JPS58161916A - Manufacture of mordenite having high content of silica - Google Patents
Manufacture of mordenite having high content of silicaInfo
- Publication number
- JPS58161916A JPS58161916A JP4468482A JP4468482A JPS58161916A JP S58161916 A JPS58161916 A JP S58161916A JP 4468482 A JP4468482 A JP 4468482A JP 4468482 A JP4468482 A JP 4468482A JP S58161916 A JPS58161916 A JP S58161916A
- Authority
- JP
- Japan
- Prior art keywords
- mordenite
- acid
- silica
- treatment
- solid acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本彩明はモルデナイトの結晶構造をもつ結晶性アルミノ
ンリケードゼオライトのシリカ/アルミナモル比を増り
口させると共にその固体酸号及び固体酸強度分布を制御
する方法に関し、さらに詳しくはシリカ/アルミナモル
比を50以上に高めながら特定量の固体酸歇あるいは固
体酸強度分布を有する高シリカ含有型モルデナイトの製
造方法に関するものである。[Detailed Description of the Invention] Technical Field This invention relates to a method for increasing the silica/alumina molar ratio of a crystalline aluminone silicate zeolite having a mordenite crystal structure and controlling its solid acid number and solid acid strength distribution. More specifically, the present invention relates to a method for producing a high silica-containing mordenite having a specific amount of solid acid or solid acid strength distribution while increasing the silica/alumina molar ratio to 50 or more.
背景技術
結晶性アルミノシリケートの一種であるモルデナイトは
、5104およびAlO2の四面体が酸素原子を共有す
ることによって交叉結合をした三次元骨格を中心とした
網目構造を有するものである。またアルミニウムを含む
四面体の電荷の釣合は結晶中に陽イオン、例えばアルカ
リ金属陽イオンまたはアルカリ土類金属陽イオンを包含
することによって釣合っている。このモルデナイト1ハ
天然物の他に谷成的に得られておシ、アルカリ金属陽イ
オンがナトリウムの場合、一般に次の式に示す単位セル
で示される。BACKGROUND ART Mordenite, a type of crystalline aluminosilicate, has a network structure centered on a three-dimensional skeleton in which tetrahedrons of 5104 and AlO2 are cross-linked by sharing oxygen atoms. The charge balance of the aluminum-containing tetrahedra is also balanced by the inclusion of cations, such as alkali metal cations or alkaline earth metal cations, in the crystal. In addition to natural products, mordenite 1 can be obtained chemically.When the alkali metal cation is sodium, it is generally represented by a unit cell shown in the following formula.
4Na20”4A403・40Si02’2JH20一
般にこのようなモルデナイトを炭化水素変換の触媒とし
て有効に用いるためには含まれている陽イオンの大部分
を触媒活性な金属カチオンあるいは水素イオンとイオン
交換をする陽イオン交換処理によって固体酸としての性
質を発現させ反応活性を高める必要がある。4Na20''4A403・40Si02'2JH20 Generally, in order to effectively use such mordenite as a catalyst for hydrocarbon conversion, most of the contained cations must be replaced with cations that exchange ions with catalytically active metal cations or hydrogen ions. It is necessary to develop the properties as a solid acid and increase the reaction activity through exchange treatment.
この陽イオン交換操作による水素型モルデナイトへの変
換はモルデナイト自身が最初から比較的高いシリカ/ア
ルミナ比を有しているだめ、通常の塩化アンモニウムに
よるアンモニウムイオン交換とならび比較的弱い酸によ
る処理によっても達成することができる。さらに比較的
強い酸で処理した場合は陽イオン交換反応ばかりでなく
結晶格子のアルミニウムが除去され、モルデナイト中の
シリカ/アルミナ比が一層増大され、それを触媒として
用いると水添分解、熱分解異性化、不均化等の炭化水素
変換反応に高い活性を示すことは知られている。Since mordenite itself has a relatively high silica/alumina ratio from the beginning, conversion to hydrogen-type mordenite by this cation exchange operation can be performed by ordinary ammonium ion exchange with ammonium chloride and treatment with a relatively weak acid. can be achieved. Furthermore, when treated with a relatively strong acid, not only the cation exchange reaction but also the aluminum in the crystal lattice is removed, the silica/alumina ratio in mordenite is further increased, and when used as a catalyst, hydrogen cracking and thermal decomposition isomerization It is known that it exhibits high activity in hydrocarbon conversion reactions such as oxidation and disproportionation.
