[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5814416B2 - Process for producing zinc salt of acrylic acid or methacrylic acid - Google Patents

Process for producing zinc salt of acrylic acid or methacrylic acid

Info

Publication number
JPS5814416B2
JPS5814416B2 JP6189075A JP6189075A JPS5814416B2 JP S5814416 B2 JPS5814416 B2 JP S5814416B2 JP 6189075 A JP6189075 A JP 6189075A JP 6189075 A JP6189075 A JP 6189075A JP S5814416 B2 JPS5814416 B2 JP S5814416B2
Authority
JP
Japan
Prior art keywords
water
zinc
acrylic acid
meth
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6189075A
Other languages
Japanese (ja)
Other versions
JPS51138616A (en
Inventor
大三 小林
博喜 内野
昇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP6189075A priority Critical patent/JPS5814416B2/en
Publication of JPS51138616A publication Critical patent/JPS51138616A/en
Publication of JPS5814416B2 publication Critical patent/JPS5814416B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はアクリル酸またはメタクリル酸の亜鉛塩の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing zinc salts of acrylic or methacrylic acid.

詳しく述べると、本発明はアクリル酸またはメタクリル
酸と亜鉛化合物とを反応せしめて、アクリル酸またはメ
タクリル酸亜鉛塩を形成させることにより収率よく高純
度で実質的に水分を含まない粉状固体のアクリル酸また
はメタクリル酸亜鉛塩を製造する方法に関するものであ
る。
Specifically, the present invention provides a high-yield, highly pure, substantially water-free powder solid by reacting acrylic acid or methacrylic acid with a zinc compound to form a zinc acrylic acid or methacrylate salt. The present invention relates to a method for producing zinc acrylic acid or methacrylic acid salt.

アクリル酸またはメタクリル酸〔以下(メタ)アクリル
酸とする〕の亜鉛塩は架橋剤として有用な化合物であり
、たとえば合成樹脂の改質剤、ゴムの共加硫剤などに利
用されている。
Zinc salts of acrylic acid or methacrylic acid (hereinafter referred to as (meth)acrylic acid) are compounds useful as crosslinking agents, and are used, for example, as modifiers for synthetic resins and co-vulcanizing agents for rubber.

そして、とくにこれらの台成樹脂やゴムに添加して用い
られる(メタ)アクリル酸亜鉛塩は実質的に水分を含ま
ない高純度の粉末の形で要求されるところである。
In particular, the zinc (meth)acrylate salt used as an additive to these base resins and rubbers is required to be in the form of a highly pure powder that does not contain substantially water.

本発明者らは、(メタ)アクリル酸亜鉛塩の高純度で実
質的に水分を含まない粉状固体の製造方法について種々
検討したところ、従来、(メタ)アクリル酸アルカリ金
属塩の製法として知られている噴霧乾燥法および濃縮晶
析法が(メタ)アクリル酸亜鉛塩の製法として採用しえ
ないことを知見した。
The present inventors investigated various methods for producing a powdery solid with high purity and substantially no water content of zinc salt of (meth)acrylate, and discovered that the method for producing an alkali metal salt of (meth)acrylate is known as It was discovered that the spray drying method and concentration crystallization method that have been proposed cannot be used as a method for producing zinc (meth)acrylate salt.

すなわち、(メタ)アクリル酸亜鉛の溶解する酸性の水
や低級アルコールを溶媒として(メタ)アクリル酸と亜
鉛化合物とを反応させ、その均一溶液をそのま匁噴霧乾
燥機にかけたところ、(メタ)アクリル酸亜鉛の粉末は
微量の水分の存在により熱時付着性を有すること、また
熱風によって熱重合を起こしやすく、発火したり固着塊
状となったり、また、反応溶液を濃縮釜で濃縮晶析操作
に供したところ、結晶が加熱面等の内壁に強固に塊状に
付着し、えられた製品は水分の含量が多く、また塩基性
塩やポリマーを含む品質の低いものであった。
That is, when (meth)acrylic acid and a zinc compound are reacted using acidic water or a lower alcohol in which zinc (meth)acrylate is dissolved as a solvent, and the homogeneous solution is directly applied to a momme spray dryer, (meth)acrylate is dissolved. Zinc acrylate powder has adhesive properties when heated due to the presence of a small amount of water, and is easily thermally polymerized by hot air, causing fire or solidified lumps, and the reaction solution must be concentrated and crystallized in a concentrator. When the product was subjected to heating, the crystals adhered firmly to the inner wall of the heated surface in the form of a lump, and the resulting product had a high water content and was of low quality, containing basic salts and polymers.

