JPS58162029A - Preparation of polycrystalline silicon wafer - Google Patents
Preparation of polycrystalline silicon waferInfo
- Publication number
- JPS58162029A JPS58162029A JP57046070A JP4607082A JPS58162029A JP S58162029 A JPS58162029 A JP S58162029A JP 57046070 A JP57046070 A JP 57046070A JP 4607082 A JP4607082 A JP 4607082A JP S58162029 A JPS58162029 A JP S58162029A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- melt
- forming plane
- wafer forming
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/008—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method using centrifugal force to the charge
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は太陽電池その他の光電変換素子等に用いられて
いる多結晶シリコンウェハの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing polycrystalline silicon wafers used in solar cells and other photoelectric conversion elements.
従来から多結晶シリコンウェハは各種の方法によって製
造されており、最も一般的にはシリコン母材により一た
ん所定形状のインゴットを鋳造し、これをスライスする
ことによってウェハを得るようにしているが、これでは
スライス作業に大変な時間をかけなければならないだけ
でなく、インゴットの約50チがスライス時のロスとな
ってしまうため、製品がコスト高につき大量生産も不可
能である。Conventionally, polycrystalline silicon wafers have been manufactured by various methods, and the most common method is to cast an ingot of a predetermined shape from a silicon base material and then obtain wafers by slicing the ingot. In this case, not only does the slicing operation take a lot of time, but also about 50 inches of the ingot is lost during slicing, making the product expensive and making mass production impossible.
そこでスライ負によらない方法としてリボン法とキャス
ティング法(鋳造法)が既に実施さn −[1,/l
ルカ、リボン法は例えば回転ドラムの局面に溶融シリコ
ンを噴当させ、当該局面にリボン状のウェハを形成する
ものであり、同法によるときは実際上りぎン幅が数−程
度のものしか製造することができず、大形の太陽電池素
材等が得られない難点がある。Therefore, the ribbon method and the casting method (casting method) have already been implemented as methods that do not rely on slide negative n − [1,/l
In the ribbon method, for example, molten silicon is sprayed onto the surface of a rotating drum to form a ribbon-shaped wafer on the surface, and when this method is used, it is actually possible to manufacture only wafers with a rise width of a few centimeters. However, it is difficult to obtain large-sized solar cell materials.
また上°記キャスティング法と呼ばれているものは、シ
リコン母材を加熱して融液となし、これを製品ウェハの
寸法に応じた鋳型に流し込み、さらに当該型の可動部分
により融液を押圧成型して固化させるものであるが、同
法によるときは、一度に所定形状のウェハが得られ、量
産性の点で望ましい結果が期待できるもの\、上記のよ
うに融液は四方から押えつけられることになる。In addition, in the casting method mentioned above, the silicon base material is heated to form a melt, which is poured into a mold according to the dimensions of the product wafer, and then the melt is pressed by the movable parts of the mold. When using this method, wafers with a predetermined shape can be obtained at once, and desirable results can be expected in terms of mass production.As mentioned above, the melt is pressed down from all sides. It will be done.
このため同法では鋳型の上下面と側面が上記融液の固化
に際L1シリコン結晶粒(グレイン)の成長を抑制して
しまうこと\なり、固化製品の前記各面と接する部分近
傍が、非常に細かい結晶粒となって大きな結晶粒が得ら
れず、太陽電池用シリコンウェハ等にあって望ましいと
されている大結晶粒生成の要請を満足させることができ
ないため、当該ウェハによって得られた太陽電池の光電
変換効率も2〜3チと極度に悪くなってしまう欠陥をも
っている。For this reason, in this method, the upper and lower surfaces and side surfaces of the mold suppress the growth of L1 silicon crystal grains (grains) during solidification of the melt, and the vicinity of the portions of the solidified product in contact with each of the surfaces is extremely Because the crystal grains become fine and large crystal grains cannot be obtained, it is not possible to satisfy the requirement of large crystal grain generation, which is considered desirable in silicon wafers for solar cells. The photoelectric conversion efficiency of the battery also has a defect that is extremely poor, reaching 2 to 3 inches.