従来モルデナイト中のシリカ/アルミナ比を高める方法
としては、鉱酸による処理を温度及び接触時間の比較的
厳しい条件の下で行い極めて高いシリカ/アルミナ比を
持つアルミニウム不足のモルデナイトを製造する方法(
特公昭46−14334号公報)、アルミニウムの酸に
よる抽出効果を高めるために水素交換型又はその前駆物
質を■焼しその後酸でアルミニウムの浸出を行い、高7
リカ/アルミナ比のモルデナイトを得る方法(特公昭4
6−57166号公報)、水蒸気処理および酸抽出の交
番多重循環操作を行い結晶性アルミノシリケートの7リ
カ/アルミナのモル比を増大させる方法(特公昭5l−
15DOO号公報)が知られている。Conventional methods for increasing the silica/alumina ratio in mordenite include a method of producing aluminum-deficient mordenite with an extremely high silica/alumina ratio by treating it with mineral acids under relatively severe conditions of temperature and contact time (
(Japanese Patent Publication No. 46-14334), in order to enhance the extraction effect of aluminum with acid, hydrogen exchange type or its precursor is calcined and then aluminum is leached with acid.
Method for obtaining mordenite with lyca/alumina ratio
6-57166), a method of increasing the molar ratio of 7 Lika/alumina in crystalline aluminosilicate by carrying out an alternating multiple circulation operation of steam treatment and acid extraction (Japanese Patent Publication No. 57166),
15DOO Publication) is known.
しかしながら、これらの操作を行うとモルデナイト中の
シリカ/アルミナ比を増加させることができるが、各種
炭化水素の反応に選択的に活性の得られる固体酸量ある
いは固体酸強度分布を制御した触媒は得られていなかっ
た。However, although these operations can increase the silica/alumina ratio in mordenite, catalysts with controlled solid acid amount or solid acid strength distribution that are selectively active in reactions of various hydrocarbons cannot be obtained. It wasn't.
すなわち従来の方法でモルデナイトのシリカ/アルミナ
比を高める処理を行うと固体酸量は多すぎるか、少なす
ぎて固体酸量を制御することができなかった。That is, when the conventional method is used to increase the silica/alumina ratio of mordenite, the amount of solid acid is either too large or too small, making it impossible to control the amount of solid acid.
発明の要旨
本発明者らは結晶性アルミノシリケートの固体酸1を制
御する方法について検討した結果、モルデナイトを水蒸
気の存在下に熱処理をする水熱処理を行った金と強酸と
接触させることにより、モルデナイトのシリカ/アルミ
ナ比を50〜200にすると共に選択的な炭化水素変換
反応を可能にする特定の固体酸量あるいは固体酸強度分
布を有する高シリカ含有型モルデナイトの製造方法を見
出し本発明に到達したものである。Summary of the Invention The present inventors investigated a method for controlling solid acid 1 in crystalline aluminosilicate, and found that mordenite was heat-treated in the presence of water vapor by contacting hydrothermally treated gold with a strong acid. The present inventors have discovered a method for producing a high silica-containing mordenite having a specific solid acid amount or solid acid strength distribution that enables a silica/alumina ratio of 50 to 200 and a selective hydrocarbon conversion reaction. It is something.
すなわち本発明はモルデナイトを水素交換型あるいは水
素交換型前駆体に変換し、水蒸気存在下に600℃以上
の温度で処理を行い、次いで酸と接触させることからな
る特定の固体酸1に調整された高シリカ含有型モルデナ
イトの製造方法である。That is, the present invention is prepared by converting mordenite into a hydrogen exchange type or a hydrogen exchange type precursor, treating it at a temperature of 600°C or higher in the presence of water vapor, and then bringing it into contact with an acid. This is a method for producing high-silica-containing mordenite.
原料モルデナイト
本発明に用いる原料モルデナイトは天然または合成品の
いずれでも良い。また該モルデナイトは水熱処理を行う
前に水素イオン型あるいは水素イオン前駆体に変換させ
るが原料モルデナイトはアルカリ金属又はアルカリ土類
金属陽イオンを結合していてもよく、その種類は任意の
金属カチオンでよい。Raw mordenite The raw mordenite used in the present invention may be either natural or synthetic. In addition, the mordenite is converted into a hydrogen ion type or hydrogen ion precursor before hydrothermal treatment, but the raw material mordenite may bind an alkali metal or alkaline earth metal cation, and the type of mordenite may be any metal cation. good.
水素交換型あるいは水素交換型前駆体
水素交換型あるいは水素交換型前駆体は上記原料モルデ
ナイトを酸溶液を用いる交換法またはアンモニウム塩を
用いて行う交換法によって調製することができる。ここ
で用いられる酸ば1塩酸、硫酸、硝酸等の鉱酸が用いら
れる。この酸の濃度は0.5規定以上が好ましい。水素
イオン交換反応は通常常温から100℃までの温度範囲
で行うのが好ましく、加熱すると変換反応は促進され望
ましい。さらに反応の途中で新しい臂溶液と交換するこ
とによシ変換反応を促進することができる。Hydrogen exchange type or hydrogen exchange type precursor The hydrogen exchange type or hydrogen exchange type precursor can be prepared by an exchange method using the above raw material mordenite with an acid solution or an ammonium salt. Mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid are used. The concentration of this acid is preferably 0.5 normal or more. The hydrogen ion exchange reaction is usually preferably carried out at a temperature range from room temperature to 100°C, and heating is desirable because the conversion reaction is accelerated. Furthermore, the conversion reaction can be promoted by replacing the solution with fresh solution during the reaction.
