JPS58123862A - Method for manufacturing copper alloy for lead material of semiconductor equipment - Google Patents
Method for manufacturing copper alloy for lead material of semiconductor equipmentInfo
- Publication number
- JPS58123862A JPS58123862A JP606282A JP606282A JPS58123862A JP S58123862 A JPS58123862 A JP S58123862A JP 606282 A JP606282 A JP 606282A JP 606282 A JP606282 A JP 606282A JP S58123862 A JPS58123862 A JP S58123862A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- copper
- elongation
- tensile strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Conductive Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、後記する鋼合金を500〜600℃で1〜2
0時間熱処理し1強度特に引張強さ。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a steel alloy to be heated at 500 to 600°C for 1 to 2
0 hour heat treatment and 1 strength, especially tensile strength.
伸びを同時に向上させる製造方法に関するものである。The present invention relates to a manufacturing method that simultaneously improves elongation.
従来、半導体機器のリード材としては、熱膨張係数が低
く素子および七2ζツクスとの接着および封着性O良好
なコパール合金、42合金などの高ニッケル合金が好ん
で使われてきた。Hitherto, high nickel alloys such as copper alloy and 42 alloy have been favorably used as lead materials for semiconductor devices because of their low coefficient of thermal expansion and good adhesion and sealing properties with elements and 72ζ.
しかし、近年半導体回路の集積度の向上に伴ない、消費
電力の高\いxOが多くなってきた丸め、使用されるリ
ード材も放熱性のよい熱伝導性の良好な銅基合金が使わ
れるようになってきえ、そこで本出願人は先に安価で緒
特性が優れ九合金を開発した。(4I願昭55−185
967゜56−1630)
本発明は、該合金の優れた性質を最大限に発揮させるた
めの製造方法に関するもOであシ。However, as the degree of integration of semiconductor circuits has improved in recent years, the number of high-power consumption xOs has increased, and the lead material used is now copper-based alloy, which has good heat dissipation and thermal conductivity. Therefore, the present applicant first developed nine alloys that were inexpensive and had excellent mechanical properties. (4I Gansho 55-185
967°56-1630) The present invention also relates to a manufacturing method for maximizing the excellent properties of the alloy.
本発明で定めた熱処理条件KsPいてのみ最4優れた性
質の発現が可能になることを見出した。It has been found that only the heat treatment conditions KsP defined in the present invention make it possible to exhibit the four most excellent properties.
そして本発明は、ニッケル14〜40重量−1けい素α
1〜to重量−1!!1部が鋼及び不可避不純物からな
る合金を、S00〜600℃で1〜20時間熱処理し2
強度特に引張強さ、伸びを同時に向上させる半導体機器
のリード材用鋼合金の製造方法及び前記合金の酸素含有
量を10ppm以下にし九合金を、!Son〜600℃
で1〜20時間熱lI&現し1強度41に引張強さ、伸
びを向上させる半導体機器のリード材用鋼合金の製造方
法ならびに前記合金Km成分としてシ ん ; α0
01〜(11重量−2ひ 素 ; α001〜21重
量嘔。And the present invention provides nickel 14 to 40 weight - 1 silicon α
1~to weight-1! ! An alloy consisting of one part of steel and unavoidable impurities is heat treated at SO0 to 600°C for 1 to 20 hours.
A method for producing a steel alloy for lead material of semiconductor devices that simultaneously improves strength, especially tensile strength and elongation, and an alloy in which the oxygen content of the alloy is 10 ppm or less! Son~600℃
A method for manufacturing a steel alloy for lead material of semiconductor devices that improves tensile strength and elongation by heating for 1 to 20 hours and developing the tensile strength and elongation to 41 and the Km component of the alloy; α0
01~(11wt-2 arsenic; α001~21wt.
アンチモン ; α001〜(11重量−2鉄 :
cLol 〜1.0重量−。Antimony; α001~(11wt-2iron:
cLol ~1.0 wt.
コバルト : α01〜1.0重量S。Cobalt: α01~1.0 weight S.
ク ロ ム ; α01〜1.0 重量暢。Chrome; α01~1.0 Weight smooth.
錫 :101〜to重量−。Tin: 101 to weight.
アルミニウム ; α01〜1.0重量−。Aluminum; α01~1.0 weight-.
チタニウム ; α01〜1.0重量饅。Titanium; α01~1.0 weight cake.
ジルコニウム ; α01〜 to型重量。Zirconium; α01~ to type weight.