この原因を種々検討したところ、(メタ)アクリル酸亜
鉛は熱的に不安定であって、固体状でも150〜180
℃で熱重合して発火する性質を有すること、濃縮晶析す
るときは非常に結晶が加熱面(特に金属面部分)に付着
しやすい性質があり、また熱時、水分と接触すると加水
分解して塩基性塩になりやすく、さらに加熱面に付着し
た結晶は比較的低温でも一部がポリマーになる性質を有
していることが判明し、上記の如き従来法が使用できず
、反応生成物から水を除去して高純度の粉末をえること
が非常に困難であることが判明した。
After various studies on the causes of this, it was found that zinc (meth)acrylate is thermally unstable, and even in solid form it has a
It has the property of thermally polymerizing and igniting at ℃, and when concentrating and crystallizing, the crystals tend to adhere to heated surfaces (particularly metal surfaces), and it also hydrolyzes when it comes into contact with moisture when heated. It was found that the crystals attached to the heated surface tend to become basic salts, and that some of the crystals attached to the heated surface become polymers even at relatively low temperatures. It has been found that it is very difficult to remove water from and obtain a powder of high purity.

(メタ)アクリル酸と亜鉛化合物とを反応させると、目
的生成物の(メタ)アクリル酸亜鉛1モルに対して1〜
2モルの水が副生する。
When (meth)acrylic acid and zinc compound are reacted, 1 to 1 mole of zinc (meth)acrylate, the target product, is
2 moles of water are produced as a by-product.

そして、原料の(メタ)アクリル酸や亜鉛化合物中にも
若干量の水が存在することもある。
A small amount of water may also be present in the raw material (meth)acrylic acid or zinc compound.

したがって、反応生成物からこれらの水を必ず除去する
必要がある。
Therefore, it is necessary to remove these waters from the reaction product.

本発明者らは、この脱水方法について種々検討したとこ
ろ、中和反応を水と相互不溶解性でかつ水と共沸する性
質を有する溶媒中で行ない、そしてまた反応系内で生成
した(メタ)アクリル酸亜鉛が凝集沈殿しない程度に水
分量を保持して、温度40〜100℃の範囲で反応、脱
水乾燥すれば所望の高純度の粉末状固体がえられること
が判明し、本発明を完成するに至った。
The present inventors conducted various studies on this dehydration method and found that the neutralization reaction was carried out in a solvent that is mutually insoluble with water and has the property of being azeotropic with water, and that methane was also produced within the reaction system. ) It was found that the desired high-purity powdery solid can be obtained by reaction and dehydration drying at a temperature of 40 to 100°C while maintaining the water content to such an extent that zinc acrylate does not coagulate and precipitate. It was completed.

かくして、本発明は従来法を踏襲した方法の欠点を克服
する、きわめて工業的に有利な(メタ)アクリル酸亜鉛
塩粉末の製造方法を提供するもので、きわめて操作およ
び制御の容易な、かつ高収率、高純度で実質的に無水の
(メタ)アクリル酸亜鉛塩粉末を製造する方法を提供す
るものである。
Thus, the present invention provides an extremely industrially advantageous method for producing zinc (meth)acrylic acid salt powder that overcomes the drawbacks of conventional methods, is extremely easy to operate and control, and has a high yield. The present invention provides a method for producing substantially anhydrous (meth)acrylic acid zinc salt powder with high yield and purity.