水熱処理
本発明における水熱処理は水蒸気の存在下に加熱処理を
行うものであシ、その際水蒸気分圧と処理温度を適宜に
選択することによって酸抽出によって生成する高シリカ
/アルミナ比のモルデナイトの固体酸量を制御す・るこ
とができる。Hydrothermal treatment The hydrothermal treatment in the present invention is a heat treatment in the presence of steam, and by appropriately selecting the steam partial pressure and treatment temperature, the mordenite with a high silica/alumina ratio produced by acid extraction can be heated. The amount of solid acid can be controlled.
水熱処理の際の水蒸気驚は処理に用いる気体、望しくけ
空気中の水蒸気分圧が1%〜100%、特に5%〜40
%が望ましく、又処理温度は600℃〜1000℃、特
に650℃〜750℃で行うことが望ましい。この範囲
以下の温度又は水蒸気の不存在下で処理を行うと固体酸
敗を制御することができず、固体酸敗の大きいモルデナ
イトしか得られず選択的な炭化水素変換反応用触媒とし
て用いることはできない。The water vapor during hydrothermal treatment is the gas used for the treatment, preferably the water vapor partial pressure in the air is 1% to 100%, especially 5% to 40%.
%, and the treatment temperature is preferably 600°C to 1000°C, particularly 650°C to 750°C. If the treatment is carried out at a temperature below this range or in the absence of water vapor, solid rancidity cannot be controlled, and only mordenite with large solid rancidity is obtained, which cannot be used as a catalyst for selective hydrocarbon conversion reactions.
水熱処理の時間は1〜10時間、好ましくけ2〜5時間
でその効果を充分に示すことができる。The hydrothermal treatment can be carried out for 1 to 10 hours, preferably 2 to 5 hours, to fully demonstrate its effects.
このように本発明における固体酸量の制御は水熱反応に
おける水蒸気分圧、処理温度、処理時間によって互に密
接に関連しており、これらの組合せで所望する特定の固
体酸量及び固体酸強度分布を有する高シリカ含有型モル
デナイトを得ることができる。この場合、水蒸気分圧が
高いほど又、処理温度が高い程固体酸駄は小さくなる。In this way, the control of the amount of solid acid in the present invention is closely related to the water vapor partial pressure, treatment temperature, and treatment time in the hydrothermal reaction, and the desired specific amount and strength of solid acid can be achieved by combining these. A high silica content mordenite with a distribution can be obtained. In this case, the higher the water vapor partial pressure and the higher the treatment temperature, the smaller the solid sour.
一般に水蒸気含有ガスは、一定温度に維持された浴中に
浸されたパプラーロ空気をバブリングすることにより得
られる。まだ天然ガスや液化石油ガス炉のような装置を
用いる場合は過剰空気を調整することにより必要な水蒸
気分圧を得ることができる。Generally, water vapor-containing gases are obtained by bubbling Papler air immersed in a bath maintained at a constant temperature. When using equipment such as natural gas or liquefied petroleum gas reactors, the necessary water vapor partial pressure can be obtained by adjusting the excess air.
酸抽出処理
水熱処理によってモルデナイト骨格構造よりはずれ、空
洞内に存在するAtOH”+や比較的弱い骨格構造に位
置しているアルミニウム金属は本発明の酸処理によって
溶出除去される。Acid Extraction Treatment Hydrothermal treatment removes the AtOH''+ existing in the cavity from the mordenite skeleton structure and aluminum metal located in a relatively weak skeleton structure is eluted and removed by the acid treatment of the present invention.
本処理において用いられる酸は塩酸、硝酸。The acids used in this treatment are hydrochloric acid and nitric acid.
硫酸、りん酸等の無機酸、酢酸、塩化酢酸、三塩化酢酸
、くえん酸、酒石酸、しゆう酸等の有機酸が使用できる
。これらの内塩酸、硫酸及び硝酸のような無機酸を用い
るのが好ましい。またこれらの酸を抽出処理に用いる際
はル規定以上好ましくは6規定以上の濃度のものを用い
るのが好ましい。Inorganic acids such as sulfuric acid and phosphoric acid, and organic acids such as acetic acid, acetic chloride, acetic trichloride, citric acid, tartaric acid, and oxalic acid can be used. Among these, inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid are preferably used. Furthermore, when using these acids for extraction treatment, it is preferable to use those with a concentration of 1N or higher, preferably 6N or higher.
酸抽出処理は常温から100℃までの温度範囲で行うの
が好ましい。上記のような条件で水熱処理によって得ら
れたモルデナイトの酸抽出を行うことにより、シリカ/
アルミナ比が50ないし200のモルデナイトが得られ
る。The acid extraction treatment is preferably carried out at a temperature ranging from room temperature to 100°C. By acid extraction of mordenite obtained by hydrothermal treatment under the above conditions, silica/
Mordenite with an alumina ratio of 50 to 200 is obtained.
