[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58103565A - Electrically conductive paint - Google Patents

Electrically conductive paint

Info

Publication number
JPS58103565A
JPS58103565A JP20220881A JP20220881A JPS58103565A JP S58103565 A JPS58103565 A JP S58103565A JP 20220881 A JP20220881 A JP 20220881A JP 20220881 A JP20220881 A JP 20220881A JP S58103565 A JPS58103565 A JP S58103565A
Authority
JP
Japan
Prior art keywords
paint
powder
electrically conductive
alloy powder
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20220881A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ogawa
泰弘 小川
Sankichi Shinoda
三吉 信太
Akiyoshi Takeshima
竹島 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20220881A priority Critical patent/JPS58103565A/en
Publication of JPS58103565A publication Critical patent/JPS58103565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide an electrically conductive paint which consists of Ag-Be-Cu type conductive powder, resin and solvent and is low cost and excellent in electrical conductivity and migration characteristics. CONSTITUTION:Powdered alloy with a particle diameter of 0.05-10mu, consisting of 10-70wt% Ag, 0.1-3wt% Be and balance Cu, is dipped in an organic solvent solution of 1,2,3-benzotriazole. Upon separation of the solvent and drying, electrically conductive powder surface coated with a thin film of a chelate compd. is obtained. Then the conductive powder, a thermosetting resin (e.g. xylene resin) and a solvent (e.g. ethyl carbitol) are kneaded to produce an electrically conductive paint. The paint is applied to phenolic resin substrate, etc. by screen printing, etc. and is cured in the air under heating to form electrode and conducting path.

Description

【発明の詳細な説明】 本発明は導電性ペイントに関し、安価で導電性にすぐれ
、しかも耐マイグレーション性にすぐれた導電性ペイン
トの提供を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive paint, and an object of the present invention is to provide a conductive paint that is inexpensive, has excellent conductivity, and has excellent migration resistance.

従来、この種の導電性ペイントには、導電粉としてAu
 、 Af 、 Pdなどの貴金属粉が用いられてきた
。一般的には、導電粉にAPを用いζフェノール樹脂、
エポキシ樹脂、キシレン樹脂などの熱硬化型樹脂とエテ
ルカルピトールのような溶剤と共に混線したArペイン
トを、フェノール樹脂基板などにスクリーン印刷等の方
法で塗布した後、加熱硬化し、可変抵抗器などの電極、
あるいは電子回路用の位刷配線導体として使用されてき
た。
Conventionally, this type of conductive paint contains Au as conductive powder.
Noble metal powders such as , Af, and Pd have been used. Generally, AP is used as the conductive powder, and ζphenol resin,
Ar paint mixed with a thermosetting resin such as epoxy resin or xylene resin and a solvent such as ethelcalpitol is applied to a phenolic resin substrate by a method such as screen printing, and then heated and cured to produce a variable resistor, etc. electrode,
It has also been used as a printed wiring conductor for electronic circuits.

しかし、近年電子機器の小型化や薄型化に伴ない電子部
品の小型化が強く要望される傾向にあり、このような状
況下では、Arペイントの使用が、Atペイント硬化膜
中のA2が大気中の湿気と直流電界との相互作用により
、Arペイント電極相互間を移行する現象、いわゆるマ
イグレーションを起こし、その結果回路の短絡を起こし
、しばしばトラブルの大きな要因となっている。
However, in recent years, as electronic devices have become smaller and thinner, there has been a strong demand for smaller electronic components. The interaction between the moisture inside and the DC electric field causes a phenomenon in which Ar paint transfers between electrodes, so-called migration, which results in short circuits and is often a major cause of trouble.

このようなArペイントの欠点を補うために、A2−P
d紛を用いた導電性ペイントが市販されているが、まだ
完全とはいえない。また、AP−Pd粉を用いた導電性
ペイントは、Pdの価格がAPの価格に較べて極めて高
く、さらに、貴金属類特に八2の価格高騰が激しい近年
の情勢では、経済性の点で極めて不利である。
In order to compensate for these drawbacks of Ar paint, A2-P
Conductive paints using d-powder are commercially available, but they are still not perfect. In addition, conductive paint using AP-Pd powder is extremely expensive in terms of economy, as the price of Pd is extremely high compared to the price of AP, and in recent years the prices of precious metals, especially 82, have been rapidly increasing. It is disadvantageous.

以上のような理由から、耐マイグレーション性の良い安
価な導電性ペイントの出現が望まれている。
For the above-mentioned reasons, there is a desire for an inexpensive conductive paint with good migration resistance.