そこで本願人は先に、所望雰囲気内にあって;ターンテ
ーブル上におけるシリコン母材の融液を、当該ターンテ
ーブルの回転による遠心力によって拡径方向へ流動させ
ることにより、当該融液による所望径の融液薄層を形成
し、これを固化することにより多結晶シリコンウニハラ
製造する方法につき提案した。Therefore, the applicant has first attempted to obtain a desired diameter by making the melt of the silicon base material on the turntable flow in the direction of diameter expansion by the centrifugal force generated by the rotation of the turntable in a desired atmosphere. We proposed a method for manufacturing polycrystalline silicon Unihara by forming a thin layer of melt and solidifying it.
しかし上記の如く融液を遠心力により拡径流動させれば
、同液に半径方向の力が作用するから、得られるウェハ
の形状は円形板状となる。However, if the melt is caused to expand in diameter by centrifugal force as described above, a radial force acts on the melt, and the resulting wafer will have a circular plate shape.
ところがこれにより製造した太陽電池によって太陽電池
モジュールを作成しようとするとき、所要数の太陽電池
を所定面積内に敷設するとと\なるから、太陽電池の外
形が円形状でめる場合には、太陽電池がモジュールの上
記所定面積内に占める割合、すなわちモジュール装填密
度が小さくなり、このため円形に形成されたウェハを半
円状、四角形状等に切断することにより太陽電池を作成
しているが、これでは作業性が悪く経済的にも成立し得
る方策とならない。However, when trying to create a solar cell module using solar cells manufactured using this method, it becomes difficult to lay the required number of solar cells within a predetermined area. The ratio of the battery to the above-mentioned predetermined area of the module, that is, the module loading density, becomes smaller, and for this reason, solar cells are created by cutting a circularly formed wafer into semicircular, square, etc. shapes. This method has poor workability and is not economically viable.
本発明は上記の遠心力を利用したウェハの製造方法を改
善して、モジュール装填密度を大にすることができる太
陽電池の製作に即応可能なウェハの製造に好適であると
共に、円板状のウェハを得ようとする場合でも、所望外
径寸法のものを簡易に製造し得るようにしたもので、第
1発明の特徴とするところは、ターンテーブルにあって
、矢面に所要外周縁形状としたウエノ(形成平面が、同
機構の回転中心と同軸に形成され、当該テーパ形成平面
には所望雰囲気においてシリコン母材の融液を供給し、
上記ターンテーブルの回転による棚心力によって、当該
供給融液を拡径方向へ流動させることにより、過剰供給
の融液をウェハ形成平面の外周縁から放出させることに
よって、供給融液による上記テーバ形成平面の全面にわ
たる融液薄層を形成し、これを冷却固化するようにした
ことにらる〇そこで先ず上記発明につき、図面によって
これを詳記すれば、第1図により示した本発明を図面に
よって詳記すれば、第1図に示す設備例にあっては坩堝
+11の外周側に電気ヒータ等による溶融用熱源(2)
を配し、坩堝0)に投入したシリコン母材を同熱源(2
)によって、当該シリコンの溶融温度1420℃を考慮
して加熱することにより、これを溶融し得るようにかっ
ており、当該熱源(2)としては図示例のように電熱線
であるとか、高周波加熱装置によることができ、もちろ
ん適時当該加熱を停止したり、加熱条件を制御′可能に
しておくことが望ましい。The present invention improves the above-described wafer manufacturing method using centrifugal force, and is suitable for manufacturing wafers that can be readily applied to the production of solar cells that can increase module loading density. Even when trying to obtain a wafer, it is possible to easily manufacture a wafer with a desired outer diameter dimension.The first aspect of the invention is characterized by a turntable that can be used to obtain a wafer having a desired outer diameter shape. The tapered Ueno (formation plane is formed coaxially with the rotation center of the mechanism, and a melt of the silicon base material is supplied to the tapered formation plane in a desired atmosphere,
By causing the supplied melt to flow in the radially expanding direction by the shelf center force caused by the rotation of the turntable, the excess supplied melt is discharged from the outer periphery of the wafer forming plane. This is because a thin layer of melt is formed over the entire surface and this is cooled and solidified. First, the above-mentioned invention will be described in detail with reference to drawings. To be more specific, in the example of equipment shown in Fig. 1, a heat source for melting (2) such as an electric heater is installed on the outer circumferential side of the crucible +11.
