[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5811771A - Zinc-aluminum silicon alloy covered steel - Google Patents

Zinc-aluminum silicon alloy covered steel

Info

Publication number
JPS5811771A
JPS5811771A JP56111299A JP11129981A JPS5811771A JP S5811771 A JPS5811771 A JP S5811771A JP 56111299 A JP56111299 A JP 56111299A JP 11129981 A JP11129981 A JP 11129981A JP S5811771 A JPS5811771 A JP S5811771A
Authority
JP
Japan
Prior art keywords
steel
alloy
content
zinc
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56111299A
Other languages
Japanese (ja)
Other versions
JPS6354064B2 (en
Inventor
Yusuke Hirose
広瀬 祐輔
Yukio Uchida
幸夫 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP56111299A priority Critical patent/JPS5811771A/en
Publication of JPS5811771A publication Critical patent/JPS5811771A/en
Publication of JPS6354064B2 publication Critical patent/JPS6354064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To obtain Zn-Al-Si alloy covered steel which is excellent in a gloss holding property when heating, and heat resistance, by making a steel basis contain N in accordance with Zn content in a Zn-Al-Si alloy bath. CONSTITUTION:In case of steel covered with an alloy bath consisting of 30- 85wt% Al, 1.5-15% Si content against Al, and the remains of Zn and inevitable impurities, when carbon content of steel is regulated to <=0.20%, solid solution nitrogen quantity of steel against Zn in the alloy bath is regulated to y>=2.1X 10<-5>X+17.5X10<-4> (provided that (y) and (x) denote solid solution nitrogen quantity % and zinc content % in the covered layer, respectively), and also y<=0.02 is regulated, in case of heating the steel to a high temperature, it can be suppressed that the interfacial alloy layer grows up to the surface, the surface becomes discolored and loses its gloss, due to mutual diffusion with the steel.

Description

【発明の詳細な説明】 本発明は加熱時の光沢保持性、耐熱性のすぐれ九亜鉛−
アルミニウムーケイ素合金被覆鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on zinc oxide, which has excellent gloss retention properties and heat resistance when heated.
Regarding aluminum-silicon alloy coated steel.

溶融めっき、焼結等により鋼の表面をZa−AL−8轟
合金で被覆した被覆鋼はすぐれた耐食性、耐熱性を有す
るため、従来より種々の用途に使用されている。従来、
使用されているこの鋼としては、ソ17)被覆Mli成
カA/、25〜70’L 8i0.5−(AtK対して
)、残Znよりなる本のであるが、高温fK加熱した場
合、鋼との相互拡散による界面合金層が表Wiまで成長
し、表面が変色して光沢を失うという欠点があった。
Coated steel whose surface is coated with Za-AL-8 Todoroki alloy by hot-dip plating, sintering, etc. has excellent corrosion resistance and heat resistance, and has thus far been used for various purposes. Conventionally,
The steel used is one consisting of 17) coated Mli powder A/, 25-70'L 8i0.5- (for AtK), and residual Zn, but when heated at high temperature fK, the steel There was a drawback that an interfacial alloy layer grew to the surface Wi due to interdiffusion with the surface, resulting in discoloration of the surface and loss of gloss.

このような合金層成長を抑制する方法として。As a method to suppress such alloy layer growth.

U−引合金被覆鋼の場合、鋼素地に窒素を含有せしめる
方法が知られている。
In the case of U-drawn alloy coated steel, a method of incorporating nitrogen into the steel base is known.

そこで本発明者らは、この方法をZn −Al −81
合金被覆鋼に適用すべく、穫々、検討を行ったが。
Therefore, the present inventors applied this method to Zn-Al-81
Many studies have been conducted to apply this method to alloy-coated steel.

