JPS581015A - Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance - Google Patents
Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistanceInfo
- Publication number
- JPS581015A JPS581015A JP9835281A JP9835281A JPS581015A JP S581015 A JPS581015 A JP S581015A JP 9835281 A JP9835281 A JP 9835281A JP 9835281 A JP9835281 A JP 9835281A JP S581015 A JPS581015 A JP S581015A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- hydrogen
- induced cracking
- hot coil
- cracking resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は耐水素誘起割れ性に優れ友高靭性極低炭素ホッ
トコイルの製造方法に係り、特に耐水素誘起割れ性と靭
性に優れ、石油中天然ガスなどの輸送管ないし貯蔵用タ
ンクなどの素材に適した極低炭素鋼ホットコイル材の好
ましい製造方法を提供しようとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an ultra-low carbon hot coil with excellent hydrogen-induced cracking resistance and high toughness, particularly for use in transportation pipes for natural gas in petroleum, etc. The present invention aims to provide a preferable method for producing ultra-low carbon steel hot coil material suitable for materials such as storage tanks.
近年石油消費量の増加に伴う油田の開発と/4イブライ
ンの敷設が多く計画されて−るが、このような場合にお
いてその石油中天然ガス等のl々イデ輸送中貯蔵タンク
などはそれらに含有される硫化水素と水との共存条件下
にあって鋼表面が著しく腐食される。即ち上記したよう
な条件下における腐食によって発生し九水素は鋼中に侵
入し、伸延され九−8などの硫化物系介在物の両辺に凝
集して内圧な高める結果、板厚方向に平行な水素誘起割
れを生じ、場合によって板厚方向に貫通して鋼材を破壊
する。このような湿性硫化水素腐食環境における鋼中へ
の水素侵入防止手段として従来から鋼KO,25−以上
のCIIを添加して耐食性および耐水嵩透過性の高い保
農皮膜を形成させることにより水素誘起割れの発生を防
止する−のである。然し実用鋼塊の中央偏析部はS、C
,−などの不純物元素ないし水嵩誘起割れ感受性を増大
する元素が偏集している丸め仁のCm添加処理だけで割
れ発生を完全に防止することは困難であって、卸ちCm
添加鋼でもその使用される環境条件が厳しく、鍔えば共
存水分の酸性度が−4,6以下の場合には上述の耐食性
皮膜が形成されない丸め水素誘起割れの多発する可能性
が大きい。この丸め斯か石苛酷な腐食環境に使用される
鋼にはS含有量を低下させて水素誘起割れの発生起点と
なる硫化物系介在物を減少させえり、或いはC1や希土
類元素を添加してこれら非金属介在物の形状を制御し水
素誘起割れ感受性を低下させる必要がある。然し実用鋼
塊全体について均一なレベルでその8含有量低下を図る
ことは困難であシ、又鋼塊全体にわ九って効果的な非金
属介在物の形態制御を行うことも非常に難かしいもので
あって、特に鋼塊沈澱1部にはCmや希土類元素の介在
物が集積し易い丸め却って割れ感受性を高める結果にな
ることは公知の通りである。In recent years, with the increase in oil consumption, there have been many plans for the development of oil fields and the installation of oil lines, but in such cases, storage tanks for the natural gas contained in the oil, etc., during transportation are often planned. Under the coexisting conditions of hydrogen sulfide and water, the steel surface is severely corroded. That is, hydrogen 9 generated by corrosion under the above conditions penetrates into the steel, is elongated, and aggregates on both sides of sulfide inclusions such as 9-8, increasing the internal pressure. Hydrogen-induced cracking occurs, and in some cases, it penetrates through the thickness direction and destroys the steel material. As a means to prevent hydrogen from entering steel in such a wet hydrogen sulfide corrosive environment, hydrogen induction has been conventionally achieved by adding CII of 25 or more to steel KO and forming a protective film with high corrosion resistance and bulk water permeability. This prevents the occurrence of cracks. However, the central segregation part of a practical steel ingot is S, C
It is difficult to completely prevent cracking by simply adding Cm to rounded grains, in which impurity elements such as , -, or elements that increase water volume-induced cracking susceptibility are concentrated;
Even with additive steel, if the environmental conditions in which it is used are severe, and the acidity of the coexisting moisture is -4.6 or less, there is a high possibility that the above-mentioned corrosion-resistant film will not be formed and hydrogen-induced cracking will occur frequently. Steel used in this harsh corrosive environment can be made by lowering the S content to reduce sulfide inclusions, which are the starting point for hydrogen-induced cracking, or by adding C1 or rare earth elements. It is necessary to control the shape of these nonmetallic inclusions to reduce the susceptibility to hydrogen-induced cracking. However, it is difficult to reduce the content of nonmetallic inclusions at a uniform level throughout the entire steel ingot, and it is also extremely difficult to effectively control the morphology of nonmetallic inclusions throughout the entire steel ingot. It is well known that Cm and rare earth element inclusions tend to accumulate particularly in one part of the steel ingot precipitate, resulting in increased cracking susceptibility.
