[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58137709A - Reading method of scale - Google Patents

Reading method of scale

Info

Publication number
JPS58137709A
JPS58137709A JP2029482A JP2029482A JPS58137709A JP S58137709 A JPS58137709 A JP S58137709A JP 2029482 A JP2029482 A JP 2029482A JP 2029482 A JP2029482 A JP 2029482A JP S58137709 A JPS58137709 A JP S58137709A
Authority
JP
Japan
Prior art keywords
signal
carry
scale
counter
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2029482A
Other languages
Japanese (ja)
Other versions
JPH0136565B2 (en
Inventor
Shozo Takai
高井 庄三
Hideo Ando
安藤 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2029482A priority Critical patent/JPS58137709A/en
Publication of JPS58137709A publication Critical patent/JPS58137709A/en
Publication of JPH0136565B2 publication Critical patent/JPH0136565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To increase reading speed while improving accuracy with respect to a high speed reading method of digital scales by dividing pitch to multiple parts. CONSTITUTION:Even if the same scale signal is used, the pulse signal outputted from a zero cross detection circuit and the timing when the output of the pulse signal of a phase modulating 100-division circuit changes over from 9.9mum to 0.0mum do not always coincide. Therefore, if the signals of said two systems are added, a large error is produced. In order to prevent such error, the latch output of the 2nd counter is conducted to a carry-up/carry-down pulse generating circuit, and when 9.9 changes to 0.0 in the case of an UP direction, a carry-up signal is generated and when 0.0 changes to 9.9 in the case of a DOWN direction, a carry-down signal is generated. Such carry-up and carry-down signals are fed to the 1st counter and are used as the digit signals of 10mum at the low speed when the phase modulating 100-division circuit is in normal operation.

Description

【発明の詳細な説明】 この発明はデジタルスケールの目盛を電気的に多分割し
て高速度にて読取り、これをデジタル表示する装置に係
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that electrically divides the graduations of a digital scale into multiple parts, reads them at high speed, and displays them digitally.

デジタルスケールを読取る公知の方法においては1ピツ
チCP)の分割数と読取速度とは互に相反する関係にあ
り、分割数を多くした場合には読取速度が制限を受ける
のは避けられなかった。本発明は多分割で移動速度が早
い場合でも読取ミスのないスケール読取方法を提供する
ものである。
In known methods for reading digital scales, the number of divisions of one pitch (CP) and the reading speed are in a contradictory relationship, and when the number of divisions is increased, the reading speed is inevitably limited. The present invention provides a scale reading method that does not cause reading errors even when the scale is divided into multiple parts and the moving speed is high.

分割方法としては従来一般的によく知られているいくつ
かの方法力5ある。
There are several well-known dividing methods5.

まず、その分割方法の1つであるゼロクロス方式(波数
測定分割方式)について11s1図により説明する。図
の(イ)および(R)で示す波形は相互に位相がP/4
ずれたスケール信号で、この信号のゼロクロス点でパル
ス信号を発生することにより、1P間を4分割した信号
(ハ)が得られる。この方式は高速読取りKは極めて有
効であるが通常4分割以上は不可能である。
First, the zero-cross method (wave number measurement division method), which is one of the division methods, will be explained with reference to Fig. 11s1. The waveforms shown in (A) and (R) in the figure have mutual phases of P/4.
By generating a pulse signal at the zero-crossing point of the shifted scale signal, a signal (c) obtained by dividing the 1P interval into four is obtained. Although this method is extremely effective for high-speed reading K, it is usually impossible to divide into four or more.

従来の他の分割方式として抵抗分割による方法がある。Another conventional division method is a method using resistance division.

これは抵抗器により電気的に位相のずれた信号を作り、
そのゼロクロス点で分割する方式であって、比較的速い
読取りに対応できるが、実用上は最大20分分割度であ
る。
This creates electrically out-of-phase signals through resistors,
This method divides the data at the zero-crossing point, and can handle relatively fast reading, but in practice, the maximum division rate is 20 minutes.