鋼素地がリムド鋼の場合、同一温度で加熱し九のKもか
かわらず界面合金層が表面Ktで成長するものがあった
。このため、本発明者らは、この原因を追求すぺく、さ
らに種々、実験を行った結果。
When the steel base was rimmed steel, an interfacial alloy layer sometimes grew at the surface Kt even though it was heated at the same temperature. Therefore, the inventors of the present invention further conducted various experiments in pursuit of the cause.

界面合金層の成長度合は合金浴中の亜鉛含有量に関係し
、同一温度で加熱し九場合には、亜鉛含有量が高くなる
程、その成長速度が速くなることを知見した。
It has been found that the growth rate of the interfacial alloy layer is related to the zinc content in the alloy bath, and when heated at the same temperature, the higher the zinc content, the faster the growth rate.

本発明は、かかる問題の解決をはかるとともK。The present invention aims to solve such problems.

従来の被覆層よF)Zn含有量を高めても高温の用途に
使用できるZn −AL −81合金被覆鋼の提供を目
的とするものである。
F) The object of the present invention is to provide a Zn-AL-81 alloy coated steel that can be used in high-temperature applications even if the Zn content is increased compared to the conventional coating layer.

本発明は、合金浴中のZn含有量に対応して鋼素地中に
窒素を含有させるととKより、従来の被覆鋼のもつ問題
の解決をはかったものである。すなわち、本発明は、ア
ルミニウム30〜85重量%、アル<=ラムに対するケ
イ素含有量1.5〜15−1残亜鉛および不可避不純物
よりなる合金浴で被覆した鋼において、鋼の炭素含有量
を0.20重量−以下、また合金浴中の亜鉛に対する鋼
の固溶窒素量をy≧2.I XIQ−’x+17.5X
10−’ (ただしyは鋼索地中の固溶窒素量−1Xは
合金浴中の亜鉛含有量−)で、y≦0.02とし九とと
を特徴とする亜鉛−アルミニウム−ケイ素合金被覆鋼の
提供にある。
The present invention aims to solve the problems associated with conventional coated steel by incorporating nitrogen into the steel matrix in accordance with the Zn content in the alloy bath. That is, the present invention reduces the carbon content of the steel to 0 in a steel coated with an alloy bath consisting of 30 to 85% by weight of aluminum, a silicon content of 1.5 to 15-1 with respect to aluminum, residual zinc, and unavoidable impurities. .20 weight or less, and the amount of solid solution nitrogen in the steel relative to zinc in the alloy bath is y≧2. I XIQ-'x+17.5X
10-' (where y is the solid solution nitrogen content in the steel cable ground - 1X is the zinc content in the alloy bath), y≦0.02, and a zinc-aluminum-silicon alloy coated steel characterized by It is provided by.

以下を本発明の詳細な説明する。0は鋼素地中の有効固
溶窒素量を低下させ、Uの鋼素地への拡散を助長する。
The following is a detailed explanation of the present invention. 0 reduces the amount of effective solid solution nitrogen in the steel matrix and promotes the diffusion of U into the steel matrix.

従って、0が高いと合金層の成長は容易となるので、そ
の量を0.20重量−以下にする必要がある。
Therefore, since the growth of the alloy layer becomes easier when the value of 0 is high, the amount needs to be 0.20% by weight or less.

また、本発明の特徴である鋼索地中の固溶窒素量は、第
1表に示すごとく、めっき浴中の亜鉛含有量に対応させ
て増加させる必要がある。第1図は加熱温度450℃に
おいて効果ある鋼索地中の固溶N量と合金浴中のa量の
関係をプロットし九もので、zII量の増加に対応させ
て、はぼ直線的KN量を増加させねばならないことを示
している。
Further, the amount of solid solution nitrogen in the steel cable soil, which is a feature of the present invention, needs to be increased in accordance with the zinc content in the plating bath, as shown in Table 1. Figure 1 plots the relationship between the amount of solid solution N in the steel cable underground and the amount of a in the alloy bath, which is effective at a heating temperature of 450°C. This indicates that we must increase the

そこで、これらのプロットよ抄関係直線を求めると、y
=2.1xlo−’x+17.5xlo−’(ただしy
etN量、XはZ重量)が得られる。しかしN量をあま
抄多くすると鋼素地の加工性が低下するので、0.02
重量−以下にするのが好ましい。
Therefore, when we find the line related to these plots, we get y
=2.1xlo-'x+17.5xlo-' (however, y
etN amount, X is Z weight) is obtained. However, if the amount of N is increased by too much, the workability of the steel base will decrease, so 0.02
It is preferable to make it less than or equal to the weight.