マグネシウム ; α01〜10重量−。Magnesium; α01-10 weight-.
ベリリウム ; α01〜to重量饅。Beryllium; α01~to weight bun.
亜 鉛 ; α01〜to重量−9
iンガン : 101〜to重量−2
からなる群よ)選択され良1種以上を総量でα001〜
2.0重量−添加し九合金を、 300〜400℃で1
〜20時間熱処理し1強度特に引張強さ、伸びを同時に
向上させる半導体機器のリード材用鋼合金の製造方法な
らびに前記合金に前記副成分を添加し、酸素含有量を1
0 ppm以下にし九合金を、300〜6oat:で1
〜20時間熱処理し1強度41に引張強さ。Zinc; α01~to weight-9 In-gun: 101~to weight-2) One or more selected species in total amount α001~
2.0 wt-added nine alloys, 1 at 300-400℃
A method for producing a steel alloy for lead material of semiconductor devices which simultaneously improves strength, particularly tensile strength and elongation by heat treatment for ~20 hours, and adding the above-mentioned subcomponents to the alloy to reduce the oxygen content to 1.
9 alloys to 0 ppm or less, 300 to 6 oat: 1
- Tensile strength to 1 strength 41 after heat treatment for 20 hours.
伸びを同時に向上させる半導体機器のリード材用鋼合金
の製造方法に関するものである。The present invention relates to a method for manufacturing a steel alloy for lead material of semiconductor devices that simultaneously improves elongation.
これにより9本発明の方法で製造すると第1図に示すよ
うに、引張強さと伸びを同時に著しく向上させることが
できた。As a result, when 9 was manufactured using the method of the present invention, as shown in FIG. 1, it was possible to significantly improve tensile strength and elongation at the same time.
次に合金成分の限定理由を説明する。ニッケルの含有量
を0.4〜LO重量嗟とする理由は。Next, the reason for limiting the alloy components will be explained. The reason why the nickel content is set to 0.4 to LO weight is.
ニッケル含有量がα4重量−未満ではけい素をα1重量
−以上添加しても高強度でかつ高導電性を示す合金が得
られず、逆にニッケル含有量が4.0重量%を超えると
加工性が低下し、半田付は性も低下する為である。If the nickel content is less than α4% by weight, an alloy with high strength and high conductivity cannot be obtained even if silicon is added by more than α1% by weight.On the other hand, if the nickel content exceeds 4.0% by weight, processing will be difficult. This is because the soldering properties also decrease.
けい素の含有量をα1〜to重量−とした理由は、けい
素置有量がα1重量−未満ではニッケルをa4重量%以
上添加しても高強度でかつ高導電性を示す合金が得られ
ず、けい素置有量が10重量%を超えると加工性、導電
性の低下が著しくなり、また半田付は性も低下する為で
ある。The reason for setting the silicon content to α1 to weight is that if the silicon content is less than α1 weight, even if nickel is added in an amount of A4% or more by weight, an alloy exhibiting high strength and high conductivity cannot be obtained. First, if the silicon content exceeds 10% by weight, the workability and conductivity will be significantly reduced, and the soldering properties will also be reduced.
副成分として、抄ん、ひ素、アンチモン、鉄。Sub-components include shochu, arsenic, antimony, and iron.
コバルト、クロム、錫、アルミニウム、チタニウム、ジ
ルコニウム、マグネシウム、ベリリウム、亜鉛、マンガ
ンからなる群より選択された1種以上の総量がlllL
ool重量−未満では高強度でかつ耐食性のある合金が
得られず、また2、0重量%を超えると導電性の低下及
び半田付は性の低下が著しくなる為である。The total amount of one or more selected from the group consisting of cobalt, chromium, tin, aluminum, titanium, zirconium, magnesium, beryllium, zinc, and manganese is lllL
If the weight is less than ool, a high-strength and corrosion-resistant alloy cannot be obtained, and if it exceeds 2.0 weight%, the conductivity and soldering properties will be significantly reduced.
また酸素含有量をf Oppm以下とした理由は。Also, the reason why the oxygen content was set to be less than fOppm is as follows.
10 ppmを超えるとめつき密着性が低下するためで
ある。なお、前記の副成分の添加および酸素含有量10
ppm以下の限定は、これKよる性質の向上が特に要
求されるときに用いられる。This is because if it exceeds 10 ppm, the plating adhesion will decrease. In addition, the addition of the above-mentioned subcomponents and the oxygen content of 10
The limit of ppm or less is used when improvement in properties by K is particularly required.