20分割以上の多分割方式としては通常位相変調分割方
式が用いられる。この方式では読取信号は次のようにし
て求められる。
As a multi-division method of 20 or more divisions, a phase modulation division method is usually used. In this method, the read signal is obtained as follows.

スケールから得られる2つの信号波を 2π に1−A1・s in p  ’ e  Hz −A:
z ・a o s ! t  としくtは変位量、Pは
スケールピッチ)、これをキャリア信号e1meo−o
 os aJt s@12−eo−sin atKよっ
て変調し加算すると、 E −IC、*  +E  −0−A−BiH(@t+
”# ) の01122        P 位相変調信号となる。これによって変位信号が時間の関
数となり、位相差の検出によって変位を知ることができ
る。
The two signal waves obtained from the scale are converted to 2π by 1-A1・s in p' e Hz -A:
z・aos! t (where t is the displacement amount and P is the scale pitch), and this is the carrier signal e1meo-o
When modulated and added by os aJt s@12-eo-sin atK, E -IC, * +E -0-A-BiH(@t+
01122 P phase modulation signal. This makes the displacement signal a function of time, and the displacement can be determined by detecting the phase difference.

第3図にこれらの関係を示す0図において(ニ)に示す
波形E は上記式により求められた位相変調信号波で(
ホ)に示すE はE の整彫波で、8     0 変位f wm Qのときの波形である。(へ)はクロッ
クパルス信号(CK)を示す。ここでXがΔを変位する
と(ホ)の波形は())ic示す波1gとなり、E と
Eとの間にΔ♂の位相差を生ずる。
In Figure 3, which shows these relationships, the waveform E shown in (d) is the phase modulated signal wave obtained by the above formula (
E shown in e) is a square wave of E, and is the waveform when the displacement f wm Q is 80. (f) indicates a clock pulse signal (CK). Here, when X displaces Δ, the waveform (e) becomes a wave 1g shown by ())ic, and a phase difference of Δ♂ is generated between E and E.

この間にCKを内挿することKよりP/N単位の読取(
カラン))信号が得られる。この6gはsinω七の周
期毎に現れ、そのま\ではΔ5の内挿パルスがくり返し
て計数されるので、通常の位相変調分割方式を用いたカ
ウンタではgin aJtの周期毎に位相差を合わせる
工夫がなされている。
Interpolating CK during this period, reading P/N units from K (
A signal is obtained. This 6g appears every period of sin ω7, and as it is, the interpolated pulse of Δ5 is counted repeatedly, so in a counter using the normal phase modulation division method, it is necessary to devise a way to adjust the phase difference every period of gin aJt. is being done.

この方式、によれば多分割が可能であるが既述のように
分割数が多くなる程読取速度に制限が加わり高速読取り
が出来ないのが実情であった。
According to this method, multiple divisions are possible, but as mentioned above, the reading speed is limited as the number of divisions increases, making high-speed reading impossible.

本発明はこれらの問題点を解決して、多分割でしかも高
速読取りを可能としたスケール読取方法を提供する。
The present invention solves these problems and provides a scale reading method that allows multi-division and high-speed reading.

以下スケールピッチ・1’−10μmx1ピッチ間の分
割数N−100、最小読取値P/N−α1μm として
本発明の詳細な説明するが、本発明あ方法はこれに量定
されるものではない。
The present invention will be described in detail below assuming that the number of divisions between the scale pitches is 1'-10 μm x 1 pitch, N-100, and the minimum reading value P/N-α1 μm, but the method of the present invention is not determined by these.

第3図は本発明の基本概念を示すものである。FIG. 3 shows the basic concept of the present invention.