The silicon base material put into the crucible (0) is heated to the same heat source (2).
), the silicon can be melted by heating it in consideration of its melting temperature of 1420°C, and the heat source (2) may be an electric heating wire as shown in the example, or a high-frequency heating device. Of course, it is desirable to be able to stop the heating at an appropriate time and to control the heating conditions.
また上記シリコン母材としては金属級シリコン、半導体
級高純度シリコンなどを用いるようにし、また坩堝(1
)の素材としてはシリコンとの反応性が少ない石英、グ
ラファイト等を用い、図示例では坩堝t11の回転中心
(3)を転動軸として、これを回転させることにより、
その開口からシリコン母材の融液を放出し得るようにし
であると共に、坩堝+11の直下にはこれまた石英、グ
ラファイト等により形成し念漏斗(4)を配して、同漏
+(4)をも溶融用熱#(2)による加熱条件下に配し
、さらにその直下に配したターンテーブル機構(5)も
、同熱源(2)によって加熱可能なるよう比較的近傍に
配置されている。In addition, as the silicon base material, metal grade silicon, semiconductor grade high purity silicon, etc. are used, and a crucible (1
) is used as a material such as quartz or graphite, which has little reactivity with silicon, and in the illustrated example, by rotating it around the center of rotation (3) of the crucible t11 as a rolling axis,
The melt of the silicon base material can be discharged from the opening, and a funnel (4) also made of quartz, graphite, etc. is arranged directly below the crucible +11. is also placed under heating conditions by the melting heat #(2), and the turntable mechanism (5) placed directly below it is also placed relatively close so that it can be heated by the same heat source (2).
そして上記のターンテーブル機構t5)は、そのターン
テーブル(5)′ にウェハ形成平面(6)が形成され
ていると共に、当該テーブル(5)′の外周側には回収
受皿(7)が配設されている。In the turntable mechanism t5), a wafer forming plane (6) is formed on the turntable (5)', and a collection tray (7) is arranged on the outer circumferential side of the table (5)'. has been done.
こ\で第1図そして第2図に示した実施例にあっては、
ターンテーブル(5)′ が回転軸(8)と、その受台
(8)′ を介して固設された前記回収受皿(7)とを
具備し、ターンテーブル(5)′のウェハ形成平面(6
)は、回収受皿(7)の底面(7)′にあって、軸心位
置に載置したウェハ皿]9)の上面として形成されてい
る。In the embodiment shown in FIGS. 1 and 2,
The turntable (5)' is equipped with a rotation shaft (8) and the collection tray (7) fixedly installed via the pedestal (8)', and the wafer forming plane ( 6
) is located on the bottom surface (7)' of the collection tray (7) and is formed as the upper surface of the wafer tray]9) placed at the axial center position.
上記回収受皿(7)は底面(71′ の外周側から立設
した起q周縁0Iを有し、当該周縁α〔は上記ウェハ皿
(9)よりも高所まで抵出させ、また前記の石英、ゲラ
ファイトにより形成するのが望ましい。The collection tray (7) has a raised q peripheral edge 0I that stands up from the outer periphery of the bottom surface (71'), and the peripheral edge α is projected to a higher place than the wafer tray (9), and the quartz , is preferably formed from gelaphite.
これに対し第3図に示す実施例にあっては、ターンテー
ブル(5)′が回転軸(8)の上端に載置板011を固
設して構成され、当該載置板Q9上の軸心位置にウェハ
皿(9)を載置し、凹皿(9)の上面としてターンテー
ブル(5)のウェハ形成平面(6)が設定されているが
、この際上記載置板Uの上面をウェハ形成平面(6)と
することもできる。On the other hand, in the embodiment shown in FIG. The wafer plate (9) is placed at the center position, and the wafer forming plane (6) of the turntable (5) is set as the top surface of the concave plate (9). It can also be a wafer forming plane (6).