一方ホットコイル材における水素誘起割れ感受性はプレ
ート材よ)も大であって、その割れ形態は階段状に連結
し易匹九め板厚方向に貫通する危険性は頗る大である。On the other hand, the susceptibility of hot coil materials to hydrogen-induced cracking (compared to plate materials) is also greater, and the cracks are connected in a stepped manner, and the risk of penetrating through the plate thickness is extremely high.
蓋しこのホットコイル材とプレート材における水素誘起
割れ感受性について説明すると、ホットコイル材におい
てはプレート材における如く幅方向圧延という工程がな
く一方向に強圧下される丸め前記MIISがプレート材
に比し格段に伸長されているから割れ感受性がそれだけ
高くなる。又ホットコイル材はプレート材に比し一般的
に板厚が薄いので介在物の含有量が同一であるとしても
単位板厚方向断画積当シでみるとホットコイル材の方が
相当多くなるとともに板厚方向に平行な割れとして発生
した水嵩誘起割れ同志が階段状に連結して板厚を貫通す
る割れに発展する危険性もそれだけ大きい。更にホット
コイルは既述のように一方向強圧下条件で薄肉に圧延さ
れるためその圧延長も相当のものとなり、同−鋼板内で
もその産地初期と終点近傍とでは圧延条件が相当に変動
する場合がibり、又ホットコイルの製造においてはフ
ンアウトチーノル上での水冷による急冷工程とそれに続
くコイリングという独自の工程があり、これらの産地仕
上に温度、捲取り温度のような圧延条件の制“御によ抄
広範囲の材質のものが得られる利点はあるが、その同一
コイル内での圧延条件の変動があると、該変動が不可避
的であると意識的であるとを閥わず、割れ感受性の高−
ペイナイト組織がバンド状に形成され、耐水素誘起割れ
特性が著しく劣化する危険性がある。To explain the susceptibility to hydrogen-induced cracking in hot coil materials and plate materials for lids, hot coil materials do not have the process of rolling in the width direction like plate materials, and are rolled by strong rolling in one direction compared to plate materials. Since it has been elongated significantly, its susceptibility to cracking is increased accordingly. In addition, hot coil materials are generally thinner than plate materials, so even if the inclusion content is the same, hot coil materials will have considerably more inclusions in terms of cross-sectional area in the thickness direction. At the same time, there is a greater risk that water volume-induced cracks that occur as cracks parallel to the plate thickness direction will connect in a stepwise manner and develop into cracks penetrating the plate thickness. Furthermore, as mentioned above, hot coils are rolled into a thin wall under unidirectional strong reduction conditions, so the rolling length is considerable, and even within the same steel plate, the rolling conditions vary considerably between the initial stage of production and the vicinity of the final stage. In addition, in the production of hot coils, there is a unique process of rapid cooling with water on a funnel, followed by coiling. Although there is an advantage in that a wide range of materials can be obtained through control, if there are variations in rolling conditions within the same coil, it is important to note that such variations are unavoidable or deliberate. , high cracking susceptibility
There is a risk that the paynite structure will be formed in a band shape, and the hydrogen-induced cracking resistance will be significantly deteriorated.
本発明は上記したような実情に鑑み検討を重ねて創案さ
れ7’tものである。即ち本発明は鋼成分組成と圧延法
の両面から検討をなし、既述したような苛酷な腐食環境
条件下での使用に充分耐え、圧延条件の変動に対しても
優れた耐水素誘起割れ特性を示し、又靭性に優れ九引張
強さ45〜60#/關寓級のラインノ臂イ!用ホットコ
イル材を得ることに成功し九。The present invention was created after repeated studies in view of the above-mentioned actual circumstances. That is, the present invention has been studied from both the steel composition and the rolling method, and has developed a structure that can withstand use under the severe corrosive environment conditions mentioned above and has excellent hydrogen-induced cracking resistance against changes in rolling conditions. It also has excellent toughness and has a tensile strength of 45 to 60 #/Ganji grade! Successfully obtained hot coil material for 9.