長さXを測定すや場合測定の起点P1 はスケール上の
任意の位置にあり、図においては最後に通過したスケー
ル信号のゼロクロス点よりMl の所にある@このM、
の値は前記した位相変調分割方式により読み取ることが
できる。測定の開始時にこのM、を読取り記憶する・次
いでスケールに沿って変位する事によりsin 波形の
スクール信号が検出され、スケールのピッチによりゼロ
クロス点を通過する毎にパルスを発生させる。このパル
スII (S)を計数し記憶する。測定の終点(Pa)
においては起点時と同様に最後に通過したゼρり13点
からの値M2を位相変調分割方式により読み取り測定を
終了する。この測定で得られた2つの記憶値CM1.n
)  と最後の測定値M2とからX−n P + M 
2  M 1  を計算して変位量Xを知る事ができる
When measuring the length X, the measurement starting point P1 is at an arbitrary position on the scale.
The value of can be read using the phase modulation division method described above. At the start of measurement, this M is read and memorized.Then, by displacing along the scale, a sin waveform school signal is detected, and a pulse is generated every time a zero crossing point is passed depending on the pitch of the scale. This pulse II (S) is counted and stored. End point of measurement (Pa)
Then, as at the starting point, the value M2 from the last 13 zero points passed through is read using the phase modulation division method and the measurement is completed. Two memorized values CM1. n
) and the last measured value M2, then X-n P + M
2 M 1 can be calculated to know the amount of displacement X.

ただし位相変調分割回路の動作速度および上記計算処理
速度が充分応答できるような低速度で変位している場合
には測定の終了時にのみ上記の計算を行なうのでなく、
時々刻々の変位に追従した計数値ルおよびM2を用いて
計算し表示することも可能である。
However, if the operating speed of the phase modulation dividing circuit and the above calculation processing speed are low enough to respond, the above calculation is not performed only at the end of the measurement.
It is also possible to calculate and display using the count value and M2 that follow the momentary displacement.

この方法を実現するための回路を第4図に示す。A circuit for realizing this method is shown in FIG.

27r     27r 2つのスケール信号B 1np t e OO11p 
’は位相変調100分割回路に加えられるOここでは前
記した位相変調分割方式によりスケール信号の1ピツチ
内での変位量に比例したパルス信号がsinのtの周期
毎に出力される。このパルス信号は次の第2カウンタに
てsin alt の周期毎にリフレッシュ、カウント
され、本実施例においては1μmおよび01μmの桁の
表示信号となる。測定の開始時においては測定起点設定
信号を外部より加え、この第2カウンタの内容なM1記
憶回路の中に記憶する◎さらにスケール信号81n2f
f、はゼ戸りロス検出回路にも加えられスケール信号電
圧が1ピツチ(本実施例においては10μm)毎に1:
Iのパルス信号を発生せしめる。変位速度が定めた限界
より速い場合AB信号切換回路はB信号、すなわちゼロ
クロス検出回路からの10μm毎のパルス信号を通過さ
せるように設定されており、10μ−毎のパルス信号は
次の第1カウンタにて計数される・測定開始時に記憶さ
れたM、記憶回路の内容と現時点における第1カウンタ
、第2カウンタの内容を計算部に導き、簡単な加減算計
算を行って結果を表示部にて表示させると現時点の変位
量を知る事ができる@ しかし、高速移動時には前述したように位相室1□1 調分割方式は正しい値を示さないため第2カウンタの内
容は信頼できず、この結果高速時における読取り精度は
、この実施例において10μmしか得られないが、高速
移動時には1μmおよび01μm表示は常に変動し目視
による読み取りは不可能で・あり実用上問題にならない
27r 27r Two scale signals B 1np t e OO11p
' is applied to the phase modulation 100 division circuit.Here, by the phase modulation division method described above, a pulse signal proportional to the amount of displacement within one pitch of the scale signal is outputted every period of sin t. This pulse signal is refreshed and counted every sin alt period by the next second counter, and in this embodiment becomes a display signal of 1 μm and 01 μm digits. At the start of measurement, a measurement starting point setting signal is applied externally, and the contents of this second counter are stored in the M1 memory circuit ◎In addition, a scale signal 81n2f
f is also applied to the zero loss detection circuit, and is applied to the scale signal voltage by 1 every pitch (10 μm in this example):
A pulse signal of I is generated. When the displacement speed is faster than the predetermined limit, the AB signal switching circuit is set to pass the B signal, that is, the pulse signal every 10 μm from the zero cross detection circuit, and the pulse signal every 10 μ- is sent to the next first counter.・The M stored at the start of measurement, the contents of the memory circuit, and the contents of the first and second counters at the present time are led to the calculation section, simple addition and subtraction calculations are performed, and the results are displayed on the display section. By doing so, you can know the current amount of displacement @ However, as mentioned above, when moving at high speed, the phase chamber 1□1 key division system does not indicate the correct value, so the contents of the second counter are unreliable, and as a result, when moving at high speed, The reading accuracy in this example is only 10 μm, but during high-speed movement, the 1 μm and 01 μm display constantly fluctuates, making it impossible to read visually, so this poses no problem in practice.

