JPS58129250A - Ultraosonic sensor for flaw detection of small tube - Google Patents
Ultraosonic sensor for flaw detection of small tubeInfo
- Publication number
- JPS58129250A JPS58129250A JP57011143A JP1114382A JPS58129250A JP S58129250 A JPS58129250 A JP S58129250A JP 57011143 A JP57011143 A JP 57011143A JP 1114382 A JP1114382 A JP 1114382A JP S58129250 A JPS58129250 A JP S58129250A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- ultrasonic
- sensor
- flaw detection
- thin tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は細管探傷用超音波センサの改良に関する。[Detailed description of the invention] The present invention relates to improvements in ultrasonic sensors for thin tube flaw detection.
従来、細管の超音波探傷は例えば第1図に承す如自斜角
探傷法によシ行われている。Conventionally, ultrasonic flaw detection of thin tubes has been carried out by, for example, an oblique angle flaw detection method as shown in FIG.
図中1は水中油郷の液体2が通過する細管であり、この
細管l内に超音波センサ3が挿入されている。細管1の
探傷は、超音波センサ3から図中の破線で示す如く超音
波を送波して細管1中を伝播させ、細管1中の図示しな
い欠陥によって反射されて逆の経過をたどって返ってく
る超音波を受波し、図示しない電気回路で処理すること
によって行われる。In the figure, reference numeral 1 is a thin tube through which the liquid 2 of the underwater oil field passes, and an ultrasonic sensor 3 is inserted into this thin tube 1. Flaw detection in the capillary tube 1 involves transmitting ultrasonic waves from the ultrasonic sensor 3 as shown by the broken line in the figure, propagating them through the capillary tube 1, reflecting them by defects (not shown) in the capillary tube 1, and returning the waves in the opposite direction. This is done by receiving the incoming ultrasonic waves and processing them with an electric circuit (not shown).
しかし、上述した方法て細管1の全面に1つて探傷を行
うためには、超音波センサ3あるいは細管1t−回転さ
せながら超音波センサ1あるいは細管1を移動させる轡
の操作が必要である。However, in order to perform flaw detection on the entire surface of the thin tube 1 using the method described above, it is necessary to operate the ultrasonic sensor 1 or the thin tube 1 while rotating the ultrasonic sensor 3 or the thin tube 1t.
このため、検査時間が長くなり、供用期間中の検査には
適用が困難であるうえ、装置の規模が大きくなるという
欠点がある。For this reason, the inspection time becomes long, it is difficult to apply this method to inspections during the service period, and the scale of the apparatus becomes large.
本発明は上記事情に鑑みてなされたものであり、検査時
間を翅縮するとともに、装置を小型化し得る細管探傷用
超音波センナを提供しようとするものである。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an ultrasonic sensor for capillary flaw detection that can reduce the inspection time and downsize the device.
以下、本発明の実施例を第2図及び第3図を参照して説
明する。Embodiments of the present invention will be described below with reference to FIGS. 2 and 3.
第2図中11は円板状の超音波振動子である。Reference numeral 11 in FIG. 2 is a disk-shaped ultrasonic transducer.
この超音波振動子11の後面にはメン/譬−73が密着
されている。これら超音波振動子11と/ 7 を母−
I Jの周面及びダンzf −IJ i方ノ一部はケー
シング131Cよって包囲されている。A mantle 73 is closely attached to the rear surface of the ultrasonic transducer 11. These ultrasonic transducers 11 and /7 are
The circumferential surface of IJ and a portion of the casing 131C are surrounded by the casing 131C.
藺配超音波振動子11の前面には前方l111Iをチー
・ぐ−状とし九円錐状のクサビ14が両者の中心軸を一
致させるように配設されている。前記ケーシング13の
後部には挿入管15の一端が挿着されており、この挿入
管15には両端周縁に多数の短冊状の板バネを有する調
芯機構ICが誠着されている。A nine-cone-shaped wedge 14 is disposed on the front surface of the vertical ultrasonic transducer 11 so that the front l111I is in the shape of a chi, and the central axes of the wedges 14 are made to coincide with each other. One end of an insertion tube 15 is inserted into the rear part of the casing 13, and an alignment mechanism IC having a large number of strip-shaped leaf springs on the periphery of both ends is attached to the insertion tube 15.