さらに同実施例にあっては前記回収受皿(7)がターン
テーブル(5]と切離状態となっており、図示例では所
定の固定箇所(Izに設けた当該回収受皿(7)の底面
(7)′ に軸孔0を穿設し、これに回転軸(8)が遊
嵌状態にて貫装されている。Furthermore, in the same embodiment, the collection tray (7) is separated from the turntable (5), and in the illustrated example, the bottom surface of the collection tray (7) provided at a predetermined fixing point (Iz) A shaft hole 0 is bored in 7)', into which the rotating shaft (8) is loosely fitted.
そ9で上記設備例を用いて第1発明を実施するには、坩
堝f11にシリコン母材を投入して、これを溶融用熱源
(2)により加熱融解し、当該融液を坩堝11+の転勤
によって漏斗(4)へ放流し、こ\で−たん漏斗(4)
に受承されて、さらにその流出0 (41’ から、図
中点線で示すように当該融液をウェハ形成平面(6)の
略中心部に滴下するOそしてこの際ターンテーブル(5
)は予め回転させておくのがよいが、同時回転でも、滴
下完了後融液が固化しないうちに回転を開始させてもよ
く、当該回転による遠心力によって融液は拡径方向へ流
動する。In order to carry out the first invention using the above equipment example, the silicon base material is put into the crucible f11, heated and melted by the melting heat source (2), and the melt is transferred to the crucible 11+. Discharge the water into the funnel (4), then pour it into the funnel (4).
The melt is received by the turntable (5), and then the melt is dripped from the turntable (41') onto the approximate center of the wafer forming plane (6) as shown by the dotted line in the figure.
) is preferably rotated in advance, but the rotation may be started simultaneously or before the melt solidifies after the completion of dropping, and the centrifugal force caused by the rotation causes the melt to flow in the direction of diameter expansion.
こ\でウェハ皿(9)としては、各種寸法の円形、四角
形等所望形状のウェハ形成平面(6)をもったものが用
推され、これを任意選択して用いるが、上記の融液供給
量が充分であれば、拡径流動の融液はウェハ形成平面(
6)の全面にわたり、その外周#1tで拡径され、余剰
供給の融液は当該外周縁から遠心力により放出され、こ
の結果ウェハ形成平面(6)の形状に見合った融液薄I
I(14が形成され、これを自然放冷か適宜の冷却手段
によって固化し、製品たる多結果シリコンウェハを得る
のである。Here, as the wafer dish (9), one having a wafer forming plane (6) of a desired shape such as circular or rectangular of various dimensions is recommended, and this can be arbitrarily selected. If the amount is sufficient, the melt in the expanding diameter flow will flow onto the wafer forming plane (
6), the diameter is expanded at the outer periphery #1t, and the excess supply of melt is released from the outer periphery by centrifugal force, resulting in a melt thin I that matches the shape of the wafer forming plane (6).
I(14) is formed and solidified by natural cooling or by an appropriate cooling means to obtain a multi-result silicon wafer as a product.
そして上記設備例によるときは、ウェハ形成平面(6)
の外周縁から飛敵放出されたシリコン融液が、回収受皿
(7)にエリ受承され、これを冷却固化すること\なる
から、当該シリコンの再使用が可能となる。When using the above equipment example, the wafer forming plane (6)
The silicon melt ejected from the outer periphery is received by the collection tray (7), where it is cooled and solidified, making it possible to reuse the silicon.
こ\で具体例を示せば厚さ5■のグラファイトによるウ
ェハ皿(9)を使用し、内径180m。To give a specific example, a wafer plate (9) made of graphite with a thickness of 5 cm is used, and the inner diameter is 180 m.
深さ20mの石英製回収受皿(7)を用い、第2図の設
備例によりウェハ皿(9)の湿度を800℃〜13′0
0℃に制(資)し、かつターンテーブル(5)′を10
0〜500 r、p、m、にて回転させ、石英による坩
堝f11のシリコン母材を1455℃で溶融させてから
前記の如くして融液をウェハ形成平面(6)に供給し、
50+a+X50m、直径70+m、100+sの製品
を得た。Using a quartz collection tray (7) with a depth of 20 m, the humidity of the wafer tray (9) is maintained at 800°C to 13'0 using the equipment example shown in Figure 2.
Control the temperature to 0℃, and turn the turntable (5)' to 10℃.