さらにこの酸抽出処理モルデナイトは400なl、−t
l、700℃好ましくは50口ないし600℃の水熱処
理条件よりも比較的おだやかな条件で暁成処理し、不安
定な結晶状態のモルデナイトを安定化させる。Furthermore, this acid extraction treated mordenite is 400 l, -t
The mordenite, which is in an unstable crystalline state, is stabilized by performing the hydrothermal treatment at relatively milder conditions than the hydrothermal treatment conditions, preferably at 50° C. to 600° C.
本発明によって固体酸量を制御されシリカ/アルミナ比
が50〜200好ましくは70〜180の高度クリ力含
有型モルデナイトが得られる。According to the present invention, it is possible to obtain a mordenite having a high degree of crystallinity and having a silica/alumina ratio of 50 to 200, preferably 70 to 180, by controlling the amount of solid acid.
固体酸量および固体酸強度分布
本発明によって得られる高度シリカ含有型モルデナイト
の固体醒量、固体酸強度は昇温脱離法により測定される
。すなわち塩基性物質を固体〜点に吸着させ、その後温
度を上昇させて脱離してくる塩基性物質を定量すること
により吸着量を求める。この塩基性物質の吸着量は固体
酸量と直接関係があり、塩基性物質が脱たしてくる温度
は固体酸強度に直接関係があり、相対的な固体酸量およ
び固体酸強度分布を知ることができる。Solid Acid Amount and Solid Acid Strength Distribution The solid acid content and solid acid strength of the highly silica-containing mordenite obtained by the present invention are measured by a temperature programmed desorption method. That is, the amount of adsorption is determined by adsorbing a basic substance onto a solid or a point, then increasing the temperature and quantifying the basic substance that is desorbed. The adsorption amount of this basic substance is directly related to the amount of solid acid, and the temperature at which the basic substance is desorbed is directly related to the strength of the solid acid, so it is possible to know the relative amount of solid acid and solid acid strength distribution. be able to.
この昇温脱離法において用いられる塩基性物質としては
アンモニア、ピリジン、n−ブチルアミンなどが用いら
れるが中でもピリジンは脱離してきた量を水素イオン検
出法で容易に定量することができ、さらに固体酸点であ
るブレンステッド酸にはピリジニウムイオンとして、ル
イス酸点には配位結合ピリジンとし、て吸着し、比較的
正確に酸量を分析できることから好ましい。The basic substances used in this temperature programmed desorption method include ammonia, pyridine, n-butylamine, etc. Among them, the amount of pyridine desorbed can be easily quantified using a hydrogen ion detection method. This is preferable because it adsorbs to Bronsted acid, which is an acid site, as a pyridinium ion, and to a Lewis acid site, as a coordinate bond pyridine, so that the amount of acid can be analyzed relatively accurately.
本発明による処理方法を用−うるとピリジン吸着量とし
てモルデナイト1f当り0.04ミリモル〜a35ミリ
モルの高度シリカ含有型モルデナイトが得られる。When the treatment method according to the present invention is used, a highly silica-containing mordenite with a pyridine adsorption amount of 0.04 mmol to a35 mmol per 1f of mordenite is obtained.
水熱処理において水蒸気分圧を高くし、処理温度を高く
すると固体酸量は少くな夛、水蒸気分圧を低くし処理温
度を低くすると固体酸量は多くなる。In hydrothermal treatment, if the steam partial pressure is increased and the treatment temperature is increased, the amount of solid acid will be less, but if the steam partial pressure is lowered and the treatment temperature is lowered, the amount of solid acid will be increased.
発明の効果
とのよ°うに本発明で固体酸素を制御された高シリカ含
有型モルデナイトのうちビリ“・ジン吸着量としてモル
デナイトf ff1pα05ミリモル以下の酸膜を有す
るものは特別な酸活性を有しないモルデナイトとして、
種々の炭化水素の吸着分別処理に用いることができる。As described in the effect of the invention, among the high silica-containing mordenite whose solid oxygen is controlled by the present invention, those having an acid film with an adsorption amount of biridin of less than 5 mmol of mordenite fff1pα do not have any special acid activity. As mordenite,
It can be used for adsorption and fractionation treatment of various hydrocarbons.
さらにこの酸度の低いモルデナイトには特別な反応活性
を有する金属を担持することにより酸性度が高いと重合
するような化合物には何等の影響がなく特定の反応、例
えば酸化水添などを選択的にモルデナイト格子内で行わ
れ特定の異性体のみが得られるというような反応の触媒
に使用できる。Furthermore, by supporting metals with special reaction activity on mordenite, which has a low acidity, it has no effect on compounds that polymerize at high acidity, and can selectively perform certain reactions such as oxidative hydrogenation. It can be used to catalyze reactions that occur within the mordenite lattice and yield only specific isomers.