すなわち、本発明はアクリル酸またはメタクリル酸と亜
鉛の酸化物、水酸化物、炭酸塩、重炭酸塩またはこれら
の混合物とを反応させてアクリル酸またはメタクリル酸
の亜鉛塩を製造するに除し、実質的に水の不存在下にお
いて溶媒として水と相互不溶解性で、かつ水と共沸混合
物を形成しうる炭化水素化合物を使用し、温度40〜1
00℃の範囲内で反応を行なわせ溶媒と共に生成した水
分を共沸除去し、さらに乾燥せしめてなることを特徴と
する高純度のアクリル酸またはメタクリル酸亜鉛の製造
方法を提供するものである。
That is, the present invention involves producing a zinc salt of acrylic acid or methacrylic acid by reacting acrylic acid or methacrylic acid with a zinc oxide, hydroxide, carbonate, bicarbonate, or a mixture thereof. Using a hydrocarbon compound that is mutually insoluble with water and capable of forming an azeotrope with water as a solvent in the substantial absence of water, and at a temperature of 40 to 1
The present invention provides a method for producing highly pure acrylic acid or zinc methacrylate, which is characterized in that the reaction is carried out in the range of 00°C, water produced together with the solvent is azeotropically removed, and the process is further dried.

本発明の方法と同じように有機溶媒を用いて共沸脱水す
る方法が特開昭47−11365公報明細書に記載され
ている。
A method of azeotropic dehydration using an organic solvent, similar to the method of the present invention, is described in the specification of JP-A-47-11365.

しかしこの方法は、グリシジルエステルを合成する工程
の(メタ)アクリル酸のアルカリ金属塩の製法に関する
もので、該明細書から明らかな如く、(メタ)アクリル
酸のカリウム、ナトリウム塩は、合成上、亜鉛塩と根本
的に反応、物性等異なっており、その反応条件も本質的
に相違している。
However, this method relates to a method for producing an alkali metal salt of (meth)acrylic acid in the step of synthesizing glycidyl ester, and as is clear from the specification, potassium and sodium salts of (meth)acrylic acid are The reactions and physical properties are fundamentally different from zinc salts, and the reaction conditions are also essentially different.

すなわち、アルカリ金属塩の場合は、反応系内に水を存
在させることを必須の条件としているが、本発明の(メ
タ)アクリル酸亜鉛の合成では、水がなくても反応が進
行し、しかも実質的に水が存在しない方が好ましい。
That is, in the case of alkali metal salts, the presence of water in the reaction system is an essential condition, but in the synthesis of zinc (meth)acrylate of the present invention, the reaction proceeds even in the absence of water. Preferably, substantially no water is present.

また、上記公報明細書の方法では、溶媒と水との共沸に
よって脱水を行なっていが、この操作だけでは脱水が十
分でなく、さらに固体状の乾燥剤を使用しなくてはなら
ない。
Further, in the method disclosed in the above-mentioned publication, dehydration is performed by azeotropic distillation of the solvent and water, but dehydration is not sufficient with this operation alone, and a solid desiccant must be used.

本発明方法では、共沸脱水後にさらに乾燥剤を使用する
必要はなく、そのまま乾燥処理をするのみでよい。
In the method of the present invention, there is no need to further use a desiccant after azeotropic dehydration, and it is sufficient to simply carry out the drying treatment.

これらカリウム、ナトリウム塩と亜鉛塩との合成上の相
違は、その反応性の大小、水との結合力および加水分解
されやすさの差異等によるものと考えられ、(メタ)ア
クリル酸の亜鉛塩を上記方法のごとく水の存在下に反応
脱水させても、高純度で実質的に水分および塩基性塩な
どを含まない製品はえることができないことから明らか
である。
These synthetic differences between potassium and sodium salts and zinc salts are thought to be due to differences in their reactivity, binding strength with water, and ease of hydrolysis, and zinc salts of (meth)acrylic acid It is clear that even if the above-mentioned method is used to react and dehydrate the product in the presence of water, a product with high purity and substantially free of water and basic salts cannot be obtained.

本発明において用いられる溶媒としては、水と共沸しう
るまた冷時水と相互に溶解しあわない炭化水素化合物で
あり、かつ沸点が50〜160℃、好ましくは8.0〜
140℃の範囲内にある有機化合物がよく、具体的には
ベンゼン、トルエン、キシレン類、シクロヘキサン、メ
チルシクロヘキサン、n−ヘプタン、n−ヘキサンなど
が挙げられる。
The solvent used in the present invention is a hydrocarbon compound that is azeotropic with water and is not mutually soluble with water when cold, and has a boiling point of 50 to 160°C, preferably 8.0 to
Organic compounds within the range of 140°C are preferred, and specific examples include benzene, toluene, xylenes, cyclohexane, methylcyclohexane, n-heptane, and n-hexane.