Rotate at 0 to 500 r, p, m, melt the silicon base material of the quartz crucible f11 at 1455°C, and then supply the melt to the wafer forming plane (6) as described above,
A product of 50+a+X50m, diameter 70+m, and 100+s was obtained.
次に第2の発明は上記第1の発明におって、さらに前記
ウェハ皿(9)の外側縁と連続じている外側面(9)′
に窒化ボロン等による濡れ防+)−剤αつを、第2図
に示す如く予め塗布するようにしたことを、その特徴と
している0
第1発明の実施に際し、ターンテーブル(5)′の回転
数、シリコン融液の供給量、得ようとするウェハの厚さ
等の各種条件その他の機械的要素によっては、ウェハ形
成平面(6)から放出された融液が回収受皿(7)に飛
散せず、ウエノ・皿(9)の外側面(9)′に流下して
しまうことがあり、この上う々場合には第4図のように
得られた製品が、子板部Aのみでなく、これと一体に固
化された垂下縁部Bをもつ皿状のものとなってしまい、
か\る製品にあっては上部垂下縁部Bを削り落さねばな
らなくなる。Next, a second invention is the first invention, further comprising an outer surface (9)' that is continuous with the outer edge of the wafer plate (9).
It is characterized by the fact that an anti-wetting agent made of boron nitride or the like is pre-applied as shown in FIG. Depending on various conditions such as the number of silicon melts, the amount of silicon melt supplied, the thickness of the wafer to be obtained, and other mechanical factors, the melt released from the wafer forming plane (6) may scatter onto the collection tray (7). Otherwise, the product may flow down to the outer surface (9)' of the ueno plate (9), and if this is not the case, the product obtained as shown in Fig. , it becomes a dish-shaped thing with a hanging edge B that is solidified integrally with this,
In such a product, the upper hanging edge B must be shaved off.
第2発明では上記のように外側面(9)′に窒化ボロン
等を塗布する工程が付加されているから、ウェハ皿(9
)の外側面(9)′ に回り込んだシリコン融液は当該
窒化ボロンにより、はじかれてウェハ形成平面(6)上
の融液とは一体化せず、すべて回収受[+11 +71
に受承される。In the second invention, since the step of applying boron nitride or the like to the outer surface (9)' is added as described above, the wafer plate (9)'
) is repelled by the boron nitride, does not integrate with the melt on the wafer forming plane (6), and is completely collected and collected [+11 +71
accepted.
本発明は以上詳記した如く、得られるウェハ製品に必要
なシリコン量よりも多い融液を、所望形状としたウェハ
形成平面に供給し、過剰供給シリコンを遠心力により、
上記ウェハ形成平面の外周縁から放出して、当該平面と
同一形状の製品を得るようにしたから、ウェハ形成平面
の選択により労せずして所望規格の製品が得られ、特に
太陽電池モジュールを作成する際、そのモジュール装填
密度を高くし得る太陽電池が、二次布りを要せずして簡
易に提供し得ると共に、円形ウェハについても各種寸法
のものを、ターンテーブルの回転数やウェハ皿の温度、
漏斗の高さ等につき厳密な制御を要することなく製造す
ることができる。As described in detail above, the present invention supplies a larger amount of silicon than the amount of silicon required for the resulting wafer product to a wafer forming plane formed into a desired shape, and removes the excess silicon by centrifugal force.
Since the product is emitted from the outer periphery of the wafer forming plane to obtain a product having the same shape as the plane, it is possible to easily obtain a product with the desired specifications by selecting the wafer forming plane, especially when creating a solar cell module. In this case, solar cells that can increase the module loading density can be easily provided without the need for secondary fabric, and circular wafers of various sizes can be used depending on the rotation speed of the turntable and the wafer plate. temperature of,
It can be manufactured without requiring strict control over the height of the funnel, etc.