81はアルミニウム被覆鋼の製造時に1その合金層成長
を抑制する効果のあることが知られているが、Za  
At−引合金被覆鋼においても同様効果がある。しかし
、その含有量が浴中U量のts1未満であると合金層抑
制効果がなく、を九15−を越えると合金被覆層の加工
性が劣化しかつ耐食性も悪くなるので好ましくない。
It is known that Za 81 has the effect of suppressing the growth of the alloy layer during the production of aluminum coated steel.
A similar effect can be obtained with At-drawn alloy coated steel. However, if the content is less than ts1 of the U amount in the bath, there will be no effect of suppressing the alloy layer, and if it exceeds 915-, the workability of the alloy coating layer will deteriorate and the corrosion resistance will also deteriorate, which is not preferable.

なお、合金浴中のZn含有量に応じて鋼素地中の固溶窒
素量を増加させると、その合金層の成長が抑制されるの
は、めっき時に生成される合金層の種類とそれぞれの熱
的安定性の差に起因すると考えられる。すなわち、合金
浴中のZn含有量が少い場合には、熱的に安定なA1.
−Fe −813元系合金層が生成されるが、 2m含
有量力増大にともなって、熱的安定の低いPa−Znな
いしFe−Za−Ist系合金層の生成比率が高くな抄
、その結果として加熱によって合金層が容易にめつき層
の表面にまで成長するととKなる。
Furthermore, when the amount of solid solute nitrogen in the steel base is increased according to the Zn content in the alloy bath, the growth of the alloy layer is suppressed depending on the type of alloy layer generated during plating and the respective heat. This is thought to be due to the difference in physical stability. That is, when the Zn content in the alloy bath is small, thermally stable A1.
-Fe-81 ternary alloy layer is formed, but as the 2m content increases, the formation ratio of Pa-Zn or Fe-Za-Ist alloy layer with low thermal stability becomes high. When the alloy layer easily grows to the surface of the plating layer by heating, it becomes K.

第  1  表 注1)被覆鋼は0.8X200X100■の鋼板(0:
0.004〜0.018%、Mn : 0.20〜0.
34 ’Ir、81:Tr、 P : 0.006〜0
.012tlb、  8 : 0.007〜0.012
N:第1表のとおり)を脱脂、酸洗した後、660℃の
Zn −kt −81合金浴(Zn、81:第1表のと
おり、Fe : 0.04〜0.06 %、a:残)K
7秒間浸漬してめっきし、そのめっき厚みを30μに調
整し九。
Table 1 Note 1) The coated steel is a 0.8x200x100mm steel plate (0:
0.004-0.018%, Mn: 0.20-0.
34'Ir, 81:Tr, P: 0.006-0
.. 012tlb, 8: 0.007-0.012
After degreasing and pickling the Zn-kt-81 alloy bath (Zn, 81: as shown in Table 1) at 660°C, Fe: 0.04-0.06%, a: Remaining) K
Dip for 7 seconds to plate, and adjust the plating thickness to 30μ.9.

$)鋼索地中の固溶窒素の定量はJI8.0.1228
 Kよった。
$) Quantification of solid solution nitrogen in underground steel cables is JI8.0.1228
K said.

1)加熱試験は被覆鋼を450℃、500℃、550℃
に保たれ九大気雰囲気中で100時間、加熱した俵、そ
の外観を下記基準によ抄判定した。
1) Heating tests were conducted on coated steel at 450℃, 500℃, and 550℃.
The bales were heated for 100 hours in a nine atmosphere atmosphere and their appearance was judged according to the following criteria.

