[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58114823A - Machining control system for wire-cut electric discharge machine - Google Patents

Machining control system for wire-cut electric discharge machine

Info

Publication number
JPS58114823A
JPS58114823A JP21396881A JP21396881A JPS58114823A JP S58114823 A JPS58114823 A JP S58114823A JP 21396881 A JP21396881 A JP 21396881A JP 21396881 A JP21396881 A JP 21396881A JP S58114823 A JPS58114823 A JP S58114823A
Authority
JP
Japan
Prior art keywords
machining
radius
wire
deflection
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21396881A
Other languages
Japanese (ja)
Other versions
JPS639933B2 (en
Inventor
Haruki Obara
小原 治樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Fujitsu Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp, Fujitsu Fanuc Ltd filed Critical Fanuc Corp
Priority to JP21396881A priority Critical patent/JPS58114823A/en
Publication of JPS58114823A publication Critical patent/JPS58114823A/en
Publication of JPS639933B2 publication Critical patent/JPS639933B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/06Control of the travel curve of the relative movement between electrode and workpiece
    • B23H7/065Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To suppress the error produced due to the vibration of the electrode within several micrometers by a method wherein the machining of circular arcs is performed by correcting the data of deflection produced during straight line machining and the data of radius instructed in respect to the radius of wire electrode and the gap length at straight line machining. CONSTITUTION:An operating unit 5 obtains a radial deflection DR and a tangential deflection DT by means of the amount of deflection DO produced during straight line machining, which is stored in a main memory 8 in advance, and instruction data for machining or instructed machining speed F, an instructed radius R and a machining width epsilonO and further obtains a radius difference DELTAR to correct machining path in order to obtain a radius value R' corrected with the amount of deflection. Next, the operating unit 5 obtains a radius value R'' corrected with DELTAR1 or DELTAR2, which is obtained by means of the resultant radius value R', the radius r of the wire electrode stored in the main memory 8 and the gap length at straight line machining. The radius value R'' together with the instruction data for machining is sent through a bus 12 and an interface circuit 9 to a table 10 in order to control the movement of the table 10.

Description

【発明の詳細な説明】 本発明は、円弧加工を行なう際に生じる形状誤差を補償
するワイヤカット放電加工機の加工制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a machining control system for a wire-cut electric discharge machine that compensates for shape errors that occur during circular arc machining.

ワイヤカット放電加工機は、ワイヤ電極とワーク間に所
定のギャップを悔九しめ、且つワイヤ電極とワーク間に
電圧を印加してこのギヤツブ関に火花放電を発生せしめ
、十の放電エネルギーにてワークを削り取るものである
。従って、加工指令データに基いてワークをワイヤに対
し相対的Kl動せしめれば、PjT望の形状に肖りソー
クを加工できる。ところで、ワイヤカット放電加工機に
おいて、第1図に不すようにワイヤ電&1がワーク2を
削り確りながらその#15を所定方向に進む啼。
A wire-cut electrical discharge machine creates a predetermined gap between the wire electrode and the workpiece, and applies a voltage between the wire electrode and the workpiece to generate a spark discharge at this gear joint. It is something that scrapes away. Therefore, if the workpiece is moved relative to the wire by Kl based on the machining command data, it is possible to process the soak into the desired shape of PjT. By the way, in a wire-cut electrical discharge machine, as shown in FIG. 1, the wire wire &1 cuts the workpiece 2 while moving along its #15 in a predetermined direction.

論2図に示すように、ワイヤ1[極1とワーク!間に放
電のための圧力が生じ、結果的にワイヤ電極1は矢印方
向すなわち進行方向と逆向の方向へ押し戻される。この
ため、ワイヤ電極1はワイヤガイド44の位置より#を
遇する。すなわちワイヤ電極1がたわむこととなる。直
線の放電加工を行なっている場合には、このたわみ量V
i場はど問題ないが、#145図に不すように、円弧加
工を行なう友めに、ワーク21に加工指令に基いてS7
足の半径で円弧状に移動略せ九場合、前述のa電による
ワイヤ電極のたわみのため、放電部分のワイヤ電極が内
側に引きずらせてしまう。この九め、実際の円部加工軌
跡は、指令された円価形状5m(図の実線)とは異なり
、その加工形状が点@5bで示す如くだれてしまう。
Theory 2 As shown in figure 2, wire 1 [pole 1 and work! Pressure for discharge is generated in between, and as a result, the wire electrode 1 is pushed back in the direction of the arrow, that is, in the direction opposite to the direction of movement. Therefore, the wire electrode 1 faces # from the position of the wire guide 44. In other words, the wire electrode 1 is bent. When performing straight line electrical discharge machining, this amount of deflection V
There is no problem with the i-field, but as shown in Figure #145, I had a friend who performs arc machining send S7 to workpiece 21 based on the machining command.
If the wire electrode moves in an arc with the radius of the foot, the wire electrode at the discharge portion will be dragged inward due to the bending of the wire electrode due to the above-mentioned electric current. This ninth point, the actual circular part machining locus differs from the commanded circular shape 5m (solid line in the figure), and the machining shape sag as shown by point @5b.