熱処理温度を300〜600℃に限定したのは300℃
未満では熱処理効果が現われず、tた600℃を超える
温度では短時間で軟化してしまうためである。そして最
も好ましい熱処理温度は400〜550℃である。The heat treatment temperature was limited to 300 to 600 degrees Celsius, which is 300 degrees Celsius.
This is because if the temperature is lower than 600° C., the heat treatment effect will not be obtained, and if the temperature exceeds 600° C., it will soften in a short time. The most preferable heat treatment temperature is 400 to 550°C.
熱処理時間を1〜20時間に限定したのは1時間未満で
は材料時iが安定せず、20時間を超えると経済的価値
がなくなるからである。The reason why the heat treatment time is limited to 1 to 20 hours is because if it is less than 1 hour, the material time i will not be stable, and if it exceeds 20 hours, it will lose its economic value.
なお、熱処理効果を最大限発揮させる丸めには、熱処理
前の結晶粒度を10μ餌以下にすることが好ましい。In addition, for rounding to maximize the effect of heat treatment, it is preferable that the crystal grain size before heat treatment is 10 μm or less.
wE1図は熱処理前後の引張り強さと伸びの関係を表わ
すグyyであるが0本発明の熱処理後では引張り強さと
伸びがいずれも著しく向上している。The wE1 diagram shows the relationship between tensile strength and elongation before and after heat treatment, and both tensile strength and elongation are significantly improved after the heat treatment of the present invention.
次に本発明の詳細な説明する。Next, the present invention will be explained in detail.
実施例
第1表に示した組成の合金を溶鱗し、厚さ100■の鋳
塊を得た。次に鋳塊を約soo℃で熱間圧延し厚さ25
mKした後9表面を面削する。そして冷間圧延で厚さ2
.5〜t5mKした後、結晶粒度10μ愼以下になるよ
う焼鈍し。EXAMPLE An alloy having the composition shown in Table 1 was melted to obtain an ingot with a thickness of 100 cm. Next, the ingot was hot rolled at about soo℃ to a thickness of 25
After mK, 9 surfaces are face-milled. and cold rolled to a thickness of 2
.. After 5 to 5 mK, annealing is performed to reduce the grain size to 10 μm or less.
最終圧延で厚さα8■4CL420 Cで6時間熱処理
する。この試料を5重量−の硫酸で約10秒間酸洗し、
引張強さ、伸び、硬さを測定した。In the final rolling, heat treatment is performed for 6 hours to a thickness of α8×4CL420C. This sample was pickled with 5 weight of sulfuric acid for about 10 seconds,
Tensile strength, elongation, and hardness were measured.
第1表よ抄熱処理後、引張強さ、伸びが同時に向上して
いる。Table 1 shows that after papermaking heat treatment, tensile strength and elongation simultaneously improved.
以上の1!施例および第1図より1本発明の製造方法で
強度が向上し、電子部品材料と〈K半導体機器リード材
として優れた合金となる。Above 1! From the examples and FIG. 1, the strength is improved by the manufacturing method of the present invention, and the alloy becomes excellent as an electronic component material and a semiconductor device lead material.