本発明で使用する(メタ)アクリル酸は通常の水によっ
て希釈されていない氷(メタ)アクリル酸であるが、若
干量の水を含んでいてもさしつかえない。
The (meth)acrylic acid used in the present invention is ordinary glacial (meth)acrylic acid that is not diluted with water, but it may contain some amount of water.

さらに、(メタ)アクリル酸中に含まれているハイドロ
キノン、ハイドロキノンモノメチルエーテル等の重合防
止剤の混在はなんら支障をきたさない。
Furthermore, the presence of polymerization inhibitors such as hydroquinone and hydroquinone monomethyl ether contained in (meth)acrylic acid does not cause any problem.

また、原料の亜鉛化合物は通常の粉末状の固体を使用す
る。
Further, as the raw material zinc compound, a normal powdery solid is used.

粉末状であれば反応器に仕込むのに好都合であるし、ま
た溶媒中によく攪拌分散され易く、添加される(メタ)
アクリル酸との反応を均一化することができる。
If it is in powder form, it is convenient to charge it into the reactor, and it is also easily stirred and dispersed in the solvent, so it can be added (meta).
The reaction with acrylic acid can be made uniform.

原料亜鉛化合物は水を含まないものが好ましいが、若干
量の水を含有していても差しつかえない。
Although it is preferable that the raw material zinc compound does not contain water, there is no problem even if it contains some amount of water.

ただし、原料亜鉛化合物と(メタ)アクリル酸中に含有
される水が反応生成水と合わさって生成する(メタ)ア
クリル酸亜鉛の凝集沈殿を起こさない範囲内であること
は勿論必要である。
However, it is of course necessary that the water contained in the raw material zinc compound and (meth)acrylic acid be within a range that does not cause coagulation and precipitation of zinc (meth)acrylate produced when the water contained in the raw material zinc compound and (meth)acrylic acid are combined with the reaction product water.

もし原料中に水分が多く含まれるときは、使用する溶媒
量を増せばよい。
If the raw material contains a large amount of water, the amount of solvent used may be increased.

亜鉛化合物として酸化亜鉛、水酸化亜鉛、炭酸亜鉛およ
び重炭酸亜鉛があげられる。
Zinc compounds include zinc oxide, zinc hydroxide, zinc carbonate and zinc bicarbonate.

本発明において反応系内に存在する水分が生成する(メ
タ)アクリル酸亜鉛塩の品質に対して大きな影響をもつ
理由は次のように考えられる。
The reason why the water present in the reaction system has a great effect on the quality of the produced zinc (meth)acrylate salt in the present invention is considered to be as follows.

まず、反応によって(メタ)アクリル酸亜鉛1モルに対
して1〜2モルの反応水が生成する。
First, 1 to 2 mol of reaction water is generated per 1 mol of zinc (meth)acrylate by the reaction.

この生成水と原料からくる水が生成塩結晶に付着する。This produced water and the water coming from the raw materials adhere to the produced salt crystals.

このとき水分が多いほど生成した結晶を多くとかし、溶
液となって結晶の表面をとりかこみ、溶媒の炭化水素が
結晶の表面を濡らせなくなる結果、結晶の凝集が起こり
、大きな固まりとなって沈殿してしまう。
At this time, the more water there is, the more crystals that are formed will be dissolved, forming a solution that will surround the surface of the crystal, and as a result, the hydrocarbons in the solvent will no longer wet the surface of the crystal, resulting in agglomeration of the crystals, which will form a large lump and precipitate. I end up.

そして、この沈殿した結晶は反応器の加熱面などの内壁
に強固に付着しやすく、反応、脱水乾燥工程中にこの含
水結晶が加水分解し塩基性塩になったりまたこの付着し
た結晶の一部が重合物になって品質低下を起こしたり、
また大きな塊状になるため、脱水乾燥工程における水分
の除去を困難にさせる。
These precipitated crystals tend to adhere strongly to the inner walls of the reactor, such as the heated surface, and during the reaction and dehydration/drying process, these hydrated crystals are hydrolyzed and become basic salts, and some of these adhering crystals are becomes a polymer and causes quality deterioration,
Moreover, since it becomes a large lump, it becomes difficult to remove water in the dehydration and drying process.