また105〜[1,25ミリモルの酸−量を有するもの
は、炭化水素の特定の反応あるいは炭化水素混合物中の
特定の化合物のみを選択的に反応させることが可能とな
る。例えば沸点の非常に近いn−オレフィンとイソオレ
フィンを分離スる際にオレフィンの第5級炭素を選択的
に活性化してカルボニウムイオンとなしイソオレフィン
のみを2量化除去するプロセスを可能にする。Moreover, those having an acid amount of 105 to 1.25 mmol can selectively react only a specific reaction of hydrocarbons or a specific compound in a hydrocarbon mixture. For example, when separating n-olefins and isoolefins, which have very similar boiling points, it is possible to selectively activate the tertiary carbon of the olefins to form carbonium ions and dimerize and remove only the isoolefins.
さらにα25ミリモル以上の酸量を有するものは熱分解
、水添分解等の炭化水素変換用触媒として有用である。Further, those having an acid amount of α25 mmol or more are useful as catalysts for hydrocarbon conversion such as thermal cracking and hydrogen cracking.
次に本発明を実施例によシ具体的に説明する。Next, the present invention will be specifically explained using examples.
但し本技術は実施例のみに限定されるものではない。However, the present technology is not limited to the examples.
実施例1゜
市販高結晶性ナトリウム型モルデナイト(ツートン社製
、商品名Zeolon 90ONa、第1表に組成を示
す)の慝インチペレット100fを1規定塩酸50〇−
中に浸漬し、80℃で1時間攪拌処理を行った。終了後
傾斜法により酸溶液を除き、更に新しい1規定塩酸50
0−を注ぎ、80℃で1時間攪拌処理を行った。塩酸溶
液を除去後塩素イオンが検出されなくなるまで温水で洗
浄した。次いで110℃で熱風乾燥を行ってモルデナイ
トの水素イオン交換型前駆体を得た(第1表に組成を示
す)。Example 1 100 f of commercially available highly crystalline sodium mordenite (manufactured by Two-Tone, trade name: Zeolon 90ONa, composition shown in Table 1) was mixed with 1N hydrochloric acid 500.
The sample was immersed in the liquid and stirred at 80° C. for 1 hour. After finishing, remove the acid solution by decanting method and add 50% fresh 1N hydrochloric acid.
0- was poured into the solution, and the mixture was stirred at 80° C. for 1 hour. After removing the hydrochloric acid solution, the sample was washed with warm water until no chlorine ions were detected. Next, hot air drying was performed at 110° C. to obtain a hydrogen ion exchange type precursor of mordenite (the composition is shown in Table 1).
得られた水素イオン交換型前駆体を30%の°水蒸気分
圧下で室温より徐々に昇温し650℃で4時間水熱処理
を行った。The obtained hydrogen ion exchange type precursor was heated gradually from room temperature under 30% water vapor partial pressure and subjected to hydrothermal treatment at 650°C for 4 hours.
冷却後12規定の塩酸500−を用い90℃で6時間還
流処理を行いアルミニウムを抽出した。塩酸溶液を除去
後塩素イオンが検出されなくなるまで温水で洗浄し、続
いて110℃で熱風乾燥を行った。風乾後マツフル炉を
用いて650℃で3時間焼成し、高度シリカ含有型モル
デナイトを得た。得られたモルデナイトは表−1に示す
組成を有していた。After cooling, reflux treatment was performed at 90° C. for 6 hours using 12N hydrochloric acid 500° C. to extract aluminum. After removing the hydrochloric acid solution, the sample was washed with warm water until no chlorine ions were detected, and then dried with hot air at 110°C. After air drying, it was fired at 650° C. for 3 hours using a Matsufuru furnace to obtain highly silica-containing mordenite. The obtained mordenite had the composition shown in Table 1.
次に出発原料のナトリウム型モルデナイト、上記のよう
に得られた水素イオン交換型前駆体を600℃、3時間
マツフル炉で焼成した水素型モルデナイトおよび高度シ
リカ含有型モルデナイトのピリジン吸着法による固体酸
lおよび固体酸強度分布を次の方法で測定した。Next, the starting material sodium type mordenite, the hydrogen ion exchange type precursor obtained as described above was calcined in a Matsufuru furnace at 600°C for 3 hours, and the solid acid l was obtained by pyridine adsorption on the hydrogen type mordenite and highly silica-containing type mordenite. and solid acid strength distribution were measured by the following method.