斯かる本発明について更に説明すると、一般にホットコ
イル材における水嵩誘起割れの支配因子は、合金元素、
非金属介在物(特に伸延したIthlB介在物)とホッ
トコイル圧延条件の変動による顕微鏡組織である。特に
鋼中のC含有量を低下させると耐水素誘起割れ性が向上
し、0.0111未満の極低炭素系とすることにより耐
水素誘起割れ特性が著しく向上し、又高い靭性を具備し
丸鋼が得られる仁とを確認し九、更に極低炭素とし良丸
めにホツトフィル製造時における圧延条件の変動に対し
てもホットコイル材の顕微鏡組織はフェライト単相を呈
し、鋼の一含有量を1.901Z未満に抑えたことと相
俟って割れ感受性の高i低温変劇組織の形成は添附図面
代用写真に示すように皆無となる。即ち本発明における
鋼成分は、C: Q、G O1〜0.01 %、 St
:0.50−以下、I!lI: 0.50〜1.90%
、 P : 0.020−以下、Ji:0.003−以
下、M:0.070−以下とし、これにn : 0.0
1−0.10 %、Zr: 0.005〜6.1005
1%Ca: 0.0010〜0.00601を単独又は
複合して添加含有し、残部が鉄シよび不可避不純物から
成る極低炭素鋼であ夛、或いはこのような成分系鋼に更
IfCCu: 0.20−0.401.Cr: 0.5
0−以下、N1:0.20S以下、36 : 0.50
−以下。To further explain the present invention, generally speaking, the controlling factors for water volume induced cracking in hot coil materials are alloying elements,
The microstructure is due to nonmetallic inclusions (especially elongated IthlB inclusions) and variations in hot coil rolling conditions. In particular, reducing the C content in steel improves the hydrogen-induced cracking resistance, and by making it an ultra-low carbon content of less than 0.0111, the hydrogen-induced cracking resistance improves significantly, and it also has high toughness and roundness. We confirmed that the steel can be obtained with extremely low carbon content, and even with variations in rolling conditions during hot fill manufacturing, the microstructure of the hot coil material exhibits a single ferrite phase. Coupled with the fact that it is kept below 1.901Z, the formation of a crack-sensitive high-i low-temperature deformation structure is completely eliminated as shown in the attached photograph substituted for the drawing. That is, the steel components in the present invention are: C: Q, GO 1~0.01%, St
: 0.50- or less, I! lI: 0.50-1.90%
, P: 0.020- or less, Ji: 0.003- or less, M: 0.070- or less, and n: 0.0.
1-0.10%, Zr: 0.005-6.1005
1% Ca: 0.0010 to 0.00601 is added singly or in combination, and the remainder is iron and unavoidable impurities. IfCCu: 0 .20-0.401. Cr: 0.5
0- or less, N1: 0.20S or less, 36: 0.50
- Below.
Nb:CL10S以下、V:Q、1011以下、B=0
.0005〜Q、0050−の中の何れか1種又は2種
以上を含有させ九ものである。又斯かる極低炭素鋼又は
極低炭素低合金鋼に対する圧延法としては、その熱間圧
延に際し750〜850℃の温度範囲内で最終仕上げ圧
延を行い、550〜700℃の温度Ii囲内で捲取コイ
ルとするもので1Lこのようにすることによ)上記成分
系と相俟って靭性と耐水素誘起割れ性に対し優れた改善
を得しめることができる。Nb: CL10S or less, V: Q, 1011 or less, B=0
.. There are nine types containing one or more of 0005-Q and 0050-. In addition, as a rolling method for such ultra-low carbon steel or ultra-low carbon low alloy steel, the final finish rolling is performed within the temperature range of 750 to 850 °C during hot rolling, and the rolling is performed within the temperature range Ii of 550 to 700 °C. By doing this in one liter (1 L) in this way, in combination with the above-mentioned component system, excellent improvements in toughness and hydrogen-induced cracking resistance can be achieved.
上記し九ような本発@における鋼の成分限定理由につい
て説明すると以下の通シである。The reason for limiting the composition of the steel in the above-mentioned 9.1 is as follows.
Cは、o、oi−を超えて含有せしめられると、水素誘
起割れに有害なベイナイトや粒界炭化物が後述する熱間
圧延条件を採用して4発生する可能性が^い。又このC
を0.001−未満とすることは工業的に困−であ夛、
且つ鋼中酸素の増加によるフェライト粒界脆化を招くお
それがある。If C is contained in an amount exceeding o or oi-, there is a possibility that bainite and grain boundary carbides, which are harmful to hydrogen-induced cracking, will be generated under the hot rolling conditions described below. Also this C
It is industrially difficult to make the value less than 0.001.