0.1μm精度での測定を必要とする場合、通常は測定
の起点および終点部では停止または微速状態である。中
間の移動時において速度が増大し第2カウンタの内容に
誤りを生じても第2カウンタはリフレッシュカウンタで
あるため終点部において低速になった時再び正しい値を
示す事ができるのが本発明の大きな特長である。
When measurement with an accuracy of 0.1 μm is required, the measuring device is usually at a standstill or in a slow state at the starting and ending points of the measurement. The advantage of the present invention is that even if the speed increases during intermediate movement and an error occurs in the contents of the second counter, the second counter is a refresh counter, so it can show the correct value again when the speed becomes low at the end point. This is a major feature.

従ってこの方式にて重要な役目をする高低速切替の方法
について次に述べる。
Therefore, the method of high/low speed switching, which plays an important role in this system, will be described next.

同一スケール信号を用いてもゼロクロス検出回路より出
力される10μm毎のパルス信号と位相変調100分割
回路のパルス信号出力が99μmから0.0μmに切替
る時期とは必ず一致するとは限らない。このため単純に
この二系列の信号を加算すると大きな誤差を生じる。例
えばゼロクロス検出回路からのパルスが0.1μm早く
出力されると表示は0.0,0.1,0.2− − −
 − − 9.8,19.9,10.0,10.1 −
・・・・となり、また逆に11μm遅れて出力されると
表示はα0.0.1.α2・・・・9.8.9.9,0
.0 。
Even if the same scale signal is used, the timing at which the pulse signal every 10 μm output from the zero cross detection circuit and the pulse signal output from the phase modulation 100 division circuit changes from 99 μm to 0.0 μm does not always coincide. Therefore, if the two series of signals are simply added together, a large error will occur. For example, if the pulse from the zero cross detection circuit is output 0.1 μm earlier, the display will be 0.0, 0.1, 0.2 - - -
- - 9.8, 19.9, 10.0, 10.1 -
..., and conversely, if the output is delayed by 11 μm, the display will be α0.0.1. α2...9.8.9.9,0
.. 0.

10.1 となり非常に大きな誤差を生じる事になる。10.1, resulting in a very large error.

これを防ぐため第2カウンタのラッチ出力を桁上げ桁下
げパルス発生回路に導きUP方向の場合99が0.0に
変化したとき帆桁上信号を、DOWN方向の場合0.0
が9.9  に変化した時に桁下信号を発生させ位相変
調100分割回路が正常に動作をしている低速時にはこ
の桁上げ桁下げ信号を第1カウンタに送り10μmの桁
信号として用いる。
To prevent this, the latch output of the second counter is sent to the carry/carry down pulse generation circuit, and when 99 changes to 0.0 in the UP direction, a sail up signal is generated, and in the DOWN direction, a 0.0 signal is generated.
When the phase modulation circuit changes to 9.9, a digit signal is generated, and at low speeds when the phase modulation 100 division circuit is operating normally, this carry/carry/decrease signal is sent to the first counter and used as a 10 μm digit signal.