本発明はこのような点に鑑みて成されたものであり、発
明者らは、卑金属を主成分とする合金粉を調査検討した
結果、Af −Be −Cu合金粉を導電粉とした導電
性ペイントが、耐マイグレーション性にすぐれ、しかも
導電性をかなりのレベルで満足することを見い出した。
The present invention has been made in view of these points, and as a result of research and study on alloy powders whose main components are base metals, the inventors have developed a conductive powder using Af-Be-Cu alloy powder as a conductive powder. It has been discovered that the paint has excellent migration resistance and satisfies a considerable level of conductivity.

次に、本発明の構成を詳述する。Next, the configuration of the present invention will be explained in detail.

本発明にかかる導電性ペイントは、その導電粉が少なく
ともA210〜70重量係とBe0.1〜3重量%を含
有し、残部がCuという組成のAP−Be−Cu合金粉
であることを特徴とする導電性ペイントである。
The conductive paint according to the present invention is characterized in that the conductive powder is an AP-Be-Cu alloy powder containing at least A210-70% by weight, Be 0.1-3% by weight, and the balance being Cu. It is a conductive paint.

この種の樹脂硬化型の導電性ペイントの導電粉において
望まれる条件は、 a1導電性があること b1加熱硬化時における耐熱酸化性があることがあげら
れる。
Desired conditions for the conductive powder of this type of resin-curing conductive paint include a1 conductivity and b1 thermal oxidation resistance during heat curing.

合金粉の一成分であるCuは、導電性にすぐれた金属で
あるが、耐熱酸化性、耐食性は良いとは言えない。しだ
がって、ペイント硬化処理における加熱によって、しば
しばCu粉の表面に多量の酸化スケールが発生し、ペイ
ント硬化膜の十分な導電性が得られない。このようなC
u粉の欠点は、合金元素としてAPを添加することによ
り改善される。
Cu, which is one component of the alloy powder, is a metal with excellent electrical conductivity, but it cannot be said to have good thermal oxidation resistance and corrosion resistance. Therefore, a large amount of oxidized scale is often generated on the surface of the Cu powder due to the heating during the paint curing process, making it impossible to obtain sufficient electrical conductivity of the cured paint film. C like this
The disadvantages of U powder can be improved by adding AP as an alloying element.

しかしながら、耐マイグレーション性において、Cuが
マイグレーションを起こしにくいということから、At
−Cu合金粉はへ2粉に較べると改善される傾向にある
が、十分な耐マイグレーション性は得られない。このよ
うなAt −Cu合金粉の難点は、さらにBeを合金元
素として添加することにより大幅に改良される。合金化
が何故にこのような耐マイグレーション性の改良をもた
らすかは明確ではないが、Be自身がマイグレーション
を起こしにくいということと、BeがA2に較べて極め
て卑な金属であるということがAft −Be −Cu
合金粉が導電性ペイントとして・使用された場合のすぐ
れた耐マイグレーション性をひき出しているものと推察
される。また、合金元素としてのaSの添加は、AP 
−Cu合金粉の耐熱酸化性をも改善する傾向にある。こ
れは、Be酸化物が合金粉の過度の酸化を防止している
ものと推察される。さらに、Be自身の耐環境性によっ
ても、その添加により耐食性の効果を呈するものと考え
られる。しかしながら、Beの鋤日量が適量を越えると
、合金粉自体の導電性が降下すること、機械的加工能が
低下し、微粉化が困難なことなどにより望ましい特性は
得られない。
However, in terms of migration resistance, since Cu is difficult to cause migration, At
-Cu alloy powder tends to be improved compared to He2 powder, but sufficient migration resistance cannot be obtained. Such drawbacks of At-Cu alloy powder can be greatly improved by further adding Be as an alloying element. It is not clear why alloying brings about such an improvement in migration resistance, but the fact that Be itself is difficult to cause migration and that Be is an extremely base metal compared to A2 makes Aft - Be-Cu
It is presumed that the alloy powder has excellent migration resistance when used as a conductive paint. In addition, the addition of aS as an alloying element
-It also tends to improve the heat oxidation resistance of the Cu alloy powder. This is presumably because Be oxide prevents excessive oxidation of the alloy powder. Furthermore, due to the environmental resistance of Be itself, it is thought that the addition of Be provides corrosion resistance effects. However, if the daily amount of Be exceeds an appropriate amount, desirable characteristics cannot be obtained because the conductivity of the alloy powder itself decreases, mechanical processability decreases, and pulverization becomes difficult.

