[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58161267A - Matrix type fuel cell - Google Patents

Matrix type fuel cell

Info

Publication number
JPS58161267A
JPS58161267A JP57044135A JP4413582A JPS58161267A JP S58161267 A JPS58161267 A JP S58161267A JP 57044135 A JP57044135 A JP 57044135A JP 4413582 A JP4413582 A JP 4413582A JP S58161267 A JPS58161267 A JP S58161267A
Authority
JP
Japan
Prior art keywords
electrolyte
matrix
electrode
groove
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57044135A
Other languages
Japanese (ja)
Inventor
Atsuo Watanabe
敦夫 渡辺
Hiroyuki Tajima
田島 博之
Tomoyoshi Kamoshita
友義 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57044135A priority Critical patent/JPS58161267A/en
Publication of JPS58161267A publication Critical patent/JPS58161267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To supply an electrolyte in a matrix by forming concave grooves along the substrate surface, apart from reacting gas passing grooves, on the surface faced with an electrode in an electrode substrate and inserting electrolyte supply tubes into these grooves. CONSTITUTION:A fuel electrode 2 is formed in a substrate 1 having fuel passing grooves 11, and an air electrode 4 is formed in a substrate 5 having air passing grooves 51, and a matrix 3 is placed between them to form a unit cell. A plurality of concave grooves 7 are formed along the substrate surface on the surface faced with the fuel electrode 2 in the fuel electrode side substrate 1, therein electrolyte supply tubes 8 having a large number of electrolyte supply holes 81 which open in inner direction of a cell from outside are inserted. After assembling a cell, liquid electrolyte is supplied through tubes 8 into the matrix 4, and penetration of the electrolyte to a gas diffusion layer is prevented.

Description

【発明の詳細な説明】 この発明は多孔質電極基板を採用し、該基板を通じ°C
電極の万へ反応ガスを拡散供給するようにした例えばり
ん酸電解質形のマトリ1.クス型燃料電池、#罠その液
状電解質の補給構造の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention employs a porous electrode substrate, and through the substrate
For example, a matrix of phosphoric acid electrolyte type that diffuses and supplies a reactive gas to the electrodes 1. Regarding improvements in the liquid electrolyte replenishment structure of fuel cells.

周知のように頭記マトリックス屋燃料電池は、燃料電極
側の燃料通路溝付き多孔質電極基板、燃料電極、電解質
を含浸させたマトリックス、空気電極、および空気電極
側の空気通路溝付き多孔質電極基板を上記の順に重ね合
わせて単電池を構成し、燃料、空気の反応ガスを多孔質
電極基板を通じてその外面側から電極へガス拡散して供
給するよう(#!!成されている。かかる燃料電池は、
燃料。
As is well known, a matrix fuel cell is composed of a porous electrode substrate with fuel passage grooves on the fuel electrode side, a fuel electrode, a matrix impregnated with electrolyte, an air electrode, and a porous electrode with air passage grooves on the air electrode side. The substrates are stacked in the above order to form a unit cell, and reactant gases such as fuel and air are diffused and supplied from the outer surface of the substrate to the electrode through the porous electrode substrate. The battery is
fuel.

空気の反応ガスと、液状電解質と、電極との間の三相界
面でN気化学的反応が行われて発電する。
A N gas chemical reaction occurs at the three-phase interface between the reactive gas of air, the liquid electrolyte, and the electrodes to generate electricity.

この場合に前記のガス相と液相とが電極触媒層の固相と
接する三相界面の安定度が電池の発電効率に大きく影響
する。すなわち安宇した電気化学反応を維持するため(
7+:は、マトリ、クスに電解質が十分保持さねていて
ほど良く電極と接し、かつ反応ガスが円滑に電極へ供給
されていることが必要である。このために頭記多孔質x
i基板を用いた燃料電池では、特に運転時に多孔質電極
基板のガス拡散層が液状の電解質でふさがれてしまうこ
とのないように配慮することが極めて重要である。
In this case, the stability of the three-phase interface where the gas phase and liquid phase contact the solid phase of the electrode catalyst layer greatly influences the power generation efficiency of the battery. In other words, in order to maintain a stable electrochemical reaction (
7+: It is necessary that the electrolyte is sufficiently retained in the matrix or the matrix, that it is in good contact with the electrode, and that the reaction gas is smoothly supplied to the electrode. For this head porous x
In a fuel cell using an i-substrate, it is extremely important to take care not to block the gas diffusion layer of the porous electrode substrate with liquid electrolyte, especially during operation.