このようなことに鑑み、本発明の最も好ましい態様は原
料(メタ)アクリル酸と亜鉛化合物とも実質的に無水の
ものを使用して反応させることが好ましい。
In view of this, in the most preferred embodiment of the present invention, it is preferable to use substantially anhydrous raw material (meth)acrylic acid and zinc compound for reaction.

つぎに本発明の具体的実施の態様について説明する。Next, specific embodiments of the present invention will be described.

十分に攪拌可能な反応器内に溶媒を満たし、亜鉛化合物
の粉末を攪拌分散させ、ついで(メタ)アクリル酸を滴
下反応させる。
A sufficiently stirrable reactor is filled with a solvent, the zinc compound powder is stirred and dispersed, and then (meth)acrylic acid is added dropwise for reaction.

あるいは上記溶媒中に(メタ)アクリル酸をあらかじめ
混合しておき、上記亜鉛化合物の粉末を攪拌しながら添
加反応せしめる。
Alternatively, (meth)acrylic acid is mixed in advance in the above solvent, and the zinc compound powder is added and reacted with stirring.

亜鉛化合物と(メタ)アクリル酸との割合は、亜鉛化合
物に対して(メタ)アクリル酸を塩形成当量ないし10
%程度過剰に用いるとよい。
The ratio of the zinc compound and (meth)acrylic acid is from 10 to 10 salt-forming equivalents of (meth)acrylic acid to the zinc compound.
It is advisable to use an excess of about %.

溶媒の使用量は反応系に存在する水分(反応水と原料(
メタ)アクリル酸および亜鉛化合物からくる水の総量)
を共沸除去しうる量以上であれば制限がないが、通常は
(メタ)アクリル酸1モルに対して2〜15モル程度で
よい。
The amount of solvent used is based on the amount of water present in the reaction system (reaction water and raw materials (
total amount of water coming from meth)acrylic acid and zinc compounds)
There is no restriction as long as the amount is at least the amount that can be azeotropically removed, but usually it is about 2 to 15 moles per mole of (meth)acrylic acid.

この範囲であれば原料亜鉛化合物は反応系内で均一に分
散され、(メタ)アクリル酸と局所的に反応をすること
なく好都合に除熱でき、かつ反応により生成した(メタ
)アクリル酸亜鉛塩の分散をよくし、未反応の原料亜鉛
化合物を包み込むことも起こらない。
Within this range, the raw material zinc compound will be uniformly dispersed in the reaction system, heat can be conveniently removed without locally reacting with (meth)acrylic acid, and the (meth)acrylic acid zinc salt produced by the reaction This improves the dispersion of zinc compounds and prevents unreacted raw material zinc compounds from being encapsulated.

反応温度は40〜100℃が好ましい。この温度は反応
器に備えられている冷却器または加熱器によって調節さ
れる。
The reaction temperature is preferably 40 to 100°C. This temperature is regulated by a cooler or heater installed in the reactor.

反応温度が40℃以下になると反応速度は遅くなって時
間がかゝり過ぎ、また100℃以上で行なうと重合反応
を起こしやすく、製品の純度が低下する。
If the reaction temperature is below 40°C, the reaction rate will be slow and it will take too much time, and if the reaction temperature is above 100°C, polymerization reaction will easily occur and the purity of the product will decrease.

反応系に存在する水は、溶媒との共沸蒸留によって除去
されるが、これは反応中に行なわれてもよく、また反応
完結後に行なわれてもよい。
Water present in the reaction system is removed by azeotropic distillation with the solvent, which may be carried out during the reaction or after completion of the reaction.

反応中に共沸留去する場合は、留出した溶媒を水と二層
分離した後に反応系に循還した方がよい。
When performing azeotropic distillation during the reaction, it is better to separate the distilled solvent into two layers from water and then return it to the reaction system.

さもなければ、反応系内の溶媒が少なくなり原料亜鉛化
合物と(メタ)アクリル酸亜鉛塩の分散が悪くなり不都
合である。
Otherwise, the amount of solvent in the reaction system will decrease, resulting in poor dispersion of the raw material zinc compound and zinc (meth)acrylate salt, which is disadvantageous.