これを防止するため、本出願人は指令加工半径と欄定し
たワイヤ電極のたわみ量とから、当該指令加工半径を補
正し、ワイヤ電極のたわみにかかわらず、指令通り円弧
加工を行う技術を出願した。
In order to prevent this, the applicant has applied for a technology that corrects the commanded machining radius based on the commanded machining radius and the specified amount of deflection of the wire electrode, and performs circular arc machining as instructed, regardless of the deflection of the wire electrode. did.

係石技術の実行によって、実加工円弧形状と指令円弧形
状との誤差は大幅に減少したが、誤差が数ミクロンとい
う超高精度な加工が要求される場合には充分ではなかっ
た。
Although the error between the actual machined arc shape and the commanded arc shape has been significantly reduced by implementing the locking technology, it is not sufficient when ultra-high precision machining with an error of several microns is required.

従って、本発明の目的は円弧加工時の形状誤差を小さく
しうるワイヤカット放電加工機の加工制御方式を提供す
るにある。
Therefore, an object of the present invention is to provide a machining control system for a wire-cut electric discharge machine that can reduce shape errors during arc machining.

以下、本発明を図面に従い詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

円弧加工時に、実際に加工された実円弧半径が指令円弧
半径よ妙手となる原因の一つは、ワイヤ電極が放電圧力
でたわむためである。従って、たわみ量を測定【21、
たわみ量で円弧半径を修正したところ、なお十数ミクロ
ン程度の誤差が生じている。この程度の誤差は通常の使
用条件では問題ないが、高ff1lの加工が要求される
場合VCFi、さらに−差が少なくなる様求められる。
One of the reasons why the actually machined actual arc radius differs from the commanded arc radius during arc machining is that the wire electrode bends due to discharge pressure. Therefore, measure the amount of deflection [21,
When the arc radius was corrected based on the amount of deflection, there was still an error of about 10-odd microns. This degree of error is not a problem under normal usage conditions, but when processing with a high ff1l is required, it is required that the difference in VCFi be further reduced.

本発明者等は種々の検村の結果、ワイヤ電極が振動する
ことが、誤差の原因の一つであることを見出した。即ち
、放電加工中にワイヤ電極は放電の気泡の発生、消滅に
よる圧力を受は振動し、との振動によって加工方向側面
がより加工されて。
As a result of various inspections, the present inventors found that vibration of the wire electrode is one of the causes of errors. That is, during electrical discharge machining, the wire electrode vibrates due to the pressure caused by the generation and disappearance of discharge bubbles, and due to this vibration, the side surface in the machining direction is further machined.

加工溝巾はワイヤ電極の直径よりも大となる。The width of the processed groove is larger than the diameter of the wire electrode.

この振動の影41は、第4〆I falの直−VΩ工時
に61ワイヤ側面の加工中8は左右の領域15 、15
’で同一となり問題はない。し、かじ、#44図fbl
の円弧加工時には、ワイヤ電極1による円弧の外側の加
工領域14と内輪の加工領域15とはh−面積であると
考えられるから、振動によってワイヤ電極1が及ばず外
側のυロエ巾C1は内側の加工中−曾より小となる。
This vibration shadow 41 is caused by the left and right areas 15, 15 during the machining of the 61 wire side surface during the 4th I fal direct-VΩ machining.
' will be the same and there is no problem. Shi, Kaji, #44 figure fbl
When machining an arc of During the processing of - becomes smaller than .

従って、円弧加工時には、実加工円弧半径F′i指令半
径と異なってくる。
Therefore, during arc machining, the actual machining arc radius F'i differs from the commanded radius.