また、高速時には位相変調100分割回路の信号は正し
い値を示さないのでゼロクロス検出回路からの10μm
毎の信号を用いる。このための回路がAB信号切替回路
である。これにより例で示したような大きな誤りを生じ
る事な(0,0,Q、1.α2・・・・・9.8.9.
9. I Q、、0.1α1・・・・の如く正しい表示
が得られる・ 次に問題となるのがこの切替のタイミングである0例え
ば高速から低速に切替った場合すなわちゼロクロス検出
信号から桁上げ桁下げ信号に切替る場合、ゼロクロス検
出信号が微かに早く出力し第1カウンタに計数した後切
替り、遅れて桁上げ信号が出力されると同一スケール点
が二重に計数されたことになる。
In addition, at high speeds, the signal of the phase modulation 100 division circuit does not show the correct value, so the signal of 10 μm from the zero cross detection circuit
Each signal is used. The circuit for this purpose is an AB signal switching circuit. This will prevent large errors as shown in the example (0, 0, Q, 1.α2...9.8.9.
9. A correct display can be obtained such as I Q,, 0.1α1... The next problem is the timing of this switching. In the case of switching to a down signal, the zero cross detection signal is output slightly earlier and the first counter is counted, and then the switch is made, and if the carry signal is output later, the same scale point will be counted twice.

第5図にこの関係を示す。図において(リンはスケール
信号、(ヌ)はゼロクロス検出信号、(ル)はクロック
パルス信号、(オ)は桁上げ桁下げ信号である。このゼ
ロクロス検出信号(ヌ)と桁上げ桁下げ信号(オ)とは
必ずしも一致していないのが普通である。そこでこの2
つのパルス信号の間で(ワ)に示す切替え信号によって
切替えが行なわれると(力)で示すように両方のパルス
を計数することになりミスカウントとなる。そこで(力
)の信号の初めのパルスの立上りと後のパルスの立下り
の間を切替禁止の区間(ヨ)とし、従来計数していた方
のパルス(例えば高速から低速への切替信号の場合はゼ
ロクロス検出信号(ヌ))を計数し、実際の切替えは切
替禁止区間終了後に(り)の信号で示す位置にて行うた
め(オ)のパルスは計数しないことになる。
FIG. 5 shows this relationship. In the figure, (phosphorus is a scale signal, (nu) is a zero cross detection signal, (ru) is a clock pulse signal, and (o) is a carry carry down signal. This zero cross detection signal (nu) and carry carry down signal ( (e) is not necessarily the same.Therefore, these two
If switching is performed between two pulse signals by the switching signal shown in (wa), both pulses will be counted as shown in (force), resulting in a miscount. Therefore, the period between the rising edge of the first pulse of the (force) signal and the falling edge of the subsequent pulse is set as an area (y) where switching is prohibited, and the pulse that was conventionally counted (for example, in the case of a switching signal from high speed to low speed) counts the zero-crossing detection signal (nu)), and the actual switching is performed at the position indicated by the signal (ri) after the end of the switching prohibition period, so the pulse (o) is not counted.

このように切替禁止区間を設けることによって高速・低
速の切替えに際してミスカウントのない切替えが可能と
なる。
By providing the switching prohibited section in this manner, switching between high speed and low speed can be performed without miscounting.