第1図は本発明に係る製造方法の実施に用い得る設備例
を示す一部切欠の正面説明図、第2図は同設備例のター
ンテーブル機構を示す一部切欠の正面図、第3図は他実
施例による同ターンテーブル機構の一部切欠正面図、第
4図は製品ウェハの異常状態を示したターンテーブル機
構の一部切欠正面図である。
(5)・・・・・ターンテーブル機構
(6)・・・・・ウェハ形成平面
a弔・・・・・融液薄層
O9・・・・−濡れ防IE剤
特許出願人
代理人 弁理士 井 藤 誠
@ 1 図
第2図
第3図
竿 4 図FIG. 1 is a partially cutaway front explanatory view showing an example of equipment that can be used to carry out the manufacturing method according to the present invention, FIG. 2 is a partially cutaway front view showing a turntable mechanism of the same example of equipment, and FIG. 4 is a partially cutaway front view of the same turntable mechanism according to another embodiment, and FIG. 4 is a partially cutaway front view of the turntable mechanism showing an abnormal state of a product wafer. (5)...Turntable mechanism (6)...Wafer forming plane A...Thin layer of melt O9...-Wetting prevention IE agent patent applicant representative Patent attorney Makoto Ito @ 1 Figure 2 Figure 3 Rod 4 Figure
Claims (1)
形状としたウェハ形成平面が、同機構の回転中心と同軸
に形成され、当該ウェハ形成平面には、所望雰囲気にお
いてシリコン母材の融液を供給し、上記ターンテーブル
1構の回転による遠心力によって、当該供給融液を拡径
方向へ流動させることにより、過剰供給の融液をウェハ
形成平面の外周縁から放出させることによって、供給融
液による上記ウェハ形成平面の全面にわたる融液薄層を
形成し、これを冷却固化するようにしたことを特徴とす
る多結晶シリコンウェハの製造方法。 (2) ターンテーブル機構には、天面に所要外周縁
形状としたウェハ形成平面が、同機構の回転中心と同軸
に形成され、当該ウェハ形成平面に連続する外側面には
窒化ボロン等による濡れ防止剤を塗布し、上記ウェハ形
成平面には所望雰囲気においてシリコン母材の融液を供
給し、上記ターンテーブル機構の回転による遠心力によ
って、当該供給融液を拡径方向へ流動させることにより
、過剰供給の融液をウェハ形成平面の外周縁から放出さ
せることによって、供給融液による上記ウェハ形成平面
の全面にわたる融液薄層を形成し、これを冷却固化する
ようにしたことを特徴とする多結晶シリコンウェハの製
造方法。[Claims] In the Fi+ turntable mechanism, a wafer forming plane with a desired outer peripheral shape is formed on the top surface coaxially with the rotation center of the mechanism, and the wafer forming plane has a silicon matrix formed in a desired atmosphere. Supplying a melt of the material and causing the supplied melt to flow in the direction of diameter expansion due to the centrifugal force caused by the rotation of the one turntable, thereby releasing the excessively supplied melt from the outer peripheral edge of the wafer forming plane. A method for manufacturing a polycrystalline silicon wafer, characterized in that a thin layer of melt is formed over the entire surface of the wafer forming plane using the supplied melt, and the thin layer is cooled and solidified. (2) The turntable mechanism has a wafer forming plane with a desired outer peripheral shape formed on the top surface coaxially with the rotation center of the mechanism, and the outer surface continuous with the wafer forming plane is wetted with boron nitride or the like. By applying a preventive agent, supplying a silicon base material melt to the wafer forming plane in a desired atmosphere, and causing the supplied melt to flow in the direction of diameter expansion by the centrifugal force caused by the rotation of the turntable mechanism, By discharging the excess melt from the outer periphery of the wafer forming plane, a thin layer of the supplied melt is formed over the entire surface of the wafer forming plane, and this is cooled and solidified. Method for manufacturing polycrystalline silicon wafers.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57046070A JPS58162029A (en) | 1982-03-23 | 1982-03-23 | Preparation of polycrystalline silicon wafer |
US06/373,039 US4561486A (en) | 1981-04-30 | 1982-04-29 | Method for fabricating polycrystalline silicon wafer |
AU83147/82A AU562656B2 (en) | 1981-04-30 | 1982-04-29 | Fabricating polycrystalline silicon wafers |
DE8282302246T DE3277974D1 (en) | 1981-04-30 | 1982-04-30 | Method fabricating a polycrystalline silicon wafer |