そこで、加工速度をF、tffiill17111工時
の刀ロエ巾(ギャップ長)を6、外円弧カロエ時σ)@
止した円弧半径を鵬、内円弧加工時の補正した半径を鶏
とする。同、半径へは外円弧に精度力S必4を場合、半
径へは内円弧に稽屓が必要な場合用いられる。
Therefore, the machining speed is F, the sword loe width (gap length) when machining tffiill17111 is 6, and the outer arc curve width is σ) @
Let the stopped arc radius be Peng, and the corrected radius during inner circular arc machining be Chi. Similarly, the radius is used when the accuracy force S is required for the outer arc, and the radius is used when the inner arc requires precision.

1線加工時の単位移動当りのカロエ量(Fxg)と円弧
加工時の単位移動当りのカロエ量を1川−とするト、各
々の円弧において次式カニ成立す、乙。
The following formula is established for each circular arc, where the amount of curling per unit movement during one-line machining (Fxg) and the amount of curling per unit movement during arc machining are 1 river.

F” ’ ” ’s (f(4’+ r +−’) θ
        (11F1−、*(へ−、−ひ)δ 
    (2)但し、#は単位移動のための角度、rは
ワイヤ電極の半径とする。
F''''''s(f(4'+ r +-') θ
(11F1-, *(he-, -hi)δ
(2) However, # is the angle for unit movement, and r is the radius of the wire electrode.

ここで み−F/塊−F/鳥       (3)が成
立するから、(11,(21式は となる。
Since Mi-F/Lump-F/Bird (3) holds here, the equations (11, (21) become.

同様に、半径方向に対して、 鳥+γ+’t=1(十r+g 、゛Ji−二一 H7十 ε −# I       
                         
(61馬−r−6=5< 1−6 、゛、 kl、 ;−R−e −+−gff71が成立
する。ril、Rは指令円弧形状である。
Similarly, for the radial direction, Bird+γ+'t=1(1r+g, ゛Ji-21 H70ε-#I

(61 horses-r-6=5<1-6, ゛, kl, ;-Re-+-gff71 holds true. ril and R are command arc shapes.

(4)式を変形すると となり、(6)式を代入・すると、 g (R十g−g、 )= 1. (R+ トg、 +
r ()a”、−1,(R+r+2g )士? (R+
g )=。
Transforming equation (4), we get g (R 0 g - g, ) = 1. (R+ g, +
r ()a", -1, (R+r+2g) し? (R+
g)=.

十 、°、g、=R+r+2g−((R+r+2g)−2g
(R+g))   (e)となる。lff1様に(5)
式ff形し、(71式を代入12て展開すると、 ↑ す=−R+r+2g+((Rr−r−2g)”+2g(
R−g))     Q(1となΣ。
10, °, g, = R + r + 2g - ((R + r + 2g) - 2g
(R+g)) (e). To lff1 (5)
Form the formula ff, and expand it by substituting 12 (71), ↑ Su=-R+r+2g+((Rr-r-2g)"+2g(
R-g)) Q(1 and Σ.

従って、外円弧加工の際の補正すべき半径の袖止量ム攬
と内円弧加工の際の補止すべき半径の補正量Δ^は各々
、 Δ鳥=へ−R:=g−g。
Therefore, the radius stop amount to be corrected when machining the outer arc and the correction amount Δ^ of the radius to be corrected when machining the inner arc are as follows.

↓ = C(u+r+2g ) −2g (R+g )) 
−4t−r−g   QDΔ八=へ−R=り一璽 ■ = ((ft−r−2g ) +2# (R−t ))
 −R+r+g   Q3となる。
↓ = C (u+r+2g) -2g (R+g))
-4t-r-g QDΔ8=to-R=riichi■ = ((ft-r-2g) +2# (R-t))
-R+r+g Q3.

例えばR=o2mmb γ= 0.11m%g=0.0
361LI+の場合には、Δへ=15μm、△鳥=56
μmとなる。
For example, R=o2mmb γ=0.11m%g=0.0
For 361LI+, Δto=15μm, Δto=56
It becomes μm.