以上詳述したように本願発明によれば従来不可能視され
ていた多分割でしかも高速の読取りができるという成果
をもたらし、高速度・高精度で実用的なデジタル測定#
 ’) ll供が可能となった。
As described in detail above, the present invention has achieved the result of being able to perform multi-division and high-speed reading, which was considered impossible in the past, and is capable of practical digital measurement with high speed and high precision.
') It became possible to donate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のゼロクロス分割方式の説明図、第2図は
従来の位相変調分割方式の説明図、第3WJは本願発明
の詳細な説明図、第4図は本願発明のブロック図、第5
図は切替禁止区間の説明図。 特畦出願人 株式会社 東京精密 手続補正書(方式) 2 発明の名称 スケール読取方法 3、 1正をする者 事件との関係   特許出願人 住所   東京都三鷹市下達雀九丁目7番1号4、 4
正命令の日付 昭和57年5月25日(発送日コ 5、補正の対象 願書および明細書 6 補正の内容
FIG. 1 is an explanatory diagram of the conventional zero-cross division method, FIG. 2 is an explanatory diagram of the conventional phase modulation division method, 3rd WJ is a detailed explanatory diagram of the present invention, FIG. 4 is a block diagram of the present invention, and 5th
The figure is an explanatory diagram of a switching prohibited section. Tokusaku Applicant Co., Ltd. Tokyo Precision Procedure Amendment (Method) 2 Method of reading the name scale of the invention 3, 1 Relationship with the case of the person making the correction Patent Applicant Address 4, 9-7-1, Shitatsujaku, Mitaka City, Tokyo; 4
Date of official order: May 25, 1982 (Shipping date: 5, application subject to amendment and specification 6: Contents of amendment)

Claims (1)

【特許請求の範囲】 (1)  変位に対して周期的信号を出力するデジタル
スケールの読取方法において、スケールの周期ピッチC
P)をゼロクロス点で計数する第1カウンタと、1周期
内の端数位置を位相変調分割方式で内挿して計数する第
2カウンタとを有し、計測の起点において第2カウンタ
の数値(M、)を記憶し、変位によって得られる第1カ
ウンタの計数値(ル) と終点において第2カウンタに
示されている数値CM2)とから変位量X−5P十M2
−M、を計算して表示する高速・多分割のスケール読取
方法〇(2、特許請求の範8第1項の記載において速度
検出を行って速度区分し、低速時においては第2カウン
タのオーバ7T:I−パルスをもって第1カウンタの計
数信号とし、高速時におし・てはスケールピッチのゼロ
クロス点を計数信号としたスケール読取方法。 (8)  特許請求の範囲第1項、第2項の記載におい
て、スケール信号sin   t、oo@−2X−t(
zは変位量)および基準波形8111ωtより移動波形
5in(a+t+”τX)を作り、基準波形と移動波形
との位相差にN分割するためのパルス信号OKを内挿し
、これを基準波形周期毎にリフレッシュする第2カウン
タによりリフレッシュカウントして1ピツチ以下の計数
値とし、移動速度の高速・低速の区分による切換えを行
い、゛高速においてはスケールピッチ毎のゼyりpス信
号を第1カウンタの計数値とし、低速においては第2カ
クンタのオーパフp−パルスによる桁上げ桁下げ信号を
@1カランタの計数値とするスケール読取方法。 (41#許請求の範囲[2項・第3項の記載において、
高速・低速における入力信号の切換えKllしてゼロク
ロス信号と桁上げ桁下げパルスの間を切換中止区域とし
て設定したスケール読取方法。
[Claims] (1) In a method for reading a digital scale that outputs a periodic signal in response to displacement, a periodic pitch C of the scale is provided.
It has a first counter that counts the value (M, ) is stored, and the displacement amount X-5P+M2 is calculated from the count value (ru) of the first counter obtained by the displacement and the value CM2) shown on the second counter at the end point.
A high-speed, multi-division scale reading method that calculates and displays M. 7T: A scale reading method in which the I-pulse is used as the counting signal of the first counter, and the zero-crossing point of the scale pitch is used as the counting signal at high speed. (8) Claims 1 and 2. In the description, scale signals sin t, oo@-2X-t(
z is the amount of displacement) and the reference waveform 8111ωt to create a moving waveform 5 inches (a + t + "τ The refresh count is performed by the second refresh counter to a count value of 1 pitch or less, and switching is performed according to the classification of high speed and low speed. A scale reading method in which the count value is the count value, and at low speed, the carry-down signal by the opuff p-pulse of the second kakunta is used as the count value of @1 carant. In,
A scale reading method that switches the input signal between high and low speeds and sets the area between the zero cross signal and the carry/carry/down pulse as the switching stop area.
JP2029482A 1982-02-10 1982-02-10 Reading method of scale Granted JPS58137709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029482A JPS58137709A (en) 1982-02-10 1982-02-10 Reading method of scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029482A JPS58137709A (en) 1982-02-10 1982-02-10 Reading method of scale