上述した超音波センサを用いて細管の超音波探傷を行う
Kは、まず、第3図に示す如く水あるいは油郷の液体1
7が満たされている細管18内K、超音波センサを調芯
W&購J 6 (@3図には図示せず)Kよって超音波
振動子11及びりすピ14の中心軸と細管18の中心軸
とを一致させつつ、挿入管11(第3因には図示せず)
で挿入する6次に、図示しない電気回路によって超音波
振動子1ノから細管18の中心軸に平行に過む超音波を
発生させる。超音波は例えば図中破線で示す経路を通っ
てクサビ14中を伝播し、クサビ14の斜面で屈折し、
液体17中ここで、クサビ14の頂角θ1は細管18へ
の超音波の入射角α凰が細管18中でラム波を発生させ
得る角度となるように設定されておシ、θ1とα扉との
関係は下式で示される。K, which performs ultrasonic flaw detection of thin tubes using the above-mentioned ultrasonic sensor, first uses water or oily liquid 1 as shown in Figure 3.
7 is filled in the thin tube 18, and the ultrasonic sensor is aligned W&J 6 (not shown in Figure 3). While aligning the axis, insert the insertion tube 11 (not shown for the third factor).
Next, an electric circuit (not shown) causes the ultrasonic transducer 1 to generate ultrasonic waves that pass parallel to the central axis of the thin tube 18. For example, the ultrasonic wave propagates through the wedge 14 through the path shown by the broken line in the figure, is refracted at the slope of the wedge 14, and
In the liquid 17 Here, the apex angle θ1 of the wedge 14 is set so that the incident angle α of the ultrasonic wave on the thin tube 18 is an angle that can generate a Lamb wave in the thin tube 18. The relationship with is shown by the formula below.
Cc:液体Ir中の音速
Cw:クサビ14中の縦波音速
例えば、クサビ14がクラウンガラスで、液体17が水
の場合、Cc−1500TV/s 、 Cyz5660
Vsであり、#1=20°に設定すればα1±34.4
’となる。これはI MHS Ii度の周波数の超音波
を用いれば肉厚1.5■の鋼製細管にム・モーどのラム
波を発生させ得る入射角である。Cc: Sound velocity in liquid Ir Cw: Longitudinal sound velocity in wedge 14 For example, when wedge 14 is crown glass and liquid 17 is water, Cc-1500TV/s, Cyz5660
Vs, and if #1 is set to 20°, α1±34.4
' becomes. This is the angle of incidence at which Lamb waves such as Mu-Mo can be generated in a steel thin tube with a wall thickness of 1.5 mm using ultrasonic waves having a frequency of I MHS Ii degrees.
ラム波は細管18中を第3図中波線で承す如く伝播し、
このラム波が到達し得る範囲内に欠陥がある場合には、
その欠陥によって反射される。そして、上述した経過と
逆の経過を通って伝播し、超音波振動子11によって受
波され九ftl′f彼は図示しない電気回路によって処
理され、細管18中の欠陥を検出することができる。The Lamb wave propagates through the thin tube 18 as shown by the wavy line in Fig. 3,
If there is a defect within the range that this Lamb wave can reach,
reflected by the defect. The waves then propagate through a course opposite to the above-described course, are received by the ultrasonic transducer 11, and are processed by an electric circuit (not shown) to detect defects in the thin tube 18.
しかして、本発明によれば、細管Igの全円周トにラム
波を発生させることかで自、しかも、液体11にわずか
に吸収されるだけであるので減衰が少ない、したがって
、検査の際に超音波センサ11あるいは細管18を回転
させる必要がなく、減衰の少ないラム波の@達する範囲
を−Ifに探傷することができる。この結果、検査時間
を大幅に短縮することができ供用期間中の検査にも適用
できるうえ、装置も小型でよい。According to the present invention, Lamb waves can be generated all around the circumference of the capillary tube Ig, and since they are only slightly absorbed by the liquid 11, there is little attenuation. There is no need to rotate the ultrasonic sensor 11 or the thin tube 18, and it is possible to detect defects within the range reached by Lamb waves with low attenuation. As a result, the inspection time can be significantly shortened, it can be applied to inspections during the service period, and the device can also be small.
なお、本発明の細管探傷用超音波センナは第2図に示す
ものに限らず、第4図あるいは第6図に示すものでもよ
い。Incidentally, the ultrasonic sensor for capillary flaw detection according to the present invention is not limited to the one shown in FIG. 2, but may be the one shown in FIG. 4 or FIG. 6.