そしてこの時は、未反応の(メタ)アクリル酸が反応系
に存在するため共沸蒸留するときに(メタ)アクリル酸
が留出しないように分離塔が必要である。
At this time, since unreacted (meth)acrylic acid is present in the reaction system, a separation column is required to prevent (meth)acrylic acid from distilling off during azeotropic distillation.

この場合、反応、共沸脱水後に溶媒を濾過機、遠心分離
機などによって機械的に分離し、えられた(メタ)アク
リル酸亜鉛塩を40〜100℃の温度で溶媒を乾燥除去
して製品とすることができる。
In this case, after the reaction and azeotropic dehydration, the solvent is mechanically separated using a filter, centrifuge, etc., and the resulting zinc salt of (meth)acrylate is dried to remove the solvent at a temperature of 40 to 100°C. It can be done.

反応完結後に共沸脱水する場合、反応完結後反応液はか
きとり翼をもつ攪拌機つきのニーダー、ブレンダーなど
に移され、40〜100℃の温度、5〜500mmHg
の減圧下で乾燥処理される。
When performing azeotropic dehydration after the completion of the reaction, the reaction solution is transferred to a kneader, blender, etc. equipped with a stirrer with scraping blades, and heated at a temperature of 40 to 100°C and a pressure of 5 to 500 mmHg.
Dry under reduced pressure.

この場合は、溶媒と(メタ)アクリル酸亜鉛塩の機械的
分離機および分離塔が必要でなく、本発明のより好まし
い態様である。
In this case, a mechanical separator and a separation column for separating the solvent and zinc (meth)acrylic acid salt are not necessary, and this is a more preferred embodiment of the present invention.

脱水乾燥で40℃以下であれば、(メタ)アクリル酸亜
鉛に含まれている結晶水は十分に除去することができな
いし、また100℃を越えるとえられる粉末中に塩基性
塩やポリマーが含まれてくる。
If the dehydration and drying temperature is below 40°C, the water of crystallization contained in zinc (meth)acrylate cannot be sufficiently removed, and basic salts and polymers may be present in powders that are expected to exceed 100°C. It will be included.

実施例 1 酸化亜鉛407gをトルエン2.5lにけんだくし、か
きまぜながらアクリル酸756.6gを20分間で滴下
した後、50〜55℃で3.5時間反応させた。
Example 1 407 g of zinc oxide was suspended in 2.5 liters of toluene, 756.6 g of acrylic acid was added dropwise over 20 minutes while stirring, and the mixture was reacted at 50 to 55° C. for 3.5 hours.

えもれたスラリーをジャケット付きニーダーに入れ、1
20〜80mmHgの減圧下、50℃の温水をジャケッ
トに通じ2時間加熱し、生成水とトルエンとを留出させ
、さらに乾燥操作をつづけアクリル酸亜鉛の粉末100
4gをえた。
Put the leaked slurry into a jacketed kneader and
Under a reduced pressure of 20 to 80 mmHg, hot water at 50°C was passed through the jacket and heated for 2 hours to distill out the produced water and toluene, and the drying operation was continued to produce 100% zinc acrylate powder.
I gained 4g.

生成アクリル酸亜鉛はニーダーへまったく付着していな
かった。
The produced zinc acrylate did not adhere to the kneader at all.

このようにしてえられたアクリル酸亜鉛は塩基性塩およ
びポリマーをまったく含有しておらず、水分は0.1重
量%、純度は99.5重量%であった。
The zinc acrylate thus obtained contained no basic salts or polymers, had a water content of 0.1% by weight, and a purity of 99.5% by weight.

実施例 2 アクリル酸151gをベンゼン900ccに溶解し、か
きまぜながら粉末状酸化亜鉛81gを15分間で添加し
た後、60℃で3時間反応させた。
Example 2 151 g of acrylic acid was dissolved in 900 cc of benzene, 81 g of powdered zinc oxide was added over 15 minutes while stirring, and the mixture was reacted at 60° C. for 3 hours.

えられたスラリーをニーダーに入れ160〜100gH
g、50℃の温水で2時間加熱し、アクリル酸亜鉛の粉
末200gをえた。
Put the obtained slurry into a kneader and mix it with 160~100gH.
g, and heated in 50° C. hot water for 2 hours to obtain 200 g of zinc acrylate powder.