In addition, there is a risk that ferrite grain boundary embrittlement may occur due to an increase in oxygen in the steel.
&は、脱酸の丸め添加するが%0.5091以上では靭
性が劣化するめでこれを上限とする。& is added for rounding for deoxidation, but if it exceeds 0.5091%, the toughness will deteriorate, so this is the upper limit.
−は、靭性の増加と脱酸剤として必要である。即ち0.
50−未満では充分な強靭性が得られないのでこれを下
限とするが、1.9−を超、えると水素誘起割れに有害
な低温変態組織の形成を助長するのでこれを上限とする
。- is needed to increase toughness and as a deoxidizer. That is, 0.
If it is less than 50, sufficient toughness cannot be obtained, so this is set as the lower limit, but if it exceeds 1.9, it promotes the formation of a low-temperature transformed structure that is harmful to hydrogen-induced cracking, so this is set as the upper limit.
Pは、ホットコイル材の場合、捲取後の徐冷によって焼
戻脆性を生ずる可能性があり、この焼戻脆性助長を抑制
するため0.020s以下とすることが必要である。In the case of a hot coil material, P may cause temper brittleness due to slow cooling after winding, and in order to suppress the promotion of this temper brittleness, it is necessary to set the P content to 0.020 s or less.
SFi、その含有量が増大するほど水素誘起割れ感受性
が増加する丸め上限を0.003−とする。なお工業的
にもo、ooos−tで低下させることは可能である。The rounding upper limit at which the hydrogen-induced cracking susceptibility increases as the SFi content increases is set to 0.003-. In addition, it is possible to lower it industrially by o, ooos-t.
Mは、脱酸の丸め必要であり、又顕微鏡組織の微細化に
も有効であるが、0.07−以上となれば靭性の劣化と
非金属介在物の増加を来し好ましくないのでこれを上限
とした。M is necessary for deoxidizing rounding and is also effective for refining the microstructure, but if it exceeds 0.07, it will cause deterioration of toughness and increase of non-metallic inclusions, which is undesirable. The upper limit was set.
n%Zr、 Cmは、鋼中の硫化物系非金属介在物の形
態および組成を効果的に制御する目的において添加する
が、7Z、Zrは0.10%を、又Ca#i0.006
1を超えて含有させてもその効果は飽和となり、経済的
にも不利となる。n%Zr and Cm are added for the purpose of effectively controlling the morphology and composition of sulfide-based nonmetallic inclusions in steel, but 7Z and Zr are added at 0.10%, and Ca#i0.006
Even if the content exceeds 1, the effect will be saturated and it will be economically disadvantageous.
一方、Cu、 Cr%Nl、 Mo、 Nb%V %B
は製造される鋼の性質に一層の改善を図る目的において
必要に応じ添加されるもので、これらの元素は耐水素誘
起割れ性、強度、靭性の向上に寄与し、鋼材に要求され
る特性、使用条件等を考慮して適正な範囲で1種又は2
種以上を組合わせて用いることができる。即ちこれらの
ものについて説明すると以下の通りである。On the other hand, Cu, Cr%Nl, Mo, Nb%V%B
These elements are added as necessary for the purpose of further improving the properties of manufactured steel.These elements contribute to improving hydrogen-induced cracking resistance, strength, and toughness, and improve the properties required for steel materials. Type 1 or 2 within an appropriate range considering usage conditions, etc.
More than one species can be used in combination. That is, a description of these items is as follows.
Cmは、強度の向上および水素の誘起割れ防止に効果を
有する元素であるが、0.20−以下ではこの効果は乏
しく、又0.60−以上では溶接性の劣化を来し、又熱
間加工性に悪影響を及ぼす。Cm is an element that is effective in improving strength and preventing hydrogen-induced cracking, but if it is less than 0.20, this effect will be poor, and if it is more than 0.60, it will cause deterioration in weldability, and Adversely affects workability.
Crは、強度の向上に有効であるが、O,SO−を超え
ても効果は飽和し、又経済的に4不利となる。Cr is effective in improving strength, but even if it exceeds O, SO-, the effect is saturated and there are 4 disadvantages economically.