At −Be −Cu合金粉が導電性ペイントの導電粉
として、上述の長所を見い出し得る合金組成は、Al1
F10〜70重量係、Be0.1〜3重量%、残部Cu
である。Atの下限は合金粉の耐熱酸化性から、上限は
経済性からそれぞれ制約される量である。
The alloy composition in which At-Be-Cu alloy powder can find the above-mentioned advantages as a conductive powder for conductive paint is Al1
F10-70 weight ratio, Be 0.1-3% by weight, balance Cu
It is. The lower limit of At is determined by the thermal oxidation resistance of the alloy powder, and the upper limit is determined by economic efficiency.

壕だ、Be量の下限はその添加効果を見い出し得る最少
!、上限は合金粉の作製上から制約される量である。
Well, the lower limit of the amount of Be is the minimum at which the effect of its addition can be found! , the upper limit is the amount restricted from the production of alloy powder.

以上のように、Af−Be−Cu合金粉を用いた導電性
ペイントは、導電性yマイグレーション性の面で実用上
十分な性能を見い出し得るものである。
As described above, the conductive paint using Af-Be-Cu alloy powder can be found to have practically sufficient performance in terms of conductivity and migration property.

しかしながら、一般的にCuおよびCu系合金の耐食性
は過度の腐食環境においては必ずしも良好ではないよう
に、本発明における合金粉においても、そのような雰囲
気に放置された場合、耐食性は必ずしも満足できるもの
ではない。しかして、このような欠点は、合金粉に1.
2.3−ベンゾトリアゾールをア七トン本などの有機溶
媒に溶かした溶液に浸漬した後、溶液を分離して乾燥さ
せるという処理(以下、ベンゾトリアゾール処理と呼ぶ
)により解決される。推察するに、上記のベンゾトリア
ゾール処理によって合金粉表面に薄いキレート化合物の
皮膜を形成することにより、防食効果を発揮しているも
のと思われる。
However, in general, the corrosion resistance of Cu and Cu-based alloys is not necessarily good in excessively corrosive environments, and the alloy powder of the present invention does not necessarily have satisfactory corrosion resistance when left in such an atmosphere. isn't it. However, such drawbacks are caused by the following: 1.
This problem can be solved by a process (hereinafter referred to as benzotriazole treatment) in which 2.3-benzotriazole is immersed in a solution of an organic solvent such as acetic acid, and then the solution is separated and dried. It is presumed that the benzotriazole treatment described above forms a thin chelate compound film on the surface of the alloy powder, thereby exerting an anticorrosion effect.

本発明に従えば、At−Be−Cu合金粉、あるいは、
ベンゾトリアゾール処理を行なったAP−Be−Cu合
金粉を、熱硬化型の樹脂と溶剤と共に混練して導電性ペ
イントとなす。この導電性ペイントは、通常のA1ペイ
ントと同様にフェノール樹脂基板等にスクリーン印刷等
の方法で塗布した後、大気中で加熱硬化して、電極や導
電路として利用される。合金粉の粒径は0.06〜10
μの範囲、好ましくは0.6〜5μ程度が良い。10μ
以上になるとスクリーン印刷時の印刷性が悪化し、最終
加熱硬化後の面抵抗が大きくなる。
According to the present invention, At-Be-Cu alloy powder or
AP-Be-Cu alloy powder treated with benzotriazole is kneaded with a thermosetting resin and a solvent to form a conductive paint. This conductive paint is applied to a phenolic resin substrate or the like by a method such as screen printing in the same way as ordinary A1 paint, and then heated and cured in the atmosphere to be used as electrodes or conductive paths. The particle size of alloy powder is 0.06-10
The range of μ is preferably about 0.6 to 5 μ. 10μ
If it is more than that, the printability during screen printing will deteriorate and the sheet resistance after final heat curing will increase.

次に、本発明をより具体化するために実施例について詳
述する。
Next, examples will be described in detail in order to make the present invention more concrete.

本発明に従うAV −Be −Cu合金粉は、次のよう
にして作製した。本発明に従う合金組成に合わせて、A
t −Be −Cuの各素材を秤量し、全量を19とし
た( BeはCu−Be母合金により添加した)。
The AV-Be-Cu alloy powder according to the present invention was produced as follows. In accordance with the alloy composition according to the invention, A
Each material of t-Be-Cu was weighed, and the total amount was 19 (Be was added by the Cu-Be master alloy).

これを窒素ガス中で溶解し、さらに、溶湯噴霧法によっ
て粉体化した。噴霧媒として窒素ガスを利用し、水中投
入冷却した。得られた合金粉の粒径は6〜100μ程度
のものであるが、これを機械式粉砕機にて再度粉体化し
、平均粒径的2μとした。
This was dissolved in nitrogen gas and further pulverized by a molten metal spray method. Nitrogen gas was used as a spray medium, and the mixture was cooled in water. The particle size of the obtained alloy powder was approximately 6 to 100 μm, but this was powdered again using a mechanical crusher to obtain an average particle size of 2 μm.