−万、マトリ、クスへの電解質含浸は燃料電池の組立前
段階で行うと種々の障害が生じるために、電池組立後に
外部からマ) lックスヘ併給することが望−1′ねる
- Since impregnating electrolytes into the matrix and the matrix before assembling the fuel cell will cause various problems, it is desirable to simultaneously supply the matrix and the matrix from the outside after the battery is assembled.

ところで従来の燃料N4池は第1図のよう構成されてい
た。な1.5図は単′rL池を示したものであり、単電
池を多数積層してセルスタ、ツクを構成するには図示さ
れてないガスセパレート板を介して積層されることは周
知の通りである。図において1は上面に燃料通路溝11
が形成された燃料電極側の多孔質電極基板、2は白金触
媒を担持した炭素質粉末と僅かな結着剤とからtcろ触
媒層を前記電極基板1に塗布して形成された燃料電極、
3は耐熱。
By the way, the conventional fuel N4 pond was constructed as shown in Fig. 1. Figure 1.5 shows a single cell battery, and it is well known that in order to form a cell star or a cell block by stacking a large number of single cells, they are stacked through a gas separation plate (not shown). It is. In the figure, 1 indicates a fuel passage groove 11 on the top surface.
2 is a fuel electrode formed by applying a TC catalyst layer on the electrode substrate 1 from carbonaceous powder supporting a platinum catalyst and a small amount of binder;
3 is heat resistant.

耐食性を仔する液状電解質保持力の大きな多孔性物質、
例えばシリコンカーバイドで作られたマトリ、クス、4
は燃料電極2と同様に形成された空気電極、5は下面に
空気通路溝51をも。た空気重積側の多孔質電極基板で
ある。また、燃料電極側の電極基板1には局部的に基板
の上面と下面との間にまたがる、いわゆるリザーバ層と
称される電解質の補給、貯蔵のための層6が形成されて
いる。
A porous material with high liquid electrolyte retention that provides corrosion resistance.
For example, matrix, kusu, 4 made of silicon carbide.
5 is an air electrode formed in the same manner as the fuel electrode 2, and 5 also has an air passage groove 51 on the bottom surface. This is a porous electrode substrate on the air stack side. Furthermore, a layer 6 for replenishing and storing electrolyte, called a so-called reservoir layer, is formed locally on the electrode substrate 1 on the fuel electrode side, spanning between the upper and lower surfaces of the substrate.

このリザーバ層6は、例えばリザーバ層60部分をマス
クして、他の領域にポリ四弗化エチレン等の撥水性樹脂
を含浸させて撥水処理を施こし、リザーバ層6の部分の
み撥水処理を施さずに親水性を保つようにして形成され
る。かかる構成により、電池の運転中に吸湿等により電
解質の液体体積の増大が生じた際には、この余剰分を前
記のリザーバ層に一時的に貯留させておき、不必要に液
状電解質が電極および電極基板のガス拡散層をふさいで
しまうことを防止できる。
This reservoir layer 6 is made by, for example, masking the reservoir layer 60 portion, impregnating other regions with a water-repellent resin such as polytetrafluoroethylene, and applying water-repellent treatment to the reservoir layer 6. It is formed in such a way that it maintains its hydrophilic properties without applying any additives. With this configuration, when the liquid volume of the electrolyte increases due to moisture absorption etc. during operation of the battery, this excess volume is temporarily stored in the reservoir layer, and the liquid electrolyte is unnecessarily removed from the electrodes. It is possible to prevent the gas diffusion layer of the electrode substrate from being blocked.

しかしながら上記従来の構造では、リザーバ層は電池組
立状態ではセパレート板で蓋されてj−まい、このリザ
ーバ)−を通じて電解質を外部から補給することができ
ない。このためにマトリックスの周縁から電解質の補給
を行うか、あるいは別個に独立した電解質補給通路を設
けて行っていた。
However, in the conventional structure described above, the reservoir layer is not covered with a separate plate when the battery is assembled, and electrolyte cannot be replenished from the outside through the reservoir. For this purpose, the electrolyte has been replenished from the periphery of the matrix, or a separate electrolyte supply passage has been provided.