N1は、鋼の強度、靭性な向上させる元素であるが、多
くなると水素の誘起割れ発生を促進させるため0.20
−を上限とする。N1 is an element that improves the strength and toughness of steel, but if it increases, it promotes hydrogen-induced cracking, so it is
− is the upper limit.
Nb、 Me、 V、 lは、必要な強度レベルを得る
ために添加してよいが、Nb、Vは0,1−1菖・は0
.5−1lはo、oos−を超えて添加してもその効果
は飽和状態となり、経済的にも不利である。Nb, Me, V, l may be added to obtain the required strength level, but Nb, V is 0, 1-1 irises is 0.
.. Even if 5-1l is added in excess of o, oos-, the effect will be saturated and it is economically disadvantageous.
次に本発明の圧延条件について説明すると、先ず最終仕
上げ温度は750〜850℃とする必要がある。即ち8
50℃を超えると仕上げ完了後におけるオーステナイト
粒がポリゴナルにして大きなものとなる丸めこれから変
態して生成するフェライト粒も大となシ、’Hs Sと
水の共存環境における腐責が生じ易くな多水素誘起割れ
抵抗を大とすることができなくなる。又この最終仕上げ
温度が750℃未満となると、フェライト・オーステナ
イト2相域で圧下が行われることとなル、ホットコイル
となつ良状態でもフェライトは圧延による歪みが相当残
留しているので耐水素誘起割れ特性を悪化せしめるとこ
ろとなる。捲取り温度については580〜700℃とす
る必要があるもので、この捲取り温iti前述のように
57アウトテーブル上での水冷によシ調整するものであ
るが、捲取シ4IkFi積層状態で徐冷されるとζろと
なる。この捲堆り温度が700℃を超えるときは高温か
らホットコイル材が徐冷されることとなり、本発明の目
的とするような強度が得られなi6又この捲堆り温度が
580℃以下であると捲取シ時にコイル材が受ける加工
歪みが大きなシ、シか4低温変態生成物がパ/ド状に生
成し易く表ることもあって、それらが耐水素誘起割れ特
性を悪化せしめることとなる。Next, the rolling conditions of the present invention will be explained. First, the final finishing temperature must be 750 to 850°C. That is 8
If the temperature exceeds 50℃, the austenite grains after finishing will become polygonal and large, and the ferrite grains that will be transformed and generated from this will also be large, and corrosion will easily occur in the environment where HsS and water coexist. It becomes impossible to increase hydrogen-induced cracking resistance. Also, if the final finishing temperature is less than 750℃, rolling will occur in the ferrite-austenite two-phase region, and even in a hot coil state, the ferrite still has considerable distortion from rolling, making it difficult to induce hydrogen resistance. This will worsen the cracking characteristics. The winding temperature needs to be 580 to 700°C, and as mentioned above, this winding temperature is adjusted by water cooling on the 57 out table. When it is gradually cooled, it becomes ζro. When this winding temperature exceeds 700°C, the hot coil material is slowly cooled from a high temperature, and the strength aimed at by the present invention cannot be obtained. If the coil material is subjected to large processing distortions during winding, low-temperature transformation products may easily form in pad/do shapes, which may worsen the hydrogen-induced cracking resistance. becomes.
本発明によるものの具体的な実施例について説明すると
以下の如くである。Specific embodiments of the present invention will be described below.
本発明者等が具体的KN用し九本発明による鋼およびこ
れに対する比較の丸めの鋼の化学成分は次の第1表に示
す通シであり、鋼ムは基本成分によるもの、鋼lはn%
Nkを含有し喪もの、鋼Cは各成分を複合添加したもの
、鋼りはそのCu、 Niを含有しないもので比較鋼は
七れらに対応した成分のものでCが本発明のものより高
く、又鋼g、Hでは2%84hKめであシ、鋼Ge1−
も高めである。The chemical compositions of the steel according to the present invention and the comparative round steel that the present inventors have specifically used for KN are as shown in Table 1 below, where steel is based on the basic composition, and steel is based on the basic composition. n%
Steel C contains Nk, and steel C is a composite addition of each component. Steel steel is a steel that does not contain Cu and Ni. Comparative steel is a steel with components corresponding to these seven elements, and C is a steel that does not contain Cu or Ni. High, steel g, H is 2% 84hK, steel Ge1-
It's also expensive.
上記のような各鋼片は1150〜1250℃に加熱し九
後、最終板厚13mのホットコイルとするためにホット
ストリップミルの最終仕上げ温度を750〜850℃と
し、又その後の捲取シ温度を550〜700℃の範囲と
した。Each steel billet as described above is heated to 1150-1250℃, and then the final finishing temperature in a hot strip mill is 750-850℃ to make a hot coil with a final plate thickness of 13m, and the subsequent winding temperature is was set in the range of 550 to 700°C.