上記の方法によって得られた合金粉の一部については、
ベンゾトリアゾール処理を行なった。ベンゾトリアゾー
ル処理は次の手順で行なった。1゜2.3−ベンゾトリ
アゾール10町をアセトン100mA!中に溶解させ、
この溶液に合金粉10tを浸漬し十分に分散させた。こ
の後、合金粉と溶液を分離し、合金粉を乾燥した。
For some of the alloy powder obtained by the above method,
Benzotriazole treatment was performed. The benzotriazole treatment was performed according to the following procedure. 1゜2.3-benzotriazole 10 towns with acetone 100mA! dissolved in
10 tons of alloy powder was immersed in this solution and sufficiently dispersed. After that, the alloy powder and the solution were separated, and the alloy powder was dried.

以上の方法によって得られた合金粉22、あるいはベン
ゾトリアゾール処理を行なった合金粉22を、キシレン
IUJ11f、エチルカルピトール0.22と共に、フ
ーバーマーラを用いて混練した。
The alloy powder 22 obtained by the above method or the alloy powder 22 treated with benzotriazole was kneaded with xylene IUJ11f and ethyl carpitol 0.22 using a Hubermala.

フーバーマーラによる混練は、荷重100ボンド、40
回転を4回繰り返して行なった。
For kneading with a Hubermala, the load was 100 bond, 40
Rotation was repeated four times.

上記作製した導電性ペイントをスクリーン印刷法を用い
てフェノール樹脂基板上に所定の形状に印刷後、大気中
190C10分間の条件で加熱硬化した。
The conductive paint prepared above was printed in a predetermined shape on a phenolic resin substrate using a screen printing method, and then cured by heating at 190C for 10 minutes in the atmosphere.

上記印刷パターンの両端間の抵抗値を測定した結果と、
さらに40 C95%RHの恒温恒湿槽に120時間放
置した後で測定した結果を次表に示す。
The results of measuring the resistance value between both ends of the above printed pattern,
Furthermore, the results of measurements after being left in a constant temperature and humidity chamber at 40 C and 95% RH for 120 hours are shown in the following table.

表には、市販のA2紛、Cu粉を導電粉とした場合の結
果を併ぜて示す。
The table also shows the results when commercially available A2 powder and Cu powder were used as conductive powder.

(以下余 白) また、耐マイグレーション性の試験として、上記作製し
たペイントを、フェノール樹脂基板上に、間隙0 、5
 mmのパターンをスクリーン印刷し、加熱硬化させた
後、間隙部に純水0.2 mlを滴下した状態で、間隙
間に直流3vの電圧を印加し、間隙間に流れる電流を測
定したところ、電圧印加後2時間経過後の電流値は、い
ずれも10μ八程度であった。これに対し、A1粉を導
電粉としたペイントについて同様の試験を行なったとこ
ろ、電圧印加後1分間経過時魚で間隙部でA2の移行が
観察される短絡を起こした。したがって、本発明にかか
る導電性ペイントは、従来のAtペイントに較べて、耐
マイグレーション性が極めてすぐれていると言える。
(Left below) In addition, as a migration resistance test, the paint prepared above was placed on a phenolic resin substrate with gaps of 0 and 5.
After screen printing a mm pattern and curing it by heating, 0.2 ml of pure water was dropped into the gap, a DC voltage of 3V was applied to the gap, and the current flowing through the gap was measured. The current values 2 hours after voltage application were about 10μ8 in all cases. On the other hand, when a similar test was conducted on a paint using A1 powder as conductive powder, a short circuit was observed in the fish in which A2 transfer was observed in the gap 1 minute after voltage application. Therefore, it can be said that the conductive paint according to the present invention has extremely superior migration resistance compared to conventional At paint.

上記した説明および表から、明らかなように、本発明に
かかる導電性ペイントは、従来のAtペイントに比較し
て、導電性、耐食性の面で多少劣る面があるものの、十
分実用に供し得る特性を示すものであり、特に耐マイグ
レーション性にすぐれており、経済的には従来のAtペ
イントに較べて極めて安価に作製し得ることから、その
工業的価値は大なるものがある。
As is clear from the above description and table, the conductive paint according to the present invention has sufficient properties to be put to practical use, although it is somewhat inferior in terms of conductivity and corrosion resistance compared to conventional At paint. It has particularly excellent migration resistance and can be produced economically at a much lower cost than conventional At paints, so it has great industrial value.