この製品の分析結果は実施例1と同様であった。The analysis results of this product were the same as in Example 1.

実施例 3 酸化亜鉛3.66kgをトルエン19.5lに懸濁させ
、かきまぜながらアクリル酸6.49kgを25分間で
滴下した後、65〜70℃で4時間反応を行なった。
Example 3 3.66 kg of zinc oxide was suspended in 19.5 liters of toluene, and 6.49 kg of acrylic acid was added dropwise over 25 minutes while stirring, followed by a reaction at 65 to 70°C for 4 hours.

反応終了後えられたスラリーをブレンダーで55℃、1
40〜30mmHgで7時間乾燥を行なった。
After the reaction was completed, the resulting slurry was heated in a blender at 55°C for 1
Drying was performed at 40-30 mmHg for 7 hours.

ブレンダーへの製品の付着はなかった。えられた製品の
水分は0.09%、純度98.5%、またポリマーおよ
び塩基性塩の混入は認められなかった。
There was no product adhesion to the blender. The resulting product had a moisture content of 0.09%, a purity of 98.5%, and no contamination of polymers or basic salts.

この場合収率は99.0%(対アクリル酸理論収率)に
達した。
In this case, the yield reached 99.0% (theoretical yield based on acrylic acid).

実施例 4 酸化亜鉛81gをトルエン400ccに懸濁し、75℃
でかきまぜながらメタクリル酸178.5gを15分間
で滴下した後、75〜80℃で4時間かきまぜ反応を完
結させた。
Example 4 81 g of zinc oxide was suspended in 400 cc of toluene and heated to 75°C.
While stirring at high speed, 178.5 g of methacrylic acid was added dropwise over 15 minutes, followed by stirring at 75 to 80° C. for 4 hours to complete the reaction.

えられたスラリーをニーダーに入れ、120〜70mm
Hg、50℃の温水で加熱しながら2時間乾燥を行ない
メタクリル酸亜鉛の粉末224gをえた。
Put the obtained slurry into a kneader and kneader to a thickness of 120 to 70 mm.
Drying was carried out for 2 hours while heating with Hg and hot water at 50° C. to obtain 224 g of zinc methacrylate powder.

水分0.05%、純度99.5%であった。The water content was 0.05% and the purity was 99.5%.

粉末のニーダーへの付着はなかった。There was no powder adhesion to the kneader.

実施例 5 水酸化亜鉛99gをトルエン600cc、アクリル酸1
51gを用いて実施例1と同様にして反応、乾燥を行な
い水分0.2%、純度98%のアクリル酸亜鉛乾燥粉末
197gをえた。
Example 5 99 g of zinc hydroxide, 600 cc of toluene, 1 acrylic acid
Using 51 g, reaction and drying were carried out in the same manner as in Example 1 to obtain 197 g of zinc acrylate dry powder having a moisture content of 0.2% and a purity of 98%.

Claims (1)

【特許請求の範囲】[Claims] 1 アクリル酸またはメタクリル酸と亜鉛の酸化物、水
酸化物、炭酸塩、重炭酸塩またはこれらの混合物とを反
応させて、アクリル酸またはメタクリル酸の亜鉛塩を製
造するに際し、実質的に水の不存在下において溶媒とし
て水と相互不溶解性でかつ水と共沸混合物を形成しうる
炭化水素化合物を使用し、温度40〜100℃の範囲内
で反応を行なわせ、溶媒と共に生成した水を共沸除去し
、さらに乾燥せしめてなることを特徴とするアクリル酸
またはメタクリル酸の亜鉛塩の製法。
1. When producing a zinc salt of acrylic acid or methacrylic acid by reacting acrylic acid or methacrylic acid with a zinc oxide, hydroxide, carbonate, bicarbonate, or a mixture thereof, substantially no water is added. Using a hydrocarbon compound that is mutually insoluble with water and capable of forming an azeotrope with water in the absence of water as a solvent, the reaction is carried out within a temperature range of 40 to 100°C, and the water produced together with the solvent is A method for producing a zinc salt of acrylic acid or methacrylic acid, which comprises azeotropic removal and further drying.
JP6189075A 1975-05-26 1975-05-26 Process for producing zinc salt of acrylic acid or methacrylic acid Expired JPS5814416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6189075A JPS5814416B2 (en) 1975-05-26 1975-05-26 Process for producing zinc salt of acrylic acid or methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6189075A JPS5814416B2 (en) 1975-05-26 1975-05-26 Process for producing zinc salt of acrylic acid or methacrylic acid