第1図は合金10熱処理前後の引張強さと伸びの関係を
表わすグラフを示している。
特許出願人 日本鉱業株式会社
代理人 弁理±0569)並川啓志FIG. 1 shows a graph showing the relationship between tensile strength and elongation of Alloy 10 before and after heat treatment. Patent applicant: Japan Mining Co., Ltd. Attorney ±0569) Keiji Namikawa
Claims (1)
理し2強度骨に引張強さ、伸びを同時に向上させる半導
体機器のリード材用鋼合金の製造方法。 (2)ニッケル;α4〜4.0重量−1けい素;α1〜
1.0重量−9 銅及び不可避不純物;残 で酸素含有量が10 ppm1以下の合金を、300〜
600℃で1〜20時間熱旭理し1強度骨に引張強さ、
伸びを同時に向上させる半導体機器のリード材用鋼合金
の展進方法。 (2) ニッケル:[L4〜10重量−1妙い素: [
11〜1.0重量饅。 銅及び不可避不純物;残 からなる合金に副成分として シ ん ; α001〜11重量−1−ひ 素 ;
α101・〜α1重量−。 アンチ毫ン ; α001〜(11重量−1鉄 :
αo1〜to重量饅。 コバルト :(LOl 〜to重量−。 ク ロ ム : CLol 〜to重量−1錫
: CLol −to型重量。 アルミニウム :aOl 〜LO重量−。 チタニウム : αo1〜to重量惨、 ′ジルコ
ニウム :(LOl 〜to重量−2iグネシクム
: (LOI 〜to重量−。 ベリリウム : αo1 〜to重量−2亜 鉛 ;
aol 〜to重量−。 マンガン : α01〜10重量饅。 からなる群より選択され九1種以上を総量でα001〜
2−o重量−添加し九合金を、 300〜600℃で1
〜20時間熱l&還し2強度特に引張強さ、伸びを同時
に向上させる半導体機器のリード材用銅合金の製造方法
。 (6) ニッケル:(L4〜40重量−1けい素;Q、
1〜to重量−2 銅及び不可避不純物;、残 からなる合金に副成分として 〕 ん : α001〜21重量−1ひ 素 ;
α口01〜11重量−。 アンチモン ; ctoo1〜11重量−2・鉄
; α01〜to重量−。 コバルト ; α01〜to重量−。 クロ ム ; α01〜1.0重量−2錫 ; α0
1〜to重量−。 アルミニウム ; α01 〜to重量饅。 チタニウム ; α01〜to重量−19x=r=9A
: (L°゛ 〜、、、 L、、 o重量“・マ
グネシウム : CLOl 〜to重量−。 ベリリウム :l101 〜to重量S。 亜 鉛 : (LOl 〜1.0重量−。 マンガン ; α01〜LO重量−1 からなる群より選択され九1s以上を総量で1001〜
20重量饅添加し、酸素含有量を10 ppta以下に
した合金を、300〜400℃で1〜20時間熱処理し
9強度特に引張強さ、伸びを同時に向上させる半導体機
器のリード材用銅合金の製造方法。[Claims] ■ Nickel; α4-40 weight*. Keishumu 1~to heavy arrogance. A method for producing a steel alloy for a lead material of a semiconductor device, in which an alloy consisting of copper and unavoidable impurities and residue is heat-sensitized at 300 to 600°C for 1 to 20 hours to simultaneously improve the tensile strength and elongation of a two-strength bone. (2) Nickel; α4~4.0 weight-1 Silicon; α1~
1.0 weight -9 Copper and unavoidable impurities; remaining alloy with an oxygen content of 10 ppm or less, 300~
Heat cured at 600℃ for 1 to 20 hours to achieve tensile strength of 1 strength bone.
A method for developing steel alloys for lead materials in semiconductor devices that simultaneously improves elongation. (2) Nickel: [L4~10 weight-1 element: [
11-1.0 weight rice cake. Copper and unavoidable impurities; added as a subcomponent to the alloy consisting of the remainder; α001~11wt-1-arsenic;
α101・〜α1weight−. Anti-film; α001~ (11 weight - 1 iron:
αo1~to weight bun. Cobalt: (LOl ~to weight-. Chromium: CLol ~to weight-1 Tin
: CLol-to type weight. Aluminum: aOl ~LO weight-. Titanium: αo1~to weight-2, 'Zirconium: (LOI~to weight-2i Gnesicum: (LOI ~to weight-2) Beryllium: αo1 ~to weight-2 Zinc;
aol ~to weight-. Manganese: α01-10 weight cake. A total of 91 or more species selected from the group consisting of α001 ~
2-o weight-added nine alloys, 1 at 300-600℃
A method for producing a copper alloy for lead material of semiconductor devices, which simultaneously improves two strengths, particularly tensile strength and elongation, by heating and returning for ~20 hours. (6) Nickel: (L4~40wt-1 silicon; Q,
1 to weight-2 copper and unavoidable impurities; as a subcomponent to the alloy consisting of the remainder] N: α001 to 21 weight-1 arsenic;
α mouth 01-11 weight-. Antimony; ctoo1-11 weight-2・iron
;α01~to weight-. Cobalt; α01~to weight-. Chromium; α01~1.0wt-2 Tin; α0
1 to weight-. Aluminum; α01 to weight. Titanium; α01~to weight-19x=r=9A
: (L°゛ ~,, L,, o weight "・Magnesium: CLOl ~to weight-. Beryllium: 1101 ~to weight S. Zinc: (LOl ~1.0 weight-. Manganese; α01 ~ LO weight -1 selected from the group consisting of 91s or more with a total amount of 1001~
Copper alloy for lead materials of semiconductor devices is heat-treated at 300 to 400°C for 1 to 20 hours to improve the tensile strength and elongation at the same time. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57006062A JPS6058783B2 (en) | 1982-01-20 | 1982-01-20 | Method for manufacturing copper alloy for lead material of semiconductor equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57006062A JPS6058783B2 (en) | 1982-01-20 | 1982-01-20 | Method for manufacturing copper alloy for lead material of semiconductor equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58123862A true JPS58123862A (en) | 1983-07-23 |