このように、ワイヤ電極の振動による円弧加工の加工ギ
ャップの相違による誤差を加工ギャップg、、g、によ
って半径を補正すれば、目標値とは#ソー敏する高精度
な加工が得られる。
In this way, if the error caused by the difference in the machining gap in arc machining due to the vibration of the wire electrode is corrected for the radius by the machining gaps g, , g, highly accurate machining can be obtained that is less than the target value.

以1、本発明を実施例により評細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

#5図は本発明による一実旅例構成図であり、図中、5
1iマイクログロセノサ等による演算ユニット、6はナ
ーゾリーダで、NOテープ11の加工!−指令−タ(始
点データ、科点r−タ)′4を読取るものである。7 
&j操r′ドパネルで、板厚条注、送り速度を指令する
ものでりる。8はメインメモリで、しL取らノした7)
11上指令データや劃−プログラムが記憶される。9ζ
′ユインタ一7エイス回路で、ワークを塔載する1−プ
ル10に接続される。
Figure #5 is a configuration diagram of an actual journey example according to the present invention, and in the figure, 5
Processing of NO tape 11 using a calculation unit such as 1i Microgrossenosa, 6 is Nazo reader! -Command data (start point data, point data)'4 is read. 7
The &j operation panel is used to command plate thickness and feed speed. 8 is the main memory, and 7)
11, command data and performance programs are stored. 9ζ
'Uinter 17 is connected to the 1-pull 10 on which the work is placed.

12はとtlらの(−成悲へを依秋f yバスである。12 is Totl et al.

。 先づ、加工指令データが1−プリーダ6 Kより読取ら
れ、操作パネル7で指令されたデータとと本にメモリ8
に^己(はさ′tする。・ぞL−(、演算ユニノL5t
J、メモリ8の制−プログラムに使い、メモリ8のデー
タによってインターンエイス回路9を介しテーブル10
i移M制御する。
. First, machining command data is read from the 1-reader 6K, and the data commanded from the operation panel 7 and the memory 8 are stored in the book.
ni^self(hasa't.・zoL-(, operation unino L5t
J. The control of memory 8 is used for the program, and the data in memory 8 is used to write table 10 through the intern ace circuit 9.
I-transfer M control.

ここで演算−ニット5)ゴコーカー加」−指令を受ける
と、この加工指令に対する加工(flGデータをメモリ
8から読出す。(し、てメ算ユニット5は次の様な、貞
14 (Icよう一〇袖止された十匝データ)もを算出
する。
When the calculation unit 5) receives the command, the processing (flG data) corresponding to this processing command is read from the memory 8. 10 cuff data) is also calculated.

先づ、演算ユニット5はたわみ量によって補正され九半
径値屁を演算し、次にこの半径値IをQ。
First, the calculation unit 5 calculates a nine-radius value corrected by the amount of deflection, and then converts this radius value I into Q.

式又は0式に、ワイヤ電栃の半径r1直線加工時のギャ
ップ長とともに代入して更に補正された半径値式を求め
るものとする。ここで、説明を簡略するため、たわみ量
による補正について先に説明する。
A further corrected radius value formula is obtained by substituting the radius r1 of the wire electric chestnut into the formula or formula 0 together with the gap length during straight line machining. Here, in order to simplify the explanation, correction based on the amount of deflection will be explained first.

M6図は、たわみ瀘による半径補正の説明図である。Figure M6 is an explanatory diagram of radius correction by deflection filter.

図中、goはワイヤ1による加工溝5の巾の半分であっ
て、ワイヤの半径よりも大であり、dtR関内にj−d
tだけワイヤが移動したものとする。
In the figure, go is half the width of the groove 5 machined by the wire 1, which is larger than the radius of the wire.
Assume that the wire has moved by t.

角度αの位置における、加工jld※を単位廓さのワー
クとして考えると、 dv =(a−s。asa ) * satxgo−d
α・動α/dt   03)となる。ここで、Itは指
令半径値とし、送り速度をFとすれは、 F=1も  ・  θ  ・ ・ ・        
                     Iとなる
Considering the machining jld* at the position of angle α as a workpiece of unit radius, dv = (a-s.asa) * satxgo-d
α・Dynamic α/dt 03). Here, It is the command radius value, and the feed rate is F, then F=1 as well. ・ θ ・ ・ ・
Becomes I.

従って、(1)式は以下の様になる。Therefore, equation (1) becomes as follows.