Publications (2)

Publication Number Publication Date
JPS51138616A JPS51138616A (en) 1976-11-30
JPS5814416B2 true JPS5814416B2 (en) 1983-03-18

Family

ID=13184182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6189075A Expired JPS5814416B2 (en) 1975-05-26 1975-05-26 Process for producing zinc salt of acrylic acid or methacrylic acid

Country Status (1)

Country Link
JP (1) JPS5814416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12018205B2 (en) 2020-06-24 2024-06-25 Sunko Ink Co., Ltd. Highly dispersible metallic acrylate composition, preparation method thereof and resin composition containing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500466A (en) * 1982-09-21 1985-02-19 The Firestone Tire & Rubber Company Method for preparing a zinc dimethacrylate powder having a specific surface area range
CA1210542A (en) * 1983-10-20 1986-08-26 Robert A. Hayes Vulcanizable polymeric compositions containing zinc dimethacrylate and fillers
JP4847648B2 (en) * 2001-06-29 2011-12-28 ブリヂストンスポーツ株式会社 Zinc acrylate composition, method for producing the same, and golf ball using the composition
JP4204792B2 (en) * 2002-02-19 2009-01-07 東レ・ダウコーニング株式会社 Method for producing metal salt of radically polymerizable compound
CN102351683B (en) * 2011-10-26 2014-04-23 山东阳谷华泰化工股份有限公司 Production process of zinc acrylate
JPWO2021140869A1 (en) * 2020-01-08 2021-07-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12018205B2 (en) 2020-06-24 2024-06-25 Sunko Ink Co., Ltd. Highly dispersible metallic acrylate composition, preparation method thereof and resin composition containing the same

Also Published As

Publication number Publication date
JPS51138616A (en) 1976-11-30

Similar Documents

Publication Publication Date Title
JPS5814416B2 (en) Process for producing zinc salt of acrylic acid or methacrylic acid
JPS63156753A (en) Production of alkyltrifuloroacetoacetate
JPS5837291B2 (en) Acrylic San Mataha Methacrylic Sun Calcium Enno Seihou
JP2873484B2 (en) Method for producing 1,3-bis (2-hydroxyethoxy) benzene
KR20010051894A (en) Process for the preparation of anhydrous, highly pure sodium sulfide
JPH0366300B2 (en)
JPH03169845A (en) 2, 4-pentanedionmonosulfonic acid and its preparation
JP3963607B2 (en) Process for producing trifluoromethanesulfonyl chloride
JPS5941998B2 (en) Method for producing tri-substituted halogenosilane
JP2552319B2 (en) 3-amino-2,4,5-trifluorobenzoic acid
JP2870151B2 (en) Process for producing 1,3-phenylenedioxydiacetic acid
JPS5998033A (en) Preparation of mandelic acid
RU2771839C2 (en) Method for producing a mixture of mono-, di-, tri-tert-butylferrocenes
US5756839A (en) Process for preparing D,L-aspartic acid from ammonium salts of the maleic acid
JPH0610159B2 (en) Process for producing 3-hydroxy-2,4,5-trifluorobenzoic acid
JPH05125017A (en) Production of chloromethyl pivalate
JP4030293B2 (en) Process for producing β-ketonitriles
RU396999C (en) Method of obtaining phenylhydrazone of phenylglyoxyl
JPS5839680A (en) Synthesizing method of ketal derivative from glycerol allyl ether
TW200413456A (en) Method for producing hydroxyphenylpropionic acid diester
JP2995969B2 (en) Method for producing 3,3,4-trimethyl-4-penten-2-one
JPH0315625B2 (en)
JPS6148818B2 (en)
SU859354A1 (en) Method of preparing nitroacetic acid
JPS6058216B2 (en) Method for producing diphenyl acetic acid