すなわち、第4図中11は円板状の超音波振動子である
。この超音波振動子11の後面にはIFン/4−12が
密着されている。これら超音波振動子1ノとダン・ず−
17の周面及びダン・量−12後方の一部はケーシング
lit/Cよっテ包題されている。前記超音波振動子1
1の前面には略円錐状の音響ミラー19がその斜面を対
向させ、かつ両者の中心軸が一致するように配役されて
いる。sh記ケーシング1jの後部には挿入管15の一
端が挿着されている。この挿入管1jには周縁に多数の
短冊状の板バネを有する調芯機構161が嵌着され、紡
記音11<チー19の#J面には同様な調芯機構15麿
が挿着されている。That is, 11 in FIG. 4 is a disc-shaped ultrasonic transducer. An IF/4-12 is closely attached to the rear surface of the ultrasonic transducer 11. These ultrasonic transducers 1 and Dan Zu
The peripheral surface of 17 and a part of the rear part of 12 are covered by the casing. The ultrasonic transducer 1
A substantially conical acoustic mirror 19 is disposed on the front surface of the mirror 1 so that its slopes face each other and their central axes coincide with each other. One end of an insertion tube 15 is inserted into the rear part of the casing 1j. An alignment mechanism 161 having a large number of strip-shaped leaf springs on the periphery is fitted into this insertion tube 1j, and a similar alignment mechanism 15 is inserted into the #J surface of the thread 11<chi 19. ing.
上述した超音波センナを用いて細管の超音波探傷を行う
KFi、まず、第5図に示す如く水あるいは油郷の液体
17が満たされている細管II内に超音波センサを調芯
機構ti、eiixc第5図には図示せず)Kよって超
音波振動子11及び音響ミラー19の中心軸と細管18
の中心軸とを一致させつつ、挿入管15(第5tjAK
は図示せず)で挿入する0次に、図示しない電気回路に
よって超音波振動子11から細管11の中心軸に平行に
進む超音波を送波させる。超音波は例えば図中破線で示
す経路を通って、液体Ir中を伝播し、音響ミラー19
の#1面で反射し、1!に液体17中を通って細管18
に達する。KFi conducts ultrasonic flaw detection of thin tubes using the above-mentioned ultrasonic sensor. First, as shown in FIG. (not shown in FIG. 5) Therefore, the central axis of the ultrasonic transducer 11 and the acoustic mirror 19 and the thin tube 18
While aligning the center axis of the insertion tube 15 (5th tjAK
(not shown), the ultrasonic transducer 11 transmits ultrasonic waves traveling parallel to the central axis of the thin tube 11 by an electric circuit (not shown). For example, the ultrasonic wave propagates through the liquid Ir through the path indicated by the broken line in the figure, and then passes through the acoustic mirror 19.
Reflected on #1 side of , 1! The liquid 17 passes through the capillary tube 18.
reach.
ここで、音響ミラー1gの頂角#富は細管18への超音
波の入射角α1が1iavll中でラム波を発生させ得
る角度となるように設定されてお9、θ、とα3との関
係は下式で示される。Here, the apex angle #of the acoustic mirror 1g is set so that the incident angle α1 of the ultrasonic wave on the thin tube 18 is an angle that can generate a Lamb wave in 1iavll, and the relationship between θ and α3 is is shown by the formula below.
α、=90°−−婁
例えば、θ雪−73.8°であればα、=16.2°と
なり、これはt MHI 1m度の周波数の超音波を用
いれば肉厚1.2■の鋼製細管に8oモードのラム波を
発生させ得る入射角である。このようにすれば前記実施
例と同様に細管Il中の欠陥を検出することができる。α, = 90° -- For example, if θXue -73.8°, α, = 16.2°, which means that if ultrasonic waves with a frequency of tMHI 1m degrees are used, the wall thickness will be 1.2cm. This is an incident angle that can generate an 8o mode Lamb wave in a steel tube. In this way, defects in the capillary tube Il can be detected in the same manner as in the embodiment described above.
また、第6図中11は円板状の超音波振動子である。こ
の超音波振動子11の後面にはダンz譬−12が密着さ
れている。これら超音波振動子11とダン/#−1jの
周面及びダン/譬−13後方の一部はケーシング11に
よって包囲されている。前記超音波振動子11の前面に
は前方II會チー・f−状とし、かつ前部に円錐形凹部
を有するクサビj0が配設されている。このクサビ20
前部の凹部には円錐形の音響ミラー21が嵌着されてい
る。これら超音波振動子IJ。Further, numeral 11 in FIG. 6 is a disc-shaped ultrasonic transducer. A Danzaku-12 is closely attached to the rear surface of the ultrasonic transducer 11. The peripheral surfaces of these ultrasonic transducers 11 and Dan/#-1j, and a portion of the rear of Dan/#-13 are surrounded by a casing 11. A wedge j0 is disposed on the front surface of the ultrasonic transducer 11, which has a front II-shaped f-shape and has a conical concave portion at the front. This wedge 20
A conical acoustic mirror 21 is fitted into the front recess. These ultrasonic transducers IJ.
クサビ20及び音響iチー21はその中心軸が一致する
ように配設されている。前記ケーシング13の後部には
挿入管15の一端が挿着されている。この挿入管15に
は周縁に多数の板・ダネを有する調芯機構161が嵌着
され、前記音響ミラー21の前面に挿着された管体22
には同様な調芯機構164が挿着されている。The wedge 20 and the acoustic i-chie 21 are arranged so that their central axes coincide. One end of an insertion tube 15 is inserted into the rear part of the casing 13. A centering mechanism 161 having a large number of plates and ribs is fitted around the insertion tube 15, and a tube body 22 inserted into the front surface of the acoustic mirror 21 is fitted into the insertion tube 15.
A similar alignment mechanism 164 is inserted in the .
上述した超音波センサを用いた細管の超音波探傷は、第
7図に示す如く前記実施例と同様な操作によって行う。Ultrasonic flaw detection of a thin tube using the above-mentioned ultrasonic sensor is carried out by the same operation as in the embodiment described above, as shown in FIG.
超音波振動子11の例えばa点から発生した細管IIの
中心軸に平行に進む超音波は図中破線で示す如く、クサ
ビ20中を伝播し、音響ミラー21の斜面のb点で発射
され、史にクサビ20の外周斜面の8点で屈折され、液
体11中を伝播して細管18の4点に達する。Ultrasonic waves generated from point a of the ultrasonic transducer 11, for example, and proceeding parallel to the central axis of the thin tube II, propagate through the wedge 20, as shown by the broken line in the figure, and are emitted at point b on the slope of the acoustic mirror 21. The light is bent at eight points on the outer peripheral slope of the wedge 20, propagates through the liquid 11, and reaches four points on the thin tube 18.
ここで、音響ミラー11(D頂角0s及び音響ミラー2
1の斜面とクサビ20の斜面がなす角Jsは、細管11
への超音波の入射角α1が細管18中でラム波を発生さ
せ得る角度に設定されている。例えば、クサビ20がア
クリル樹脂で、液体17が水の場合、Il、=73.8
’に設定すればα易=16.2°とな9、これはIMH
蔦amの周波数を用いれば肉厚1.2■の鋼製細管に8
0モードのラム波を発生させ得る入射角である。Here, acoustic mirror 11 (D apex angle 0s and acoustic mirror 2
The angle Js formed by the slope of 1 and the slope of wedge 20 is
The incident angle α1 of the ultrasonic wave is set to an angle that can generate Lamb waves in the thin tube 18. For example, if the wedge 20 is made of acrylic resin and the liquid 17 is water, Il = 73.8
', then α = 16.2°9, which is IMH
If the frequency of Tsuta AM is used, it will be possible to
This is the incident angle that can generate a 0-mode Lamb wave.
このよう圧すれば、前記実施例と同様に細管中の欠陥を
検出することができる。By applying such pressure, defects in the capillary can be detected in the same way as in the previous embodiment.
以上詳述した如く本発明によれば、検査時間を短縮して
供用期間中の検査にも適用でき、しかも装置を小型化し
得る細管探傷用超音波センナを提供できるものである。As described in detail above, according to the present invention, it is possible to provide an ultrasonic sensor for thin tube flaw detection that can shorten the inspection time, can be applied to inspections during service life, and can be made smaller in size.
第1図は従来の斜角探傷法を示す説明図、第2図は本発
明の実施例KjPける細管探傷用超音波センサを示す切
欠断面図、第3図は本発明の実施例における細管探傷用
超音波センサを用いた超音波探傷法を承す説明図、第4
図及び第6図は夫々本発明の他の実施例における細管探
傷用超音波センサを示す切欠断面図、第5図及び第7図
は夫々第4図及び第6図図示の細管探傷用超音波センサ
を用いた超音波センサを示す説明図である。
11・・・超音波振動子、12・・・ダンノ譬−111
・・・ケーシング、14.10・・・クサビ、11・・
・挿入管、11.16凰 *1g1.16@ *1i
4・・・調芯機構、1r・・・液体、18・・・細管、
III。
21・−・音響ミラー、22・・・管体。
出願人復代理人 弁理士 鈴 江 武 彦矛2図
矛3111
417
矛4図
矛5図Fig. 1 is an explanatory diagram showing a conventional angle angle flaw detection method, Fig. 2 is a cutaway cross-sectional view showing an ultrasonic sensor for capillary flaw detection according to the embodiment KjP of the present invention, and Fig. 3 is a diagram showing a capillary flaw detection in an embodiment of the present invention. Explanatory diagram of the ultrasonic flaw detection method using an ultrasonic sensor, Part 4
6 and 6 are cutaway sectional views showing ultrasonic sensors for thin tube flaw detection according to other embodiments of the present invention, respectively, and FIGS. 5 and 7 are ultrasonic waves for thin tube flaw detection shown in FIGS. 4 and 6, respectively. It is an explanatory view showing an ultrasonic sensor using a sensor. 11...Ultrasonic vibrator, 12...Danno parable-111
...Casing, 14.10...Wedge, 11...
・Insertion tube, 11.16 ㇰ *1g1.16@ *1i
4... Alignment mechanism, 1r... Liquid, 18... Thin tube,
III. 21... Acoustic mirror, 22... Tube body. Applicant's sub-agent Patent attorney Takehiko Suzue 2 figures 3111 417 4 figures 5 figures
Claims (1)
送・受波する円板状の超音波振動子と、超音波の経路t
i化させる部材と、これらの中心軸と細管の中心軸とを
一散させるための調芯機構とを具備したことを特徴とす
る細管探傷用超音波センナ。A disc-shaped ultrasonic transducer that is inserted into a thin tube and transmits and receives ultrasonic waves that travel parallel to the central axis of the thin tube, and a path of the ultrasonic wave t.
1. An ultrasonic sensor for thin tube flaw detection, comprising: a member for i-forming, and an alignment mechanism for aligning the center axes of these members and the center axis of the thin tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57011143A JPS58129250A (en) | 1982-01-27 | 1982-01-27 | Ultraosonic sensor for flaw detection of small tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57011143A JPS58129250A (en) | 1982-01-27 | 1982-01-27 | Ultraosonic sensor for flaw detection of small tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58129250A true JPS58129250A (en) | 1983-08-02 |
Family
ID=11769795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57011143A Pending JPS58129250A (en) | 1982-01-27 | 1982-01-27 | Ultraosonic sensor for flaw detection of small tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58129250A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63120251A (en) * | 1986-11-07 | 1988-05-24 | Matsushita Electric Ind Co Ltd | Ultrasonic echo sounder transducer |
JP2020063975A (en) * | 2018-10-17 | 2020-04-23 | 日立Geニュークリア・エナジー株式会社 | Ultrasonic inspection system |
-
1982
- 1982-01-27 JP JP57011143A patent/JPS58129250A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63120251A (en) * | 1986-11-07 | 1988-05-24 | Matsushita Electric Ind Co Ltd | Ultrasonic echo sounder transducer |
JP2020063975A (en) * | 2018-10-17 | 2020-04-23 | 日立Geニュークリア・エナジー株式会社 | Ultrasonic inspection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR870000590A (en) | Defect detection method and apparatus of metal | |
GB1495536A (en) | Ultrasonic detection apparatus | |
US4967873A (en) | Acoustic lens apparatus | |
JPS58129250A (en) | Ultraosonic sensor for flaw detection of small tube | |
JP2001208729A (en) | Defect detector | |
JPH0219732Y2 (en) | ||
JPH045290B2 (en) | ||
KR20200105327A (en) | Probe for measuring crack depth of concrete structure using ultrasound | |
JPH04157360A (en) | Supersonic probe | |
JPS6338157A (en) | Ultrasonic probe | |
JP3023642B2 (en) | Insertion depth measurement method for welded pipe joints | |
JPH03261858A (en) | Acoustic coupling checking method of ultrasonic flaw detector | |
JPS6267447A (en) | Method and apparatus for detecting axial defect of tube | |
JPH0375557A (en) | Ultrasonic probe | |
JPH1090239A (en) | Slanted probe | |
JPS62127665A (en) | Guiding device for ultrasonic wave and light in one end of optical fiber | |
JPH10153587A (en) | Compound type angle beam probe | |
JPS6327748A (en) | Ultrasonic probe | |
JPH05264310A (en) | Ultrasonic flowmeter | |
JPH1164300A (en) | Ultrasonic probe and ultrasonic flaw detecting apparatus | |
JP3298085B2 (en) | Ultrasonic flaw detection method and device | |
JPH0664027B2 (en) | Angle beam inspection head for pipes and angle beam inspection device for pipes using the same | |
JPH02118447A (en) | Ultrasonic flaw detecting method | |
JPH0731169Y2 (en) | Ultrasonic probe | |
CN114371225A (en) | Ultrasonic oblique probe |