放電はワイヤの前面でのみ生ずるものとして、dVをα
=0からxiで積分する7、と、V=2Fg。    
αeつ ここで角度αの位置において、ワイヤに加わる圧力を検
討する。前提として、次の仮定をする。
Assuming that the discharge occurs only at the front of the wire, let dV be α
= 7 to integrate from 0 to xi, and V = 2Fg.
αe Now consider the pressure applied to the wire at the angle α. The following assumptions are made as a premise.

■放電によりワイヤ面に71Llわる圧力は放電頻IN
K比例し、放電細度は単位時間当り加工量に比例主る。
■The pressure that increases by 71L on the wire surface due to discharge is the discharge frequency IN.
The discharge fineness is proportional to the amount of machining per unit time.

■圧力はワイヤ1jllに垂直に動く。■The pressure moves perpendicular to the wire 1jll.

そこで、ワイヤに加わる圧力をPとし、半径方向の圧力
をPR1接純方向の圧力をPtとする。
Therefore, the pressure applied to the wire is P, the pressure in the radial direction is PR1, and the pressure in the contact direction is Pt.

半径方向の圧力PRは以下の様にして得る。The radial pressure PR is obtained as follows.

dPB= dP−cxxa           (I
T)=に・dV・(2)α         01(但
し、Kは比例定数で、本来は放電エネルギーが異なれば
変化するか、ここでは放電エネルギーが均等であるとす
る。) これをα=0〜にまで積分すわば、 沖」橡にして、ワイヤに加わる接線方向の圧力P・rV
i・ dPT= dP・1α            ?υα
=0〜πまで積分し、 P丁=−・K−F−g、         (2)ここ
で、■及びPTは円弧半径Rによらない。即ち、各々m
−加工時に加工する量とワイヤに加わる接線方向圧力に
等しい。
dPB= dP-cxxxa (I
T) = dV (2) α 01 (However, K is a proportionality constant, which originally changes if the discharge energy differs, but here it is assumed that the discharge energy is equal.) This is expressed as α = 0 ~ The tangential pressure applied to the wire P・rV
i・dPT=dP・1α? υα
Integrate from =0 to π, P = - K - F - g, (2) Here, ■ and PT do not depend on the arc radius R. That is, each m
- equal to the amount processed and the tangential pressure applied to the wire during machining.

次に、ワイヤのたわみfiを第7図により近似的に求め
る。
Next, the deflection fi of the wire is approximately determined using FIG.

第7図より、 と表わされる。即ち、ワイヤに加わる力Pと比例するの
で、加工速度)−における、直線加工時の九わみを八と
し、2丁、PRによるたわみを夫々庚、島とすると、 となる。
From Figure 7, it is expressed as. That is, since it is proportional to the force P applied to the wire, if the deflection during linear machining at the machining speed (-) is set to 8, and the deflections due to the 2-piece and PR are set to 8 and 9 to 8, respectively, the following equation is obtained.

このため、円弧加工時の゛正規の軌跡と、補止jべき径
路の半径差Δ)tは、 Δa=、Aγ賃10巧−1@ 従って、予じめ直線、710工時のたわみ八を欄定しメ
モリ8に記憶しておけば、DO工指令速[F&与えるこ
とにより庚、八が算出され、翰式によりJRが算出され
、円弧半径凡のたわみ型補正を行うことができる。
For this reason, the radius difference Δ)t between the normal trajectory and the corrected path during circular arc machining is Δa=, Aγ 10-1 @ Therefore, the deflection during straight line machining and 710 machining is calculated in advance. If the column setting is stored in the memory 8, the DO work command speed [F& will be given to calculate the height, the height will be calculated, the JR will be calculated using the Kan formula, and the deflection type correction of the arc radius can be performed.

即ち、演算ユニット5#″i、メインメモリ8に予  
・[・じめ記憶された諷−加工時のたわみ量へと加工指
令データである連令速縦F、指令半44)t%no工幅
C0によって鱒、ψ)式よりたわみり、orを求め、史
に(2)式を実行〔2、JRを求絶て、たわみ普で補正
された半径値R’(=R+ΔR)を得る6次に演算ユニ
ッ)5Fi祷られた半径値Rを00式、03式の几とを
代入して、0υ式又Fiaa式を実行し、Δに、又はΔ
鵬を求め補正された半径値d(m+Δ八又はに+Δ−)
を求める。
That is, the arithmetic unit 5#''i stores the data in the main memory 8.
・[・To the amount of deflection during machining, the machining command data, continuous speed longitudinal F, command half 44) t%no machining width C0, the deflection from the formula ψ), or. [2. Calculate JR and obtain the radius value R' (=R + ΔR) corrected by the deflection. 6th calculation unit) 5Fi The calculated radius value R is 00 Substituting the formula and the formula 03, execute the 0υ formula or the Fiaa formula, and obtain Δ or Δ
The corrected radius value d (m + Δ8 or + Δ−)
seek.