上記3種のモルデナイトをそれぞれ30ないし100メ
ツシユに粉砕し、500℃1時間焼成して吸着水分等を
除去し、0.075 fを精秤し反応器に充填する。一
方15.5℃の一定1度に保持された水浴中にピリジン
を入れたバブラーを浸し、窒素にてピリジンを吸着させ
た。次いで窒素流通下で反応器を300℃まで徐々に昇
温し、物理吸着したピリジンが脱離するまで300℃に
保った。その後ガスクロマトグラフィーによりピリジン
脱離が観測されなくなったのを確認して10℃/分の昇
温速度で反応器を300℃から950℃まで昇温し、脱
離してくるピリジンをガスクロマトグラフィーにより定
Iした。この脱離してくるピリジンの量はモルデナイト
の固体酸量に比例し、脱離温度は固体酸強度に相関する
。結果を第1表に示す。Each of the above three types of mordenite is pulverized into 30 to 100 meshes, calcined at 500°C for 1 hour to remove adsorbed moisture, etc., and 0.075 f is precisely weighed and charged into a reactor. On the other hand, a bubbler containing pyridine was immersed in a water bath maintained at a constant temperature of 15.5°C, and pyridine was adsorbed with nitrogen. Next, the temperature of the reactor was gradually raised to 300° C. under nitrogen flow, and the temperature was maintained at 300° C. until the physically adsorbed pyridine was desorbed. After confirming that pyridine desorption was no longer observed by gas chromatography, the reactor was heated from 300 to 950 °C at a rate of 10 °C/min, and the desorbed pyridine was detected by gas chromatography. I decided. The amount of pyridine desorbed is proportional to the amount of solid acid in mordenite, and the desorption temperature is correlated to the strength of the solid acid. The results are shown in Table 1.
第1表から明らかなように、固体酸量は出発原料のナト
リウム型モルデナイトは本発明によって得られる高シリ
カ含有型モルデナイトに比較して少く、水素交換型モル
デナイトは逆に多く、本発明の操作がモルデナイトの固
体酸量、固体酸強度を制御していることがわかる。また
高シリカ含有型モルデナイトのX線粉末回析分析の結果
は出発原料のす) IJウム型モルデナイトの結晶性と
ほとんど同様の結晶性モルデナイトであることが確めら
れた。さらに面間隔はアルミニウムが除去されることに
よシずれることが知られているが、本実施例の場合もた
とえばミラー指数(332)面に帰属する2θ=30.
9゜のピークが脱アルミニウムにより31.6°までシ
フトしているのが確認された。As is clear from Table 1, the amount of solid acid in the sodium-type mordenite used as the starting material is smaller than that in the high-silica-containing mordenite obtained by the present invention, and on the contrary, it is larger in the hydrogen-exchanged type mordenite. It can be seen that the solid acid amount and solid acid strength of mordenite are controlled. Furthermore, the results of X-ray powder diffraction analysis of the high-silica-containing type mordenite confirmed that it was a crystalline mordenite that was almost the same as the crystallinity of the IJ type mordenite used as the starting material. Furthermore, it is known that the interplanar spacing changes due to the removal of aluminum, and in the case of this example, for example, 2θ=30.
It was confirmed that the peak at 9° was shifted to 31.6° due to dealumination.
比較例1
実施例1と同じナトリウム型モルデナイトを出発原料と
して用い、同じ操作で水素イオン交換型前駆体を調整し
た。風乾後マツフル炉を用い水蒸気の存在しない条件で
徐々に昇温しながら650℃で4時間焼成した。その後
実施例−1と同じ方法で塩酸による脱アルミニウム抽出
処理および焼成を行った。Comparative Example 1 Using the same sodium type mordenite as in Example 1 as a starting material, a hydrogen ion exchange type precursor was prepared in the same manner. After air drying, it was fired at 650° C. for 4 hours while gradually increasing the temperature in the absence of water vapor using a Matsufuru furnace. Thereafter, dealumination treatment with hydrochloric acid and calcination were performed in the same manner as in Example-1.
このモルデナイトの組成および実施例1と同じ方法で測
定したピリジン吸着1の結果を第1表に示す。The composition of this mordenite and the results of pyridine adsorption 1 measured in the same manner as in Example 1 are shown in Table 1.
実施例2〜3
実施例1と同じ出発原料を用い同じ手法で水素イオン交
換型前駆体を調整した。風乾後管状流通式雰囲気焼成炉
に前駆体を充填し、120℃まで昇温抜水蒸気分圧が6
5%及び100%で、徐々に昇温して650℃〜700
℃で3時間水熱処理を行った。その後実施例−1と同じ
方法で塩酸による脱アルミニウム抽出処理および焼成を
行った。このモルデナイトの組成、ピリジン吸着量の結
果を第1表に示す。Examples 2 to 3 Hydrogen ion exchange precursors were prepared using the same starting materials and the same method as in Example 1. After air-drying, the precursor was filled into a tubular flow-type atmosphere firing furnace, and the temperature was raised to 120℃, and the steam partial pressure was 6.
At 5% and 100%, gradually increase the temperature to 650℃~700℃
Hydrothermal treatment was performed at ℃ for 3 hours. Thereafter, dealumination treatment with hydrochloric acid and calcination were performed in the same manner as in Example-1. Table 1 shows the composition of this mordenite and the adsorption amount of pyridine.