O界面合金層の成長がなく、表面は銀白色の光沢を有し
ている。
There is no growth of an O interfacial alloy layer, and the surface has a silvery white luster.

△ 界面合金層が表面近くまで成長し、表面が黄変して
いる。
△ The interfacial alloy layer has grown close to the surface, and the surface has yellowed.

X 界面合金層が表面まで成長し、表面が灰黒色に変色
している。
X: The interfacial alloy layer has grown to the surface, and the surface has turned grayish-black.

以上の如く、本発明によるZn −Al−81合金被覆
鋼は、従来のリムド鋼VCZn −At−81合金を被
覆したものより界面合金層が成長しにくいので、高温に
さらされても光沢保持性に優れており、耐食性も良好で
ある。
As described above, the Zn-Al-81 alloy coated steel according to the present invention has less growth of interfacial alloy layer than the conventional rimmed steel coated with VCZn-At-81 alloy, so it has good gloss retention even when exposed to high temperatures. It has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の被覆鋼を450℃で100時間加熱し
九場合、被覆層の表面が銀白色の光沢を保持する鋼素地
中の固溶窒素量と被覆層中の亜鉛含有量の関係を示すも
のである。 第 1 図 3 0 1021) ”3C) ’it) GO釦7Y
’ fQ 伜産杉!覧層市のt塵七1宿号(重量2) )(
Figure 1 shows the relationship between the amount of solid solution nitrogen in the steel base and the zinc content in the coating layer, when the coated steel of the present invention is heated at 450°C for 100 hours, and the surface of the coating layer maintains a silvery white luster. This shows that. 1st Figure 3 0 1021) ``3C) 'it) GO button 7Y
'fQ Cedar from Tokyo! Listing city's t dust 71 post (weight 2) )(

Claims (1)

【特許請求の範囲】[Claims] アルミニウム30〜85重量−、アルミニウムに対する
ケイ素含有量1,5〜15−1残亜鉛および不可避不純
物よりなる合金浴で被覆した鋼において、鋼の炭素含有
量を0.20重量−以下、合金浴中の亜鉛に対する鋼の
固溶窒素量をy≧2.1×1O−1x+17.5X10
−’(ただしyは固溶窪素量チ、Xは被覆層中の亜鉛含
有量襲)で、かっy≦0.02としたことを特徴とする
亜鉛−アルミニウム−ケイ素合金砿覆鋼。
In steel coated with an alloy bath consisting of aluminum 30 to 85 weight -, silicon content to aluminum 1.5 to 15 -1 residual zinc and unavoidable impurities, the carbon content of the steel is 0.20 weight or less, in the alloy bath The amount of solid solution nitrogen in steel with respect to zinc is y≧2.1×1O−1x+17.5X10
A zinc-aluminum-silicon alloy coated steel characterized in that -' (where y is the solid solution silicon content and X is the zinc content in the coating layer), and y≦0.02.
JP56111299A 1981-07-16 1981-07-16 Zinc-aluminum silicon alloy covered steel Granted JPS5811771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56111299A JPS5811771A (en) 1981-07-16 1981-07-16 Zinc-aluminum silicon alloy covered steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56111299A JPS5811771A (en) 1981-07-16 1981-07-16 Zinc-aluminum silicon alloy covered steel

Publications (2)

Publication Number Publication Date
JPS5811771A true JPS5811771A (en) 1983-01-22
JPS6354064B2 JPS6354064B2 (en) 1988-10-26

Family

ID=14557696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56111299A Granted JPS5811771A (en) 1981-07-16 1981-07-16 Zinc-aluminum silicon alloy covered steel

Country Status (1)