またもともとガス拡散用として作られた多孔質電極基板
の基質をそのまま利用して同じ基質内に撥水性のあるガ
ス拡散層と、撥水性のないリザーバ層とを撥水性樹脂の
含浸による処理によって形成したものでは、リザーバ層
自身の電解質保持力は比較的弱く、更には撥水処理のコ
ントロールがむづかしく電極基板の層内でのリザーバ層
とガス拡散層との境界域の撥水性が不完全になりがちで
ある。この結果、時間の経過て伴ってリザーバ層周域の
ガス拡散層は撥水性が劣化し、これにつれてリザーバ層
内に滞留している電解質が周囲のガス拡散層へ同げて染
み出す現象が生じるOこのよう(5) な状態になると、電極基板内でのガス拡散か妨げられ、
1匝への反応ガスの供給が所定通りに行われず、発電効
率が著るしく低下してしまう。
In addition, by using the substrate of a porous electrode substrate originally made for gas diffusion, a water-repellent gas diffusion layer and a non-water-repellent reservoir layer are formed in the same substrate by impregnating it with a water-repellent resin. In this case, the electrolyte retention power of the reservoir layer itself is relatively weak, and furthermore, it is difficult to control the water repellent treatment, and the water repellency of the boundary area between the reservoir layer and the gas diffusion layer within the electrode substrate layer is incomplete. It tends to become. As a result, as time passes, the water repellency of the gas diffusion layer around the reservoir layer deteriorates, and as a result, the electrolyte remaining in the reservoir layer oozes out into the surrounding gas diffusion layer. In such a state (5), gas diffusion within the electrode substrate is hindered,
Reactant gas is not supplied to each tonne as scheduled, resulting in a significant drop in power generation efficiency.

この発明は上記の点如かんがみなされたものであり、そ
の目的は従来の欠点を11il$消し、電極基板のガス
拡散機能を損うことなしに、1!解質の外部からの補給
、および電池内での貯蔵が行えるようにしたマトリ、ク
ス燃料電池を提供することにある。
The present invention has been made in consideration of the above points, and its purpose is to eliminate the drawbacks of the conventional technology by 11il$, without impairing the gas diffusion function of the electrode substrate. An object of the present invention is to provide a matrix fuel cell in which solutes can be replenished from the outside and stored within the cell.

かかる目的はこの発明により、電極基板における1極と
対向する側の面に反応ガス通路溝と分離して板面に沿う
凹溝な切込み形成するとともに、この凹溝内に電解質補
給チューブを外部より介挿配管し、この電解質補給チー
−グを通じて液状電解質を注入しマトリ、クスに: を
浸させるよう構成したことにより達成される。
To achieve this purpose, according to the present invention, a concave groove is formed on the surface of the electrode substrate facing one pole along the plate surface, separated from the reaction gas passage groove, and an electrolyte replenishment tube is inserted into the groove from the outside. This is achieved by installing an interposed pipe, and injecting liquid electrolyte through this electrolyte replenishment pipe to soak the matrix and the bath.

U下この発明を図示実施例に基づき詳述する。Below, this invention will be described in detail based on illustrated embodiments.

まず、第2図および第3図において、単1Laの上部に
位置する燃料電極側電極基板1には、燃料電極2 +C
対向する側の面に板面に沿った凹溝7が(6) 複数条切込み形成されている。この凹溝7は電極基板]
(niiT後側縁の間にまたがって通じている。
First, in FIGS. 2 and 3, a fuel electrode 2 +C
A plurality of grooves 7 (6) along the plate surface are formed on the opposing side. This groove 7 is an electrode substrate]
(It straddles and communicates between the posterior margin of niiT.

そしてこの凹溝7の中に外部より電解質補給チューブ8
が挿入配管されている。またこの補給チューブ8にはそ
の溝内挿入部分に電池内部へ向けて開口する電解gt補
給穴81が多数分散j−てあけである。なお燃料電極2
も凹溝7に合わせて切欠かれている。また補給チューブ
8は電極γ板1に対してその凹溝7の端部でソールされ
ている。更に電極基板1はその層内全領域で十分に@水
処理が施しである。
Then, an electrolyte replenishment tube 8 is inserted into this groove 7 from the outside.
is inserted and piped. Further, this replenishment tube 8 is provided with a large number of electrolytic gt replenishment holes 81 which are dispersed and opened toward the inside of the battery at the portion inserted into the groove. In addition, fuel electrode 2
It is also notched to match the groove 7. Further, the replenishment tube 8 is sole-shaped with respect to the electrode γ plate 1 at the end of its concave groove 7. Furthermore, the electrode substrate 1 has been sufficiently treated with water throughout its entire layer.

上記の構成において、電池の組立後に補給チューノ8を
通じて外部から液状電解質を供給することにより、電解
質は補給穴81を通じて凹溝内に流下し、ここからマト
リ、ゲス4へ浸透して含浸される。この場合に電解液の
補給は補給チューブ8を通じて行われるので、簡易かつ
円滑に行えるし、更に電極基板1を殆ど電解質でぬらす
こともない。
In the above configuration, by supplying liquid electrolyte from the outside through the replenishment tube 8 after the battery is assembled, the electrolyte flows down into the groove through the replenishment hole 81, and from there penetrates into the matrix and gas 4 to impregnate it. In this case, the electrolytic solution is replenished through the replenishment tube 8, so it can be done easily and smoothly, and furthermore, the electrode substrate 1 is hardly wetted with the electrolyte.

またチューブ8自身は電解質リザーバとして働き、運転
中に生じた電解質体積の増加による余剰分をマドす、ゲ
スからチューブ内に戻して貯留することがで鎗る。
In addition, the tube 8 itself functions as an electrolyte reservoir, and the excess amount due to the increase in electrolyte volume generated during operation can be returned to the tube through the gas and stored therein.

次に第4図、第5図に別な実施例を示す。この実施例で
は、先に述べた実施例と異なる点は電解質補給チューブ
8が電極基板1く形成された凹溝7の入口部に開口して
接続配管されており、かつ凹溝内のほぼ全域が電解質保
持力の大きな親水性の多孔質材9、例えばマトリ、ゲス
3の材料と同じ材料、あるいは撥水処理を施していない
電極基材と同じで粒径が電極基材よりも粗い材料が充填
されている。これに対し電極基板1は全域で十分に撥水
処理されている。
Next, FIGS. 4 and 5 show another embodiment. This embodiment differs from the previous embodiment in that the electrolyte replenishment tube 8 is opened at the entrance of the groove 7 formed in the electrode substrate 1 and connected thereto, and almost throughout the entire area inside the groove. is a hydrophilic porous material 9 with a large electrolyte retention capacity, such as the same material as Matori and Gesu 3, or a material that is the same as the electrode base material without water repellent treatment but whose particle size is coarser than the electrode base material. Filled. In contrast, the entire area of the electrode substrate 1 is sufficiently water-repellent.

この実施例も先記の実施例と同様に、補給チーーズ8を
通じて外部から液状電解質を供給することにより、電解
曳は凹溝7の中で充填材料9に浸透し、次いでマトリ、
ゲス3に含浸される0また溝内充填材9は電解質保持力
を第1図におけるリザーバ層のそれより十分大きく選択
できる。したがって凹溝内の充填材は、電解質の貯蔵部
、リザ−、+としての機部を果すとともに1その大きな
電解質保持力によって電原基板側の撥水性が多少劣化し
ても電解質が電極基板(Cおける撥水処理されたガス拡
it・−の万へ浸透するのを防止できる。併せて凹溝内
部の充填材9は第1図のように電極基板の外面側に全く
露呈することがないので、燃料ガス通路側への電解質の
洩出の恐れもない利点が得られる。
In this embodiment, as in the previous embodiment, by supplying liquid electrolyte from the outside through the replenishment cheese 8, the electrolyte penetrates into the filler material 9 in the groove 7, and then the matrix,
The groove filling material 9 impregnated with the gas 3 can have an electrolyte holding power sufficiently larger than that of the reservoir layer in FIG. Therefore, the filling material in the concave groove serves as an electrolyte storage area, a reservoir, and a positive mechanism.1 Due to its large electrolyte holding power, even if the water repellency of the electrolyte substrate side deteriorates to some extent, the electrolyte remains on the electrode substrate side. It is possible to prevent the water-repellent treated gas from penetrating into the grooves.In addition, the filling material 9 inside the groove is not exposed at all to the outer surface of the electrode substrate as shown in Fig. 1. Therefore, there is an advantage that there is no fear of electrolyte leaking to the fuel gas passage side.

以上述べたようKこの発明によれば、電極基板を巧みに
活用しつつ、電極基板のもつガス拡散機能を損うことな
しに、マツトリ、ゲスて対する液状電解質の補給、貯蔵
を簡易な手段で達成することができる。しかも従来のよ
うに電極基板の基質の内部に撥水性のガス拡散層と親水
性のリザーバ層とを区分して形成する複軸な処理が必要
がなく、基′板全域な撥水処理すればよいので十分な撥
水性が得られ、ガス拡散層への電解質の浸透を確実に防
止できる等、その実用的効果は極めて犬である。
As described above, according to the present invention, it is possible to replenish and store liquid electrolyte for pinworms and gases by a simple means, while skillfully utilizing the electrode substrate and without impairing the gas diffusion function of the electrode substrate. can be achieved. Moreover, there is no need for the conventional multi-axial treatment to separate and form a water-repellent gas diffusion layer and a hydrophilic reservoir layer inside the substrate of the electrode substrate. Its practical effects are extremely impressive, such as sufficient water repellency and the ability to reliably prevent electrolyte from penetrating into the gas diffusion layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来におけるマトリ、ゲス型燃料電池の単電池
の構成図、m2図はこの発明の一実施例(9) による41電池を下面側から見た一部切欠平面図、g 
a図は第2図における矢視III −III断面図、第
4図はこの発明の他の実施例による単電池を下面側から
見た一部切欠平面図、第5図は第4図における矢視V−
■断面図である。 1.5・・・多孔質電極基板、2.4・・・電極、3・
・・マトリックス、7・・凹溝、8・・・電解質補給チ
ー−ブ、81・・・電解質補給穴、9・・・溝内充填用
の親水性多孔質材。 (10)
Fig. 1 is a block diagram of a single cell of a conventional matrix type fuel cell, and Fig.
Figure a is a sectional view taken along arrows III--III in Figure 2, Figure 4 is a partially cutaway plan view of a unit cell according to another embodiment of the present invention viewed from the bottom side, and Figure 5 is a sectional view taken along arrows III--III in Figure 4. Visual V-
■It is a sectional view. 1.5... Porous electrode substrate, 2.4... Electrode, 3.
...Matrix, 7. Concave groove, 8. Electrolyte replenishment tube, 81. Electrolyte replenishment hole, 9. Hydrophilic porous material for filling in the groove. (10)

Claims (1)

【特許請求の範囲】 】)燃料電極側の燃料通路溝付き多孔質電極基板、燃料
!!極、マトリックス、空気電極、および空気電極側の
9気通路溝付き多孔質電極基板な上記の順に重ね合わせ
てなるマトリ、クス型燃料電池において、電極基板にお
ける電極と対向する側の面に反応ガス通路溝と分離して
板面に沿う凹溝を切込み形成するとともに、この凹溝内
に電解質補給チューブを外部より介挿配管し、該電解質
補給チューブを通じて液状電解質を注入しマトリ、。 クスに含浸させることを特徴とするマトリックス型燃料
電池。 2、特許請求の範囲第1項に記載の燃料電池において、
電解質補給チューブが凹溝の全長域圧わたって挿入配管
され、かつ該チューブの凹溝内挿入部分にはマトリ、ク
スに向けて電解質補給穴が分散開口さ11ていることを
特徴とするマトリックス型燃料電池。 3)特許請求の範囲第1項に記載の燃料電池において、
電解質補給チューブが凹溝の入口部に開口して接続配管
され、かつ凹溝の内部が電解質保持力の大きな親水性多
孔質材で充填されていることを特徴とするマトリ、クス
型燃料電池。
[Claims] ]) Porous electrode substrate with fuel passage grooves on the fuel electrode side, fuel! ! In a matrix-type fuel cell consisting of a porous electrode substrate with electrodes, a matrix, an air electrode, and nine air passage grooves on the air electrode side stacked in the above order, a reactive gas is placed on the surface of the electrode substrate facing the electrode. A concave groove is cut along the plate surface and separated from the passage groove, and an electrolyte replenishment tube is inserted from the outside into this concave groove, and liquid electrolyte is injected through the electrolyte replenishment tube. A matrix type fuel cell characterized by impregnating it into a gas. 2. In the fuel cell according to claim 1,
A matrix type characterized in that an electrolyte replenishment tube is inserted and piped over the entire length of the recessed groove, and the insertion portion of the tube into the recessed groove has electrolyte replenishment holes distributed openings 11 toward the matrix and the box. Fuel cell. 3) In the fuel cell according to claim 1,
A matrix-type fuel cell, characterized in that an electrolyte replenishment tube opens at the entrance of a groove and is connected to the groove, and the inside of the groove is filled with a hydrophilic porous material having a large electrolyte retention capacity.
JP57044135A 1982-03-19 1982-03-19 Matrix type fuel cell Pending JPS58161267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044135A JPS58161267A (en) 1982-03-19 1982-03-19 Matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044135A JPS58161267A (en) 1982-03-19 1982-03-19 Matrix type fuel cell

Publications (1)

Publication Number Publication Date
JPS58161267A true JPS58161267A (en) 1983-09-24

Family

ID=12683178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044135A Pending JPS58161267A (en) 1982-03-19 1982-03-19 Matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS58161267A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956362A (en) * 1982-09-22 1984-03-31 Mitsubishi Electric Corp Fuel cell
JPS6041764A (en) * 1983-08-16 1985-03-05 Fuji Electric Corp Res & Dev Ltd Manufacture of electrode for fuel cell
JPS6059665A (en) * 1983-09-12 1985-04-06 Hitachi Ltd Electrode plate for fuel cell
JPS62115668A (en) * 1985-11-13 1987-05-27 Mitsubishi Electric Corp Electrolyte supplement equipment of fuel cell
JPH0393167A (en) * 1989-09-04 1991-04-18 Fuji Electric Co Ltd Side lamination type fuel battery stack and its module construction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956362A (en) * 1982-09-22 1984-03-31 Mitsubishi Electric Corp Fuel cell
JPS6041764A (en) * 1983-08-16 1985-03-05 Fuji Electric Corp Res & Dev Ltd Manufacture of electrode for fuel cell
JPS6059665A (en) * 1983-09-12 1985-04-06 Hitachi Ltd Electrode plate for fuel cell
JPH0151026B2 (en) * 1983-09-12 1989-11-01 Hitachi Ltd
JPS62115668A (en) * 1985-11-13 1987-05-27 Mitsubishi Electric Corp Electrolyte supplement equipment of fuel cell
JPH0393167A (en) * 1989-09-04 1991-04-18 Fuji Electric Co Ltd Side lamination type fuel battery stack and its module construction

Similar Documents

Publication Publication Date Title
JPS5966066A (en) Liquid fuel cell
US4463067A (en) Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
JPS58161267A (en) Matrix type fuel cell
EP0107396A1 (en) System for supplying electrolyte to fuel cells
US4766043A (en) Fuel cell
CA1288469C (en) Fuel cell with electrolyte matrix assembly
JPH0652656B2 (en) Molten carbonate fuel cell
JP2590526B2 (en) Method of replenishing electrolyte for matrix fuel cell
JPS58166636A (en) Fuel cell
JPS59217958A (en) Device for supplying electrolyte for matrix-type fuel cell
JPH01159965A (en) Matrix type fuel cell
JPS58103784A (en) Fuel cell
JPS612276A (en) Fuel cell
JPH039590B2 (en)
EP0106605A1 (en) Fuel cell with multiple porosity electrolyte matrix assembly and electrolyte feed system
JPS58165263A (en) Matrix type fuel cell
JPH0145096Y2 (en)
JPH0287478A (en) Phosphoric acid type fuel cell
JPS58165262A (en) Matrix type fuel cell
JPS60198059A (en) Electrolyte supply structure of matrix type fuel cell
JPS6298568A (en) Cell structure of molten carbonate type fuel cell
JPS58103785A (en) Fuel cell
JPS60258864A (en) Electrolyte supply structure in matrix-type fuel cell
JPS62157677A (en) Fuel cell
JPH081803B2 (en) Fuel cell