実施例4〜5
実施例−1と同じ出発原料を用いて塩酸の代シに硝酸ま
たは硫酸を用いる以外は実施例−1と全く同じ手法を用
いモルデナイトを調製した酸の濃度もイオン交換の場合
は1規定、アルミニウム抽出処理の場合は12規定のも
のを用いた。化学分析値およびピリジン吸着量の測定結
果を第2表に示す。Examples 4 to 5 Mordenite was prepared using the same starting materials as in Example-1 and using the same method as in Example-1 except that nitric acid or sulfuric acid was used in place of hydrochloric acid.The acid concentration was also ion-exchanged. 1N was used, and in the case of aluminum extraction treatment, 12N was used. Table 2 shows the chemical analysis values and measurement results of pyridine adsorption amount.
第2表
実施例6
純水1500f中に硫酸アルミニウム67f、濃硫酸1
9.7f、塩化ナトリウム1402を溶解し、これに水
ガラス(3号)190fを添v口し
2、5 Neo・A/aos・23S1へ・99侮0
からなる組成を有する水性反応混合物を得た。この混合
物を約1時間室温にて熟成した後オートクレーブに張り
込み速やかに昇温し180℃にて20時間維持した。得
られた固体生成物は室温まで冷却して濾過し、十分水洗
した後110℃にて乾燥した。生成物の一部を空気中7
00℃で焼成した抜水を室温にて吸着させ化学分析を行
い以下の組成の合成モルデナイトを得た。Table 2 Example 6 67f of aluminum sulfate and 11g of concentrated sulfuric acid in 1500f of pure water
9.7f, dissolve sodium chloride 1402, add water glass (No. 3) 190f to it, and add 2.5 to Neo・A/aos・23S1・99min 0
An aqueous reaction mixture was obtained having a composition consisting of: After this mixture was aged at room temperature for about 1 hour, it was put into an autoclave, the temperature was rapidly raised, and the temperature was maintained at 180° C. for 20 hours. The obtained solid product was cooled to room temperature, filtered, thoroughly washed with water, and then dried at 110°C. Part of the product in the air7
The drained water calcined at 00°C was adsorbed at room temperature and chemically analyzed to obtain synthetic mordenite with the following composition.
800℃灼熱減量 10.0重量%Sing
79.I IfAj203
5.96 ttNa20”
5.51 ttSlへ/AAへ(モル比)
22.61生成物の一部はX線粉末回折分析により、そ
の面間隔からモルデナイトの結晶構造を有することが確
められた。800℃ ignition loss 10.0% by weight Sing
79. I IfAj203
5.96 ttNa20"
5.51 To ttSl/To AA (molar ratio)
It was confirmed by X-ray powder diffraction analysis that a part of the 22.61 product had a mordenite crystal structure based on its interplanar spacing.
得られた合成モルデナイ)100Fを実施例1と全く同
じ操作により処理を行って高シリカ含有型モルデナイト
を得た。組成およびピリジン吸着量は次の通りであった
。The obtained synthetic mordenite) 100F was treated in exactly the same manner as in Example 1 to obtain a high-silica-containing mordenite. The composition and adsorption amount of pyridine were as follows.
800℃灼熱減敞 3.2 重量%5i
02 95.1 5kLx03
1.22 11Na迎
α11 〃5IO2/A14o
!(モル比) 133ヒ一ノジン1支着ii(m
mol)/f−87+イト)″−ゝ全ピリジ2及着に
Q、108aoo−soo℃脱離
量 0.020500−600℃脱離敬
0.033実施例7〜8
実施例−1と同じ出発原料100fを用い同じ手法で水
素イオン交換型前駆体を調製した。800℃ scorching heat reduction 3.2 weight%5i
02 95.1 5kLx03
1.22 11Na pick-up
α11〃5IO2/A14o
! (molar ratio) 133 hyinodine 1 supported ii (m
mol)/f-87+ite)''-ゝTotal pyridi 2nd place
Q, 108aoo-soo℃ desorption amount 0.020500-600℃ desorption amount
0.033 Examples 7 to 8 A hydrogen ion exchange type precursor was prepared using the same starting material 100f as in Example-1 and using the same method.
風乾後得られた前駆体を等分に分割して1方を5%の水
蒸気他方を20%の水蒸気存在下、700℃で3時間水
熱処理を行った。冷却後それぞれを12規定の塩酸で8
時間、90℃で還流処理しアルミニウムを抽出した。そ
の後それぞれ2500−の温水でよく洗浄し塩素イオン
を流出除去した。“風乾後マ・ソフル炉で700℃3時
間焼成して高シリカ含有型モルデナイトを得た。分析値
およびピリジン吸着量を第6表に示す。After air drying, the obtained precursor was divided into equal parts, and one part was subjected to hydrothermal treatment at 700°C for 3 hours in the presence of 5% water vapor and the other part 20% water vapor. After cooling, each was diluted with 12N hydrochloric acid.
The aluminum was extracted by reflux treatment at 90° C. for an hour. Thereafter, each was thoroughly washed with 2,500 ml of hot water to remove chlorine ions. “After air drying, it was calcined for 3 hours at 700°C in a Ma-Sofle furnace to obtain a high-silica-containing mordenite.Table 6 shows the analytical values and the amount of pyridine adsorbed.