このように補正された円弧半径データを演算ユニット5
で算出12、前述の加工指令データとともにパス12、
インターフェイス回路9t−介し、テーブル10へ送り
、テーブル10の移動制−を行なう。
The arc radius data corrected in this way is sent to the calculation unit 5.
Calculation 12, along with the above-mentioned machining command data, pass 12,
The data is sent to the table 10 via the interface circuit 9t, and the movement of the table 10 is controlled.

以上の様に、本発明によれは、たわみデータによって指
令半径値をたわみ補正するとともに、ワイヤ電極の半径
及び直線加工時のギャップ長によっても半径値を補正す
ることによって、ワイヤ電極の振動によって生じる円弧
加工時の誤差が極めて小さくなり、はぼ無視しても良い
数ミクロンのオーダとなる。従って、より精度の尚い加
工を可能とし、ワイヤカット放電加工機の通用範囲を大
きく広けることがuf吐となる等の夾用上南由な効果を
奏する。
As described above, the present invention corrects the deflection of the commanded radius value based on the deflection data, and also corrects the radius value based on the radius of the wire electrode and the gap length during linear machining, thereby solving the problem caused by the vibration of the wire electrode. Errors during circular arc machining are extremely small, on the order of several microns, which can be ignored. Therefore, it is possible to perform machining with higher precision, and greatly expand the usable range of the wire-cut electric discharge machine, which has the advantageous effects of UF discharge and the like.

伺、本発明を一実施例ycより1152明し良が、本発
明の主旨に従い種々のf形が口」吐であり、本発明の範
囲からこtlらを少味するも(/l−tはない。
However, according to the gist of the present invention, various f-types are available, and these are not included within the scope of the present invention. There isn't.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はワイヤカット1fi電D−工謝塩凶、^2■は
ワイヤのたわみを説明する図、##%3図は白銑′加工
説明図、第4図tj本発明の原理1jr飲明する図。 第5図は本発明の一笑施例轡成図、第6図1第7図は本
発明に用いられるたわみ袖止演)l説明図を示す。 1 ワイヤ電極、2・・ワーク、5・・溝、4・・・ワ
イヤガイド、5・・演算ユニット、6・・テープリーダ
、7・・・操作パネル、8・・・メモリ、9・・・イン
ターフェイス回路、10・・テーブル、11・・・NO
テープ%12・・バス、 13.15’−lit線加工
領域、14・・・外匈加工領域、15・・・内側加工f
s城。 第 5 図 トl     1、
Figure 1 is a diagram explaining the wire flexure, Figure 1 is a diagram explaining wire deflection, Figure 4 is a diagram explaining white pig iron processing, and Figure 4 is the principle of the present invention. Diagram to clarify. Fig. 5 shows a schematic diagram of an embodiment of the present invention, and Fig. 6 and Fig. 7 show explanatory diagrams of a flexible sleeve used in the present invention. 1 Wire electrode, 2... Work, 5... Groove, 4... Wire guide, 5... Arithmetic unit, 6... Tape reader, 7... Operation panel, 8... Memory, 9... Interface circuit, 10... table, 11... NO
Tape% 12...Bath, 13.15'-lit line processing area, 14...Outer machining area, 15...Inner processing f
s castle. Figure 5 l 1,

Claims (1)