JPS6058783B2 JPS6058783B2 (en) | 1985-12-21 |
Family
ID=11628096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57006062A Expired JPS6058783B2 (en) | 1982-01-20 | 1982-01-20 | Method for manufacturing copper alloy for lead material of semiconductor equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6058783B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59228746A (en) * | 1983-06-09 | 1984-12-22 | Kobe Steel Ltd | Lead wirings for ceramic package ic |
JPS61106738A (en) * | 1984-10-30 | 1986-05-24 | Ngk Insulators Ltd | Conductive spring material |
JPS61157651A (en) * | 1984-12-28 | 1986-07-17 | Hitachi Metals Ltd | Copper alloy for lead frame |
JPS61250134A (en) * | 1985-04-26 | 1986-11-07 | オリン コ−ポレ−シヨン | Multipurpose copper alloy having proper conductivity and high strength |
JPS62199742A (en) * | 1986-02-27 | 1987-09-03 | Ngk Insulators Ltd | High strength copper alloy and its manufacture |
JPS6314832A (en) * | 1986-07-04 | 1988-01-22 | Furukawa Electric Co Ltd:The | Copper alloy for electronic equipment and its production |
JPS6369933A (en) * | 1986-09-11 | 1988-03-30 | Furukawa Electric Co Ltd:The | Copper alloy for electronic and electrical equipment and its production |
JPS6376836A (en) * | 1986-09-18 | 1988-04-07 | Furukawa Electric Co Ltd:The | Copper alloy for electronic and electrical equipment and its production |
JPS63109130A (en) * | 1986-10-23 | 1988-05-13 | Furukawa Electric Co Ltd:The | Copper alloy for electronic equipment |
JPH01263243A (en) * | 1988-04-12 | 1989-10-19 | Mitsubishi Electric Corp | Copper alloy for electronic equipment |
JPH0285330A (en) * | 1988-09-20 | 1990-03-26 | Mitsui Mining & Smelting Co Ltd | Copper alloy having good press bendability and its manufacture |
JPH0559468A (en) * | 1991-04-24 | 1993-03-09 | Nikko Kyodo Co Ltd | Copper alloy for conductive spring |
WO2005028143A1 (en) * | 2003-09-24 | 2005-03-31 | Sumitomo Metal Industries, Ltd. | Continuous casting mold and method of continuous casting for copper alloy |
DE19643378C5 (en) * | 1995-12-08 | 2010-12-16 | Poongsan Corp, Pyeongtaek | Copper alloy product and process for its production |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5315070A (en) * | 1976-07-28 | 1978-02-10 | Toshiba Corp | Semiconductor device |
JPS54402A (en) * | 1977-06-02 | 1979-01-05 | Kokusai Kikou Kk | Work of protecting normal plane suitable for planting and its method of construction |
JPS55107745A (en) * | 1979-02-12 | 1980-08-19 | Ampco Pitsburgh Corp | Copperrnickellsiliconnchromium alloy having improved electroconductivity |
JPS572851A (en) * | 1980-06-06 | 1982-01-08 | Nippon Mining Co Ltd | Copper alloy for lead material of semiconductor device |
JPS5895850A (en) * | 1981-12-02 | 1983-06-07 | Kobe Steel Ltd | Copper alloy for lead frame of integrated circuit |
-
1982
- 1982-01-20 JP JP57006062A patent/JPS6058783B2/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5315070A (en) * | 1976-07-28 | 1978-02-10 | Toshiba Corp | Semiconductor device |
JPS54402A (en) * | 1977-06-02 | 1979-01-05 | Kokusai Kikou Kk | Work of protecting normal plane suitable for planting and its method of construction |
JPS55107745A (en) * | 1979-02-12 | 1980-08-19 | Ampco Pitsburgh Corp | Copperrnickellsiliconnchromium alloy having improved electroconductivity |
JPS572851A (en) * | 1980-06-06 | 1982-01-08 | Nippon Mining Co Ltd | Copper alloy for lead material of semiconductor device |
JPS5895850A (en) * | 1981-12-02 | 1983-06-07 | Kobe Steel Ltd | Copper alloy for lead frame of integrated circuit |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59228746A (en) * | 1983-06-09 | 1984-12-22 | Kobe Steel Ltd | Lead wirings for ceramic package ic |