EP82302246A EP0065373B1 (en) | 1981-04-30 | 1982-04-30 | Method fabricating a polycrystalline silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57046070A JPS58162029A (en) | 1982-03-23 | 1982-03-23 | Preparation of polycrystalline silicon wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58162029A true JPS58162029A (en) | 1983-09-26 |
Family
ID=12736730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57046070A Pending JPS58162029A (en) | 1981-04-30 | 1982-03-23 | Preparation of polycrystalline silicon wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58162029A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329926U (en) * | 1986-08-08 | 1988-02-27 | ||
CN113206164A (en) * | 2021-04-26 | 2021-08-03 | 宜兴市昱元能源装备技术开发有限公司 | Cast tandem multi-junction photovoltaic cell |
CN113224180A (en) * | 2021-04-28 | 2021-08-06 | 宜兴市昱元能源装备技术开发有限公司 | Preparation method of battery piece |
CN113224178A (en) * | 2021-04-28 | 2021-08-06 | 宜兴市昱元能源装备技术开发有限公司 | Production method of silicon wafer, silicon wafer produced by using production method and solar cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5427720A (en) * | 1977-08-03 | 1979-03-02 | Nec Corp | Process amplifier of color pickup unit |
JPS56129377A (en) * | 1980-03-14 | 1981-10-09 | Agency Of Ind Science & Technol | Manufacture of polycrystalline silicone semiconductor |
-
1982
- 1982-03-23 JP JP57046070A patent/JPS58162029A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5427720A (en) * | 1977-08-03 | 1979-03-02 | Nec Corp | Process amplifier of color pickup unit |
JPS56129377A (en) * | 1980-03-14 | 1981-10-09 | Agency Of Ind Science & Technol | Manufacture of polycrystalline silicone semiconductor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329926U (en) * | 1986-08-08 | 1988-02-27 | ||
JPH0451472Y2 (en) * | 1986-08-08 | 1992-12-03 | ||
CN113206164A (en) * | 2021-04-26 | 2021-08-03 | 宜兴市昱元能源装备技术开发有限公司 | Cast tandem multi-junction photovoltaic cell |
CN113224180A (en) * | 2021-04-28 | 2021-08-06 | 宜兴市昱元能源装备技术开发有限公司 | Preparation method of battery piece |
CN113224178A (en) * | 2021-04-28 | 2021-08-06 | 宜兴市昱元能源装备技术开发有限公司 | Production method of silicon wafer, silicon wafer produced by using production method and solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4561486A (en) | Method for fabricating polycrystalline silicon wafer | |
US4312700A (en) | Method for making silicon rods | |
US3598169A (en) | Method and apparatus for casting directionally solidified discs and the like | |
JPS6358669B2 (en) | ||
WO1993012272A1 (en) | Method of and apparatus for casting crystalline silicon ingot by electron beam melting | |
JP2009013055A (en) | Method for producing semi-conducting material wafer by molding and directional crystallization | |
JP7145763B2 (en) | Crucible for silicon ingot growth with patterned protrusion structure layer | |
JPS646130B2 (en) | ||
JPS58162029A (en) | Preparation of polycrystalline silicon wafer | |
US4519764A (en) | Apparatus for fabricating polycrystalline silicon wafer | |
JPH11248363A (en) | Laminate crucible for producing silicon ingot and manufacture thereof | |
JP6401051B2 (en) | Method for producing polycrystalline silicon ingot | |
JPH0142339Y2 (en) | ||
JPH046088B2 (en) | ||
JPS58166716A (en) | Manufacture of polycrystalline silicon wafer | |
JPH0232784B2 (en) | ||
JPH0314766B2 (en) | ||
JPH0314767B2 (en) | ||
JPH0328818B2 (en) | ||
JP4085521B2 (en) | Silicon ingot cutting method | |
JPS59181013A (en) | Manufacture of polycrystalline silicon wafer | |
JPH0314765B2 (en) | ||
JPS59182218A (en) | Production of polycrystal silicon wafer | |
JP4562459B2 (en) | Casting apparatus, method for casting polycrystalline silicon ingot using the same, polycrystalline silicon ingot, polycrystalline silicon substrate, and solar cell element | |
JPH0322907Y2 (en) |