第5表 代理人 内 1) 明 代理人 萩 原 亮 −Table 5 Agent: 1) Akira Agent Ryo Hagi Hara -
Claims (1)
変換し、水蒸気存在下に600℃以上の温度で処理を行
い、次いで酸と接触させることからなる高シリカ含有型
モルデナイトの製造方法。A method for producing high-silica-containing mordenite, which comprises converting mordenite into a hydrogen exchange type or a hydrogen exchange type precursor, treating it at a temperature of 600° C. or higher in the presence of water vapor, and then contacting it with an acid.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4468482A JPS58161916A (en) | 1982-03-23 | 1982-03-23 | Manufacture of mordenite having high content of silica |
US06/476,015 US4454367A (en) | 1982-03-23 | 1983-03-15 | Process for the low polymerization of isobutene |
EP83301545A EP0090569B1 (en) | 1982-03-23 | 1983-03-18 | A process for the low polymerization of isobutene |
DE8383301545T DE3361755D1 (en) | 1982-03-23 | 1983-03-18 | A process for the low polymerization of isobutene |
CA000424240A CA1196029A (en) | 1982-03-23 | 1983-03-23 | Process for the low polymerization of isobutene |
US06/597,821 US4513166A (en) | 1982-03-23 | 1984-04-06 | Process for the low polymerization of isobutene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4468482A JPS58161916A (en) | 1982-03-23 | 1982-03-23 | Manufacture of mordenite having high content of silica |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58161916A true JPS58161916A (en) | 1983-09-26 |
JPS6365605B2 JPS6365605B2 (en) | 1988-12-16 |
Family
ID=12698255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4468482A Granted JPS58161916A (en) | 1982-03-23 | 1982-03-23 | Manufacture of mordenite having high content of silica |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58161916A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11246870A (en) * | 1997-12-05 | 1999-09-14 | Fina Res Sa | Production of olefin |
JP2010215434A (en) * | 2009-03-13 | 2010-09-30 | Idemitsu Kosan Co Ltd | Method for manufacturing beta-zeolite and method for manufacturing hydrogenolysis catalyst |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5115000A (en) * | 1974-07-29 | 1976-02-05 | Dai Ichi Kogyo Seiyaku Co Ltd | Mizushoryojushino fuyokahoho |
-
1982
- 1982-03-23 JP JP4468482A patent/JPS58161916A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5115000A (en) * | 1974-07-29 | 1976-02-05 | Dai Ichi Kogyo Seiyaku Co Ltd | Mizushoryojushino fuyokahoho |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11246870A (en) * | 1997-12-05 | 1999-09-14 | Fina Res Sa | Production of olefin |
JP2010215434A (en) * | 2009-03-13 | 2010-09-30 | Idemitsu Kosan Co Ltd | Method for manufacturing beta-zeolite and method for manufacturing hydrogenolysis catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPS6365605B2 (en) | 1988-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2527583B2 (en) | Novel method for synthesizing ferric silicate type zeolite, obtained substance and use thereof | |
US4605637A (en) | Hydrothermal activation of acid zeolites with aluminum phosphates | |
US4148750A (en) | Redispersion of noble metals on supported catalysts | |
US4534853A (en) | Method for cracking residual oils | |
JPS62202814A (en) | Zeolite and manufacture | |
SA06270222B1 (en) | Amodified Zeolite Beta | |
TWI654138B (en) | Molecular sieve materials and their synthesis and use | |
JP7075901B2 (en) | Zeolite SSZ-52x | |
JPS6092221A (en) | Conversion of methanol to olefin | |
EP0119023A2 (en) | Improving catalytic activity of aluminosilicate zeolites | |
JPH0214286B2 (en) | ||
GB2062603A (en) | Crystalline borosilicate compositions | |
CN107282102B (en) | Preparation method of metal-loaded molecular sieve catalyst | |
US4454367A (en) | Process for the low polymerization of isobutene | |
JP7087636B2 (en) | Zeolite catalyst treatment method and lower olefin production method | |
JP2909591B2 (en) | Mordenite-based catalysts containing at least one metal of group VIII and its use in isomerizing aromatic C lower 8 fractions | |
GB2085861A (en) | Thermally-stabilised/aluminium- exchanged type Y zeolite | |
JP4247504B2 (en) | Dealuminated zeolite IM-5 | |
JP2708212B2 (en) | Method for modifying molecular sieve | |
JPS58161916A (en) | Manufacture of mordenite having high content of silica | |
Wenyang et al. | Nonaqueous synthesis of ZSM-35 and ZSM-5 | |
CN102839010A (en) | Preparation method for modified magnesium aluminum spinel having acidity and alkality | |
Roos et al. | Impact of accessibility and acidity on novel molecular sieves for catalytic cracking of hydrocarbons | |
JPH04227066A (en) | Garoalmino silicate latalyst and its usage in aromatization of 2-7 c hydrocarbon | |
CN103894222B (en) | For the modified zeolite catalyst and preparation method thereof of methanol dewatered propylene |