどし脆性に
対する抵抗性の高い強靭窒化用鋼。
[Claims] Weight ratio C: O40~0.50'1l st: o, so - or less Mn: 1.0 G - or less p: o, ozo - or less 8: 0.02096 or less Ni: 1. 50-2.50chi Cr: 1.50-2.501 Mo: 0.20-0.70SV: 0.05-0.20chi 5otAt: 0.010-0.10chi〇2 0.0
A strong nitriding steel having strong toughness and high resistance to temper brittleness that occurs during nitriding, characterized by comprising 02056 or less with the remainder re and unavoidable impurities.
JP5265282A 1982-03-31 1982-03-31 Tough nitriding steel Pending JPS58171558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5265282A JPS58171558A (en) 1982-03-31 1982-03-31 Tough nitriding steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5265282A JPS58171558A (en) 1982-03-31 1982-03-31 Tough nitriding steel

Publications (1)

Publication Number Publication Date
JPS58171558A true JPS58171558A (en) 1983-10-08

Family

ID=12920783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265282A Pending JPS58171558A (en) 1982-03-31 1982-03-31 Tough nitriding steel

Country Status (1)

Country Link
JP (1) JPS58171558A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193214A (en) * 1983-04-19 1984-11-01 Caterpillar Mitsubishi Ltd Preparation of steel used in parts for constituting transmission apparatus
JPS60165352A (en) * 1984-02-06 1985-08-28 Aichi Steel Works Ltd High frequency hardening steel
US4853049A (en) * 1984-02-13 1989-08-01 Caterpillar Inc. Nitriding grade alloy steel article
US4930909A (en) * 1988-07-11 1990-06-05 Nippon Seiko Kabushiki Kaisha Rolling bearing
JP2023514864A (en) * 2020-02-28 2023-04-11 バオシャン アイアン アンド スティール カンパニー リミテッド Controlled yield ratio steel and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193214A (en) * 1983-04-19 1984-11-01 Caterpillar Mitsubishi Ltd Preparation of steel used in parts for constituting transmission apparatus
JPS60165352A (en) * 1984-02-06 1985-08-28 Aichi Steel Works Ltd High frequency hardening steel
JPH048497B2 (en) * 1984-02-06 1992-02-17
US4853049A (en) * 1984-02-13 1989-08-01 Caterpillar Inc. Nitriding grade alloy steel article
US4930909A (en) * 1988-07-11 1990-06-05 Nippon Seiko Kabushiki Kaisha Rolling bearing
JP2023514864A (en) * 2020-02-28 2023-04-11 バオシャン アイアン アンド スティール カンパニー リミテッド Controlled yield ratio steel and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4050829B2 (en) Carburized material with excellent rolling fatigue characteristics
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JP4321974B2 (en) Steel for high strength screws and high strength screws
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP3793391B2 (en) High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JPH09263875A (en) High strength steel for machine structural use, excellent in delayed fracture characteristic, and its production
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JPS58171558A (en) Tough nitriding steel
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
EP0498105B1 (en) High strength and high toughness stainless steel and method of manufacturing the same
JP3471576B2 (en) Surface high hardness, high corrosion resistance, high toughness martensitic stainless steel
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP4054179B2 (en) High-strength pearlite steel with excellent delayed fracture resistance
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JPH05255733A (en) Production of carburized and case hardened steel material having delayed fracture resistance
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JPH07179988A (en) Hot tool steel excellent in high temperature strength
JP3861137B2 (en) High-strength mechanical structural steel and its manufacturing method
JPH04120249A (en) Martensitic stainless steel and its production
JPS5916950A (en) Soft-nitriding steel
JPH07138701A (en) Steel for nitriding