JPS61106738A (en) * | 1984-10-30 | 1986-05-24 | Ngk Insulators Ltd | Conductive spring material |
JPS61157651A (en) * | 1984-12-28 | 1986-07-17 | Hitachi Metals Ltd | Copper alloy for lead frame |
JPS61250134A (en) * | 1985-04-26 | 1986-11-07 | オリン コ−ポレ−シヨン | Multipurpose copper alloy having proper conductivity and high strength |
JPS62199742A (en) * | 1986-02-27 | 1987-09-03 | Ngk Insulators Ltd | High strength copper alloy and its manufacture |
JPS6314832A (en) * | 1986-07-04 | 1988-01-22 | Furukawa Electric Co Ltd:The | Copper alloy for electronic equipment and its production |
JPS6369933A (en) * | 1986-09-11 | 1988-03-30 | Furukawa Electric Co Ltd:The | Copper alloy for electronic and electrical equipment and its production |
JPS6376836A (en) * | 1986-09-18 | 1988-04-07 | Furukawa Electric Co Ltd:The | Copper alloy for electronic and electrical equipment and its production |
JPS63109130A (en) * | 1986-10-23 | 1988-05-13 | Furukawa Electric Co Ltd:The | Copper alloy for electronic equipment |
JPH01263243A (en) * | 1988-04-12 | 1989-10-19 | Mitsubishi Electric Corp | Copper alloy for electronic equipment |
JPH0285330A (en) * | 1988-09-20 | 1990-03-26 | Mitsui Mining & Smelting Co Ltd | Copper alloy having good press bendability and its manufacture |
JPH0559468A (en) * | 1991-04-24 | 1993-03-09 | Nikko Kyodo Co Ltd | Copper alloy for conductive spring |
DE19643378C5 (en) * | 1995-12-08 | 2010-12-16 | Poongsan Corp, Pyeongtaek | Copper alloy product and process for its production |
WO2005028143A1 (en) * | 2003-09-24 | 2005-03-31 | Sumitomo Metal Industries, Ltd. | Continuous casting mold and method of continuous casting for copper alloy |
Also Published As
Publication number | Publication date |
---|---|
JPS6058783B2 (en) | 1985-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58123862A (en) | Method for manufacturing copper alloy for lead material of semiconductor equipment | |
JPH0625388B2 (en) | High strength, high conductivity copper base alloy | |
JP4393663B2 (en) | Copper-based alloy strip for terminal and manufacturing method thereof | |
US5147469A (en) | Process for producing copper-based alloys having high strength and high electric conductivity | |
JPS58123846A (en) | Lead material for semiconductor equipment | |
JPS5834537B2 (en) | High-strength conductive copper alloy with good heat resistance | |
JPS63103041A (en) | Alloy of copper, chromium, titanium and silicon, and its production and use | |
JPS61119660A (en) | Manufacturing method of high strength and high conductivity copper-based alloy | |
JPS6199647A (en) | Material for lead frame for semiconductor and its manufacture | |
JPS6231060B2 (en) | ||
JPS6142772B2 (en) | ||
JPS6338543A (en) | Copper alloy for electronic appliance and its manufacture | |
JPS6338547A (en) | High strength conductive copper alloy | |
JPS63312936A (en) | Copper alloy material for semiconductor lead frame and its manufacturing method | |
JPS58213847A (en) | Copper alloy for electric and electronic parts and its manufacture | |
JPS6141751A (en) | Manufacture of copper alloy material for lead frame | |
JPS63109132A (en) | High-strength conductive copper alloy and its production | |
JP2945208B2 (en) | Method for producing copper alloy for electrical and electronic equipment | |
JPH0356294B2 (en) | ||
JPH02270946A (en) | Production of high-strength and high-conductivity copper alloy excellent in heat resistance and bendability | |
JPS5939492B2 (en) | High strength copper alloy for conductive use with softening resistance | |
JPS63105941A (en) | High strength conductive copper alloy and its production | |
KR840001425B1 (en) | Copper alloys using electric and electronic materials | |
JPS59157247A (en) | Copper alloy for lead frame | |
JPH0559505A (en) | Manufacture of high strength copper alloy less in anisotropy |