Country Link
JP (1) JPS5811771A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226146A (en) * 1983-06-03 1984-12-19 Toyo Alum Kk Anticorrosive powdered aluminum alloy pigment with high heat resistance
JPS6060164A (en) * 1983-09-13 1985-04-06 Toyo Alum Kk Highly heat-resistant aluminum alloy powder corrosion-resistant pigment
JPS60141859A (en) * 1983-12-27 1985-07-26 ザクロン・インコーポレーテッド Aqueous flux for hot dip metal treatment
JPS60179466A (en) * 1984-02-24 1985-09-13 Toyo Alum Kk Highly heat-resistant corrosion-resistant pigment composition
US4861681A (en) * 1987-06-12 1989-08-29 Mitsubishi Aluminum Kabushiki Kaisha Brazed aluminum article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226146A (en) * 1983-06-03 1984-12-19 Toyo Alum Kk Anticorrosive powdered aluminum alloy pigment with high heat resistance
JPH0422980B2 (en) * 1983-06-03 1992-04-21 Toyo Aluminium Kk
JPS6060164A (en) * 1983-09-13 1985-04-06 Toyo Alum Kk Highly heat-resistant aluminum alloy powder corrosion-resistant pigment
JPH0370750B2 (en) * 1983-09-13 1991-11-08 Toyo Aluminium Kk
JPS60141859A (en) * 1983-12-27 1985-07-26 ザクロン・インコーポレーテッド Aqueous flux for hot dip metal treatment
JPS60179466A (en) * 1984-02-24 1985-09-13 Toyo Alum Kk Highly heat-resistant corrosion-resistant pigment composition
JPH045070B2 (en) * 1984-02-24 1992-01-30
US4861681A (en) * 1987-06-12 1989-08-29 Mitsubishi Aluminum Kabushiki Kaisha Brazed aluminum article

Also Published As

Publication number Publication date
JPS6354064B2 (en) 1988-10-26

Similar Documents

Publication Publication Date Title
JP4683764B2 (en) Hot-dip Zn-Al-Mg alloy-plated steel with excellent corrosion resistance
JPH07207421A (en) Galvanizing method
AU2015362106B2 (en) Plating composition, method for manufacturing plated steel material by using same, and plated steel material coated with plating composition
JPS5811771A (en) Zinc-aluminum silicon alloy covered steel
AU2005336202A1 (en) Hot dip Zn-Al based alloy plated steel product excellent in bending workability and method for production thereof
JP2804167B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
US2565768A (en) Aluminum coating of ferrous metal and resulting product
US2782493A (en) Aluminum coated ferrous article
JPS62142736A (en) Zn alloy for hot dipping having high corrosion resistance, high workability, and high heat resistance
US2708304A (en) Aluminum coated articles
JPS5835257B2 (en) High corrosion resistance alloy plated steel products
JPS61166961A (en) Highly corrosion resistant hot-dipped steel sheet
JP2825675B2 (en) Manufacturing method of galvannealed steel sheet with excellent workability
JP2001329354A (en) Hot dip zinc-aluminum alloy plated steel sheet excellent in chemical conversion treatability and its production method
JPS6032700B2 (en) Zinc alloy for hot-dip plating
KR960003730B1 (en) Method for making a galvanized steel sheet with an excellent coating function
US20090129969A1 (en) Wire based on zinc and aluminum and its use in thermal spraying for corrosion protection
JP2798520B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JPH0688192A (en) Galvannealed steel sheet having excellent workability and its production
JP2964678B2 (en) Zn-Al alloy plating method
JPS58207363A (en) Method of plating silicon-containing steel products, products plated thereby and alloy therefor
JPS60194094A (en) Steel material thermally sprayed with aluminum having high corrosion resistance
JP3077950B2 (en) Manufacturing method of hot-dip zinc alloy plating coating
JPS60106956A (en) Manufacture of al alloy plated steel sheet with superior corrosion resistance, heat resistance and workability
JPS6152337A (en) Zinc alloy for hot dip galvanizing