Publications (2)

Publication Number Publication Date
JPS58137709A true JPS58137709A (en) 1983-08-16
JPH0136565B2 JPH0136565B2 (en) 1989-08-01

Family

ID=12023138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029482A Granted JPS58137709A (en) 1982-02-10 1982-02-10 Reading method of scale

Country Status (1)

Country Link
JP (1) JPS58137709A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169709A (en) * 1984-02-13 1985-09-03 Tokyo Seimitsu Co Ltd Scale reading and counting device
JPS60188853A (en) * 1984-03-09 1985-09-26 Sony Corp Rotation detecting device
WO1986000401A1 (en) * 1984-06-26 1986-01-16 Fanuc Ltd Device for detecting absolute position
JPS62102105A (en) * 1985-10-30 1987-05-12 Yaskawa Electric Mfg Co Ltd Position detector
JPS6358209A (en) * 1986-08-29 1988-03-14 Sony Magnescale Inc Interpolating circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837105A (en) * 1971-09-10 1973-06-01
JPS498917A (en) * 1972-05-27 1974-01-26
JPS5576905A (en) * 1978-12-06 1980-06-10 Fujitsu Ltd Position and speed detecting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837105A (en) * 1971-09-10 1973-06-01
JPS498917A (en) * 1972-05-27 1974-01-26
JPS5576905A (en) * 1978-12-06 1980-06-10 Fujitsu Ltd Position and speed detecting system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169709A (en) * 1984-02-13 1985-09-03 Tokyo Seimitsu Co Ltd Scale reading and counting device
JPH0477842B2 (en) * 1984-02-13 1992-12-09 Tokyo Seimitsu Co Ltd
JPS60188853A (en) * 1984-03-09 1985-09-26 Sony Corp Rotation detecting device
WO1986000401A1 (en) * 1984-06-26 1986-01-16 Fanuc Ltd Device for detecting absolute position
JPS62102105A (en) * 1985-10-30 1987-05-12 Yaskawa Electric Mfg Co Ltd Position detector
JPS6358209A (en) * 1986-08-29 1988-03-14 Sony Magnescale Inc Interpolating circuit

Also Published As

Publication number Publication date
JPH0136565B2 (en) 1989-08-01

Similar Documents

Publication Publication Date Title
US4050747A (en) Digital wheel speed circuit arranged to compensate for dimensional irregularities of sensor rotor member
US4433919A (en) Differential time interpolator
US4070618A (en) Digital phase and frequency meter
JPS58137709A (en) Reading method of scale
GB1569888A (en) Electronic counting apparatus
US3521270A (en) Method and apparatus for the interpolation of a periodic sequence of information
JPS5927221A (en) Digital counting device
JPH0477842B2 (en)
US3543150A (en) Arrangement for determining and digitally indicating the displacement of moving bodies
SU918879A1 (en) Wide-limit phase meter
SU1709234A1 (en) Digital phasemeter
JPS6127226Y2 (en)
SU966711A1 (en) Device for reading-out graphic information
SU894664A2 (en) Voltage comparing device
SU1599795A1 (en) Digital phase meter
SU415607A1 (en)
SU1013913A2 (en) Interpolator checking device
SU920802A1 (en) Shaft angular position-to-code converter
SU443330A1 (en) Phase Shift Meter for Phase Automatic Control Systems
KR100186315B1 (en) Programmable counter
SU661399A1 (en) Digital follow-up phase meter
SU430418A1 (en) METHOD OF MEASURING CORRECTNESS OF ANGLE CONVERTER - CODE
SU457936A1 (en) Device for determining the orthogonality of two vectors
SU951174A1 (en) Phase coincidence indicator
SU443334A1 (en) Method for digital measurement of phase angles between two electrical signals