Claims (2)

【特許請求の範囲】[Claims] (1)導電粉、樹脂および溶剤からなり、導電粉が少な
くともA10〜70重量%とBe0.1〜3重量−を含
有し、残部がCuの組成からなる合金粉であることを特
徴とする導電性ペイント。
(1) Conductive powder consisting of conductive powder, resin, and solvent, characterized in that the conductive powder is an alloy powder containing at least 10 to 70% by weight of A, 0.1 to 3% by weight of Be, and the balance consisting of Cu. sex paint.
(2)合金粉が、1.2.3−ベンゾトリアゾールを有
機溶媒に溶かした溶液に浸漬後、前記溶液と分離し、乾
燥させたものであることを特徴とする特許請求の範囲第
(1)項記載の導電性ペイント。
(2) The alloy powder is obtained by immersing the powder in a solution of 1.2.3-benzotriazole in an organic solvent, separating it from the solution, and drying it. Conductive paint described in ).
JP20220881A 1981-12-14 1981-12-14 Electrically conductive paint Pending JPS58103565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20220881A JPS58103565A (en) 1981-12-14 1981-12-14 Electrically conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20220881A JPS58103565A (en) 1981-12-14 1981-12-14 Electrically conductive paint

Publications (1)

Publication Number Publication Date
JPS58103565A true JPS58103565A (en) 1983-06-20

Family

ID=16453748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20220881A Pending JPS58103565A (en) 1981-12-14 1981-12-14 Electrically conductive paint

Country Status (1)

Country Link
JP (1) JPS58103565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050753A1 (en) * 2002-11-29 2004-06-17 Dow Corning Toray Silicone Co., Ltd. Silver-based powder, method of preparation thereof, and curable silicone composition
JP2005539094A (en) * 2001-12-20 2005-12-22 コグニテク マネージメント システムズ インコーポレイテッド Composition for increasing thermal conductivity of heat transfer medium and method of use thereof
US7195721B2 (en) * 2003-08-18 2007-03-27 Gurin Michael H Quantum lilypads and amplifiers and methods of use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539094A (en) * 2001-12-20 2005-12-22 コグニテク マネージメント システムズ インコーポレイテッド Composition for increasing thermal conductivity of heat transfer medium and method of use thereof
WO2004050753A1 (en) * 2002-11-29 2004-06-17 Dow Corning Toray Silicone Co., Ltd. Silver-based powder, method of preparation thereof, and curable silicone composition
JP2004176165A (en) * 2002-11-29 2004-06-24 Dow Corning Toray Silicone Co Ltd Silver powder, production method therefor, and hardenable silicone composition
CN1311014C (en) * 2002-11-29 2007-04-18 陶氏康宁东丽株式会社 Silver-based powder, method of preparation thereof, and curable silicone composition
US7700678B2 (en) 2002-11-29 2010-04-20 Dow Corning Toray Company, Ltd. Silver-based powder, method of preparation thereof, and curable silicone composition
KR101049693B1 (en) 2002-11-29 2011-07-19 다우 코닝 도레이 캄파니 리미티드 Silver powder, preparation method thereof and curable silicone composition
US7195721B2 (en) * 2003-08-18 2007-03-27 Gurin Michael H Quantum lilypads and amplifiers and methods of use

Similar Documents

Publication Publication Date Title
JPS6016041B2 (en) Paste for forming thick film conductors
JPS6355807A (en) Conducting paste
JP3879749B2 (en) Conductive powder and method for producing the same
JPS58103565A (en) Electrically conductive paint
US4567111A (en) Conductive pigment-coated surfaces
JPS58103567A (en) Electrically conductive paint
JPS58104970A (en) Electrically conductive paint
JPS61185806A (en) Conductive resin paste
JPS63125582A (en) Conductive paint
JPS58103566A (en) Electrically conductive paint
JPS58101167A (en) Electrically conductive paint
JPS6350384B2 (en)
JPS58104969A (en) Electrically conductive paint
JPS6253034B2 (en)
JPS6058268B2 (en) Conductive copper paste composition
JPS63125583A (en) Conductive paint
JPH0259563B2 (en)
JPH01201486A (en) Ag plated powder for electrically conductive paint having superior migration resistance
JPH0436903A (en) Copper conductive paste
JPS6356643B2 (en)
JPS6274967A (en) Conductive coating
JP3850725B2 (en) Conductive paste
JPS6185703A (en) Conductor material composition
JPS6121577B2 (en)
JPH0472367A (en) Electrically conductive composition