これらのホットコイル材又はこれによって造管し九電縫
管について、引張シ試験、21EIIVノツチシヤルピ
ー術撃試験(何れ4C方向)および水素誘起割れ試験を
行つ九。なお水素誘起割れ試験片の形状は100mjX
20wWX11Wtとし、エラキングによシ中央偏析部
を現出させた個所から採堆し、人工海水(B、pH境、
pit二51)又はQ、5−酢酸+5−食塩水溶液(N
ACl[墳ph!中3.8)の夫々に硫化水素を飽和さ
せ九腐食環境中に応力無負荷で96時間浸漬し九後、取
出し友試験1鋼種当シ9断面の検鏡を実施して水素割れ
の判定をなした。These hot coil materials or the electrically welded pipes made using the same were subjected to a tensile test, a 21EIIV notched mechanical impact test (all in the 4C direction), and a hydrogen-induced cracking test. The shape of the hydrogen-induced cracking test piece is 100mj
20wW x 11Wt, collected from the area where the central segregated area was exposed by gill king, and artificial seawater (B, pH condition,
pit di51) or Q, 5-acetic acid + 5-saline solution (N
ACl [fun ph! Each of 3.8) was saturated with hydrogen sulfide and immersed in a corrosive environment for 96 hours with no stress applied. After that, a specimen was taken out and subjected to a microscopic examination of 9 cross sections of 1 steel type to determine hydrogen cracking. I did it.
このよう表各試験の結果をその具体的な圧即ち本発明に
おける成分範囲の鋼は何れのホットコイル製造圧延条件
においても、そのマTrsは(−100℃の優れた靭性
を有し、しかも腐食環境が−〈4,6の厳しい条件下に
おいても水素誘起割れの発生は皆無であつ九。This table shows the results of each test at its specific pressure, that is, the steel in the composition range of the present invention has excellent toughness (-100℃) and corrosion resistance under any hot coil manufacturing rolling conditions. There was no occurrence of hydrogen-induced cracking even under the severe environmental conditions of −4 and 6.
これに対し本発明における成分範囲外のものは腐食性が
禰々薯い硫化水素飽和の人工海水中でも軽微な割れが発
生し、更に腐食性が高い硫化水素飽和の0.51酢酸+
5s食塩水溶液では多数の水素誘起割れが熱間圧延条件
に関係なく発生し、水素誘起割れ感受性の高いことは明
かである。On the other hand, substances outside the range of ingredients in the present invention are highly corrosive and cause slight cracking even in hydrogen sulfide-saturated artificial seawater, and even more corrosive hydrogen sulfide-saturated 0.51 acetic acid +
In the 5s saline solution, many hydrogen-induced cracks occur regardless of the hot rolling conditions, and it is clear that the 5s saline solution is highly susceptible to hydrogen-induced cracks.
なお上記し友実施例に準じ、本発明における鋼に対し、
1200℃スラブ加熱→850℃仕上圧嬌→580℃捲
壜材による電縫鋼管の顕微鏡組織はli1図に示す通シ
でアク、又同じ<1200℃スラブ加熱→750℃仕上
圧嬌→580℃捲壜材による電縫鋼管の顕微−′″割れ
感受性の高い低温変態組織の形成は皆無状態である。In addition, according to the above-mentioned friend example, for the steel in the present invention,
1200°C slab heating → 850°C finishing compression → 580°C rolling The microscopic structure of the ERW steel pipe using the bottle material is clear as shown in Figure li1, and the same <1200°C slab heating → 750°C finishing pressing → 580°C rolling There is no formation of a low-temperature transformed structure that is highly susceptible to micro-''' cracking in the ERW steel pipe due to the bottle material.
以上説明し九ような本発明によるときは圧延条件の変動
に対しても耐水素誘起割れ性が劣化せしめられることな
く、靭性と共に優れ是耐水素誘起割れ特性を示すライン
・青イノ用その他に適し九ホットコイル材な的確に得し
めることができるものでアシ、工業的にその効果の太き
一発明である。As explained above, according to the present invention, the hydrogen-induced cracking resistance does not deteriorate even with changes in rolling conditions, and it exhibits excellent toughness and hydrogen-induced cracking resistance, making it suitable for lines, green ingots, and other applications. This invention is one of the most effective industrