[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58166021A - Manufacture of conductive sheet - Google Patents

Manufacture of conductive sheet

Info

Publication number
JPS58166021A
JPS58166021A JP57049369A JP4936982A JPS58166021A JP S58166021 A JPS58166021 A JP S58166021A JP 57049369 A JP57049369 A JP 57049369A JP 4936982 A JP4936982 A JP 4936982A JP S58166021 A JPS58166021 A JP S58166021A
Authority
JP
Japan
Prior art keywords
sheet
conductive
stretching
stretched
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57049369A
Other languages
Japanese (ja)
Inventor
Shohei Tamura
田村 正平
Sadamitsu Sasaki
佐々木 貞光
Takashi Ichinose
一瀬 尚
Keiji Nakamoto
中本 啓次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP57049369A priority Critical patent/JPS58166021A/en
Publication of JPS58166021A publication Critical patent/JPS58166021A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2827/00Use of polyvinylhalogenides or derivatives thereof as mould material
    • B29K2827/12Use of polyvinylhalogenides or derivatives thereof as mould material containing fluorine
    • B29K2827/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a conductive sheet different in electric resistance value in an intended area by a method wherein after an uncalcined polytetrafluoroethylene sheet containing conductive powder is compacted by pressure, it is stretched as that draw ratios differ from each other in several areas. CONSTITUTION:A conductive uncalcined polytetrafluoroethylene sheet is passed between metallic rolls and compacted by pressure, then the desired area of this sheet that is divided at least into two parts is stretched or kept in the unstretched state and another area that is adjacent to this area is stretched so that the draw ratio is different from that of the above-mentioned desired area. In this way, the sheets having various kinds of electric resistances or relatively large electric resistances even for their small lengths are obtained.

Description

【発明の詳細な説明】 本発明はポリテトラフルオロエチレン(以下PTFKと
称す)から成シ、所定領域において電気抵抗値の異なる
導電性シートの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a conductive sheet made of polytetrafluoroethylene (hereinafter referred to as PTFK) and having different electrical resistance values in predetermined regions.

、従来からPTFFf粉末と導電性粉末を均一に混合し
、これをシート成形して得られる導電性シートが知られ
ている・この導電性シートにおいては、電気抵抗を変え
る場合、主として導電性粉末の配合量を増減させている
が、この方法では得られる導電性シートの電気抵抗は略
一定のものであり、部分的に所定の電気抵抗値を与える
仁とはできなか−、た〇 本発明者達は従来技術の有する上記問題を解決するため
鋭意検討の結果、導電性を有する未焼成PTν1シート
の表面近傍を圧密せしめ、次に該シートの所定領域を砥
仰せしめるか或いは未延伸状態に―持し、鋏所定領域に
隣接する他の領域を前記所定領域とは延伸率が真なるよ
うに延伸することによ抄、種々の電気抵抗の導電性シー
トが得られるばかやでなく、短尺でも電気抵抗の大をな
導電性シートが得られることを見出し、本発明を完成す
るに至−1たものである・ 即ち、本発明に係る導電性シートの製造法は、導電性粉
末を含有する未焼成FT?1eシートを圧密−化せしめ
た後、少なくと42つの領域に区画され九骸シートの所
定領域を延伸せしめるか或いは未延伸状態に維持し鋏所
定領域に隣接する他の領域を十の延伸率が前記所定領域
の延伸率とは異、なるように延伸せしめることを特徴と
するものであるO 本発明においては、導電性粉末を含有する未焼成PTI
Fmシートの表面近傍が圧密化される0未焼成FT!P
IIシートの圧密化は、例えば未焼成FTFIシートを
常温〜300℃好ましくは約60〜250℃の温度条件
下で圧延ロール間を1回もしくは2回以上通過させ、そ
の厚さを元の厚さの約60−以下好ましくは40〜20
−にする方法により行なうことができる@この圧密化に
より、未焼成FTFBシートけその厚さ方向の中央部が
元の状態である軟質状態が維持されているが、嵌置近傍
が高密度化されて硬質化し、全体として所II「腰の有
る」状態になる0従って、圧密化後に未焼成シートの各
領域に対し延伸率を変えて行なわれる砥伸時の作業が容
易になるのであり、圧密化を施さない場合或いは圧密化
が不充分な場合に祉各領域に対する延伸率を変えての延
伸が困難となる@ 本発明に用いる未焼成FT?1mシートは、未焼成FT
FII@末にカーボン、グラファイト、金属粉等の導電
性粉末を均一に混合し、これをシート成形して得ること
ができ、導電性粉末はp’rym粉末100重量部に対
し通常約20〜40重量部配合される。また、シートの
導電性を損なわない範囲で、エチレン−テトラフルオロ
エチレン共重合体、ポリクロロトリフルオロエチレン、
ポリスフ化ビニリチン、テトラフルオロエチレン−ヘキ
サフルオロプロピレン共重合体等を配合することができ
る。
Conventionally, a conductive sheet obtained by uniformly mixing PTFFf powder and conductive powder and forming the mixture into a sheet is known.In this conductive sheet, when changing the electrical resistance, the main method is to change the electrical resistance of the conductive powder. Although the blending amount is increased or decreased, the electrical resistance of the conductive sheet obtained by this method is approximately constant, and it is not possible to partially give a predetermined electrical resistance value. As a result of intensive studies to solve the above-mentioned problems of the prior art, we have consolidated the surface vicinity of an electrically conductive unfired PTv1 sheet, and then polished a predetermined area of the sheet or left it in an unstretched state. By holding the scissors and stretching another area adjacent to the predetermined area so that the stretching ratio is the same as that of the predetermined area, conductive sheets with various electrical resistances can be obtained. It was discovered that a conductive sheet with a large electrical resistance can be obtained, and the present invention was completed. That is, the method for producing a conductive sheet according to the present invention comprises a conductive sheet containing a conductive powder. Unfired FT? After the 1e sheet is consolidated, it is divided into at least 42 regions, and a predetermined region of the Kumo sheet is stretched, or the other region adjacent to the predetermined region is stretched with scissors at a stretching rate of 10. O In the present invention, unsintered PTI containing conductive powder is used.
0 unfired FT where the vicinity of the surface of the Fm sheet is consolidated! P
Consolidation of the II sheet can be carried out, for example, by passing the unfired FTFI sheet between rolling rolls once or twice or more at a temperature of room temperature to 300°C, preferably about 60 to 250°C, to reduce its thickness to the original thickness. about 60- or less preferably 40-20
This can be done by a method of This makes the work of abrasive stretching, which is performed at different stretching rates for each area of the unfired sheet after consolidation, easier. If densification is not applied or consolidation is insufficient, it becomes difficult to stretch the film by changing the stretching ratio for each region. 1m sheet is unfired FT
It can be obtained by uniformly mixing conductive powder such as carbon, graphite, metal powder, etc. with FII@ powder and forming this into a sheet.The conductive powder is usually about 20 to 40 parts by weight per 100 parts by weight of p'rym powder. Parts by weight are added. In addition, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene,
Vinyritine polysulfate, tetrafluoroethylene-hexafluoropropylene copolymer, etc. can be blended.

なお、未焼成FTiF111シートの厚さは延伸率、シ
ートに要求される機械的強度等に応じて決定するが、通
常は約100〜500声濶である。
The thickness of the unfired FTiF111 sheet is determined depending on the stretching ratio, the mechanical strength required of the sheet, etc., and is usually about 100 to 500 mA.

上記のように圧密化された未焼成FTIFmシートは、
次いでPIFIの融点以下好ましくは常温〜80℃の温
度で延伸される。この延伸は少なくとも2つの領域に区
画された該シートの所定領域を未延伸状態に維持するか
或いは所定延伸率に延伸せしめ、この所定領域にamす
る他の領域をその延伸□twue所定領域。−伸率1異
5ようよ施うれる。
The unfired FTIFm sheet consolidated as described above is
Next, it is stretched at a temperature below the melting point of PIFI, preferably from room temperature to 80°C. In this stretching, a predetermined region of the sheet divided into at least two regions is maintained in an unstretched state or stretched to a predetermined stretching ratio, and other regions that are within the predetermined region are stretched □twue the predetermined region. -The elongation rate is 1 and 5 different.

本発明における未焼成p’rymシートの各領域の延伸
率は、導電性粉末の配合量や目的とする導電性シートの
電気抵抗等に応じて決定することができるが、通常約5
〜50チの範囲内において設定される。
The stretching ratio of each region of the unfired p'rym sheet in the present invention can be determined depending on the amount of conductive powder mixed, the intended electrical resistance of the conductive sheet, etc., but is usually about 5
It is set within the range of ~50 inches.

このように圧密化された未焼成P’l’lFI+!シー
トの隣接領域同志の延伸率が異なるように延伸すること
によし、隣接領域の電気抵抗の異なる導電性7−トが得
られる。導電性シー)Kおける各領域の電気抵抗は、そ
の延伸率によって規定され、延伸率の高い領域嫌ど電気
抵抗も高くなる。
Unfired P'l'lFI+ compacted in this way! By stretching the sheet so that adjacent regions have different stretching ratios, a conductive sheet with different electrical resistances in the adjacent regions can be obtained. The electrical resistance of each region in the conductive sheet (K) is determined by its stretching ratio, and the higher the stretching ratio of the region, the higher the electrical resistance.

本発明において未焼成p’rymシートの各領域の延伸
率の設定は種々の態様が適用でき、例えばシートを3つ
の領域に区画した場合には、(a)シートの一端から他
喝に行くKつれて各領域の延伸率が順次大きくな211
II様、(2)両端領域の延伸率が等しく且つ中央領域
の延伸率が両端領域の延伸率よりも小さいか或いは大き
い態様、(C)両端領域の延伸率が異なり、しかも中央
領域の延伸率が一端領域のいずれの延伸率よりも小さい
か或いは大きめ態様等を真体例として挙げることができ
る0かようにして得られる導電性シートは延伸温度まで
加熱されると、延伸方向の寸法が延伸前の寸法に収縮す
る現象を生ずるため、シートの使用温度が延伸温度以上
である場合には、各領域の延伸状態を保持し九状態で(
各領域の延伸方向の長さが変化しないように固定した状
態で)、延伸温度以上に加熱して熱処理するのが好まし
い。
In the present invention, various aspects can be applied to setting the stretching ratio of each region of the unfired p'rym sheet. For example, when the sheet is divided into three regions, (a) 211 The stretching ratio of each area increases sequentially.
II, (2) an embodiment in which the stretching ratios of both end regions are equal and the stretching ratio of the central region is smaller or larger than the stretching ratio of both end regions, (C) an embodiment in which the stretching ratios of both end regions are different and the stretching ratio of the central region A conductive sheet obtained in this way may be heated to the stretching temperature, and the dimension in the stretching direction will be the same as that before stretching. When the sheet is used at a temperature higher than the stretching temperature, the stretched state of each region is maintained and
It is preferable to perform the heat treatment by heating to a temperature higher than the stretching temperature (while the length of each region in the stretching direction is fixed so as not to change).

との熱処理によ・ヤ、延伸温度以上で重用しても収縮を
生ずることのない導電性シートを得ることがで無る。な
お、熱処理をFTPKの溶融温度である327℃以上で
施すと、p’rymが焼成されて機械的強度の特に大き
な導電性シートが得られる0本発明の方法によシ得られ
る導電性シートは、例えば電気抵抗が広範囲に変化し得
る紅変抵抗累子体、局部的に電気抵抗の異なる発熱シー
ト等に用いることができる― 本発明は上記のように構成され、未焼成FTIPmシー
トを圧密化し友後延伸するようにし九ので、各領域に対
する延伸作業が容易であり%また隣接する領域同志の延
伸率を変えることにより、種々の電気抵抗を有するシー
トが得られ、更に短尺でも電気抵抗の大きなシートが得
られるという特徴がある。
It is not possible to obtain a conductive sheet that does not shrink even when subjected to heavy use at temperatures above the stretching temperature. Note that if the heat treatment is performed at 327°C or higher, which is the melting temperature of FTPK, p'rym is fired and a conductive sheet with particularly high mechanical strength is obtained.The conductive sheet obtained by the method of the present invention is For example, it can be used for a reddening resistance layer whose electrical resistance can vary over a wide range, a heat-generating sheet whose electrical resistance varies locally, etc. The present invention is constructed as described above, and is made by compacting an unfired FTIPm sheet. Since the stretching process is carried out after stretching, it is easy to stretch each area.Also, by changing the stretching ratio of adjacent areas, sheets with various electrical resistances can be obtained. It has the characteristic that a sheet can be obtained.

以下、実施例によシ本発明を更に詳細に説明するO 実施例1 p’rym未焼成粉末(ダイキン社製、商品名ファイン
パウダー103 ) 100部に対しカーボン粉末25
部を均一に混合した厚さ400μmの未焼成FTFle
シートを80℃、150℃、1部0℃および230℃に
各々加熱され九4対の金属圧延ロール間を順次通過させ
ることにより圧密化せしめ、厚さを130μ剛にする0 次に、圧密化した未焼成FTIFmシートを長さ140
龍 に切断し、20層層を1領域として7慣域に区画し
、シート片端の領域を未延伸状態に維持し、シート他端
に行くにつれて延伸率が順次大きくなるように5110
ts、15s、20襲、25sおよび3〇−延伸(延伸
温[30℃)する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
unfired FTFL with a thickness of 400 μm, evenly mixed with
The sheet was heated to 80°C, 150°C, 1 part to 0°C and 230°C, respectively, and then passed sequentially between 94 pairs of metal rolling rolls to achieve a thickness of 130 μm. Next, the sheet was consolidated. The length of the unfired FTIFm sheet was 140 mm.
The sheet was cut into 5110 strips, divided into 7 regions with 20 layers as one region, and one end of the sheet was maintained in an unstretched state, and the stretching ratio gradually increased toward the other end of the sheet.
ts, 15s, 20 strokes, 25s and 30-stretching (stretching temperature [30°C).

次に、各領域の延伸状態を保持し、370℃に1分間加
熱して焼成し、導電性シートを得九〇この導電性シート
における各領域の単位長さ当り(111)l1mg当り
)の電気抵抗は、ノート片端から他端に行くKつれて順
次大きくなっておシ、40Ω、50Ω、70Ω、100
Ω、170Ω、280Ωおよび420Ωであ−、九〇 実施例2 実施例1で用いたFTIK粉末100部に対しカーボン
6部およびエチレン−テトラフルオロエチレン共重合体
粉末22部を均一に混合した厚さ450μ調の未焼成P
TF111シートを130℃、170℃および200℃
に各々加熱された3対の金属圧砥ロール間を順次通過さ
せることにより圧密化せしめ、厚さを18ON肩にする
・ 次に1この圧密化されたシートを実施例1と同様に切断
、延伸および焼成し、導電性シートを得たO この導電性シートにおける各領域の単位長さ当り(lQ
+w肩当り)の電気抵抗は、シート片端から他端に行く
につれて順次大きくなってお、9.250Ω、380Ω
、550Ω、700Ω、1250fl、1900flお
よび2700Ωであった。
Next, while maintaining the stretched state of each region, the conductive sheet is heated and fired at 370° C. for 1 minute to obtain a conductive sheet with an electric current of (111) per mg per unit length of each region in this conductive sheet. The resistance increases sequentially from one end of the notebook to the other: 40Ω, 50Ω, 70Ω, 100Ω.
Ω, 170Ω, 280Ω and 420Ω, 90 Example 2 6 parts of carbon and 22 parts of ethylene-tetrafluoroethylene copolymer powder were uniformly mixed with 100 parts of the FTIK powder used in Example 1. 450μ tone unfired P
TF111 sheet at 130℃, 170℃ and 200℃
The sheet was consolidated by successively passing between three pairs of metal abrasive rolls, each heated to a thickness of 18 mm.Next, this consolidated sheet was cut and stretched in the same manner as in Example 1. and fired to obtain a conductive sheet O per unit length of each area in this conductive sheet (lQ
The electrical resistance of the +w shoulder contact increases from one end of the sheet to the other, and is 9.250Ω and 380Ω.
, 550Ω, 700Ω, 1250fl, 1900fl and 2700Ω.

特許出願人 日東電気工業株式会社 代表者土方三部patent applicant Nitto Electric Industry Co., Ltd. Representative Sanbe Hijikata

Claims (1)

【特許請求の範囲】[Claims] 導電性粉末を含有する未ts灰ポリテトラフルオロエチ
レンシートを圧密化せしめた後、少なくとも2つの領域
に区画された該シートの所定領域を延伸せしめるか或い
は未延伸状態に維持し、該所定領域に隣接する他の領域
をその延伸率が前記所定領域の延伸率とは異なるように
延伸せしめることを特徴とする導電性シートの製造法◎
After compacting an unstretched polytetrafluoroethylene sheet containing conductive powder, a predetermined region of the sheet divided into at least two regions is stretched or maintained in an unstretched state, and the predetermined region is A method for producing a conductive sheet, which comprises stretching another adjacent region at a stretching rate different from that of the predetermined region.
JP57049369A 1982-03-27 1982-03-27 Manufacture of conductive sheet Pending JPS58166021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049369A JPS58166021A (en) 1982-03-27 1982-03-27 Manufacture of conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049369A JPS58166021A (en) 1982-03-27 1982-03-27 Manufacture of conductive sheet

Publications (1)

Publication Number Publication Date
JPS58166021A true JPS58166021A (en) 1983-10-01

Family

ID=12829103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049369A Pending JPS58166021A (en) 1982-03-27 1982-03-27 Manufacture of conductive sheet

Country Status (1)

Country Link
JP (1) JPS58166021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862328A (en) * 1985-08-13 1989-08-29 Asahi Glass Company Ltd. Electric double layer capacitor
WO2017167320A1 (en) * 2016-03-30 2017-10-05 Kiefel Gmbh Method and system for treating a film element conveyed in a conveying direction
WO2019166555A1 (en) * 2018-03-01 2019-09-06 Basf Se Mold for manufacturing a body made of a porous material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862328A (en) * 1985-08-13 1989-08-29 Asahi Glass Company Ltd. Electric double layer capacitor
WO2017167320A1 (en) * 2016-03-30 2017-10-05 Kiefel Gmbh Method and system for treating a film element conveyed in a conveying direction
WO2019166555A1 (en) * 2018-03-01 2019-09-06 Basf Se Mold for manufacturing a body made of a porous material

Similar Documents

Publication Publication Date Title
JPH1177787A (en) Production of highly conductive polytetrafluoroethylene sheet and highly conductive polytetrafluoroethylene wide and long sheet
US1556990A (en) Commutator brush
JPS58166021A (en) Manufacture of conductive sheet
CN110511001B (en) Preparation method of graphene conductive alumina ceramic
JPS631271B2 (en)
JPS62112763A (en) Manufacture of copper material for electric conduction softening at low temperature
SU730285A3 (en) Method of hot pressing of metallic powders
JPH06100367A (en) Anisotropic carbon-carbon composite material and its production
JP2717895B2 (en) Method for producing Cu-Mo composite rolled sheet
CN109573999A (en) The manufacturing method of graphite film
JP6164632B2 (en) Method for producing carbon-based metal composite material
JP2005060204A (en) Conductive material-covered expanded graphite, graphite based conductive filler, conductive rubber material, rubber molding and method for producing rubber molding
JPS59196224A (en) Manufacture of electrically conductive polytetrafluoroethylene sheet
JPH0737703A (en) Positive temperature characteristic resin composition
JP2001278608A (en) Method of producing heat radiating body
JPH0753726A (en) Polymer composite powder and its preparation
JPH03141162A (en) Production of molybdenum disilicide heater
US1322573A (en) Electrical resistance material and process of making
JPH0234562A (en) Production of conductive silicon carbide sheet
SU681080A1 (en) Electrically conducting composition
US5178908A (en) Process for coating carbonized material with metal
JP3133518B2 (en) Manufacturing method of electromagnetic wave shielding material
JPS5336699A (en) Manufacturing method of sintering substance sheet of high density
Malhotra et al. Studies on conductive polymer blends
JPS62234917A (en) Preparation of composite metal plate excellent in conductivity