【特許請求の範囲】[Claims] ワイヤ電極とワーク間に電圧を印加し、ワークを放電エ
ネルギーにより削り取るとともに1制御部からの加工指
令データに着いて販ワイヤ電極とワークとを相対移動さ
せ、該ワークを所定形状に加工するワイヤカット放電加
工機において、該制aSは、予じめ測定され九fi締加
工時の九わみデータによって指令された半径データを補
正するとともにワイヤ電極の半径及び直線加工時のギャ
ップ長によって該半径データを補正し、補正された円弧
半径によって相対移動させながら、放電加工を行なうこ
とを特徴とするワイヤカット放電加工機の加工制御方式
Wire cutting involves applying a voltage between the wire electrode and the workpiece, scraping the workpiece with discharge energy, and moving the sales wire electrode and the workpiece relative to each other in response to machining command data from a control unit to process the workpiece into a predetermined shape. In an electric discharge machine, the control aS corrects the radius data commanded by the nine deflection data measured in advance during nine fi tightening machining, and also corrects the radius data by the radius of the wire electrode and the gap length during straight machining. A machining control method for a wire-cut electric discharge machine, which performs electric discharge machining while performing relative movement according to the corrected arc radius.
JP21396881A 1981-12-28 1981-12-28 Machining control system for wire-cut electric discharge machine Granted JPS58114823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21396881A JPS58114823A (en) 1981-12-28 1981-12-28 Machining control system for wire-cut electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21396881A JPS58114823A (en) 1981-12-28 1981-12-28 Machining control system for wire-cut electric discharge machine

Publications (2)

Publication Number Publication Date
JPS58114823A true JPS58114823A (en) 1983-07-08
JPS639933B2 JPS639933B2 (en) 1988-03-03

Family

ID=16648040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21396881A Granted JPS58114823A (en) 1981-12-28 1981-12-28 Machining control system for wire-cut electric discharge machine

Country Status (1)

Country Link
JP (1) JPS58114823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145569A1 (en) * 2014-03-25 2015-10-01 三菱電機株式会社 Machining path calculation device, control device, and wire electric discharge machine
US9399260B2 (en) 2012-01-11 2016-07-26 Mitsubishi Electric Corporation Wire electrical discharge machining apparatus
CN115243817A (en) * 2020-03-17 2022-10-25 三菱电机株式会社 Wire electric discharge machining apparatus and machine learning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313838A (en) * 1976-07-26 1978-02-07 Hitachi Ltd Character display unit
JPS56146626A (en) * 1980-04-16 1981-11-14 Fanuc Ltd Wire-cut discharge processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313838A (en) * 1976-07-26 1978-02-07 Hitachi Ltd Character display unit
JPS56146626A (en) * 1980-04-16 1981-11-14 Fanuc Ltd Wire-cut discharge processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9399260B2 (en) 2012-01-11 2016-07-26 Mitsubishi Electric Corporation Wire electrical discharge machining apparatus
WO2015145569A1 (en) * 2014-03-25 2015-10-01 三菱電機株式会社 Machining path calculation device, control device, and wire electric discharge machine
CN115243817A (en) * 2020-03-17 2022-10-25 三菱电机株式会社 Wire electric discharge machining apparatus and machine learning apparatus
CN115243817B (en) * 2020-03-17 2023-07-28 三菱电机株式会社 Wire electric discharge machine and machine learning device

Also Published As

Publication number Publication date
JPS639933B2 (en) 1988-03-03

Similar Documents

Publication Publication Date Title
JPH025531B2 (en)
JP5689431B2 (en) Control device for wire electric discharge machine that corrects machining path by program command
JPH0246327B2 (en)
JPH0252282B2 (en)
JPH0144451B2 (en)
EP0068029B1 (en) Method of controlling wire cut electric discharge machining
EP0038658B1 (en) Wire-cut electric discharge machining
KR0164629B1 (en) Discharge Machining Control Method and Discharge Machining Control Device
JPH0160377B2 (en)
US4970362A (en) Wire-cutting electric discharge machining device
JPS58114823A (en) Machining control system for wire-cut electric discharge machine
JPS6029232A (en) Taper machining method
JPS62120919A (en) Wire cut electric discharge machining method
JP3101596B2 (en) Controller for wire electric discharge machining with taper machining correction function
JPS6010854B2 (en) Wire cut electric discharge machining method
JPS6211728B2 (en)
JPS61219529A (en) System of controlling form of wire electric discharge machining
KR0161010B1 (en) Moving path correction method according to tool diameter
JP3146550B2 (en) Industrial robot control device
JPH04764B2 (en)
JPS6257451B2 (en)
JPS6026649B2 (en) Wire cut electrical discharge machining control method
JPH06320340A (en) Wire electric discharge machine
GB2033608A (en) Cutting by a wire electrode
JPH11156550A (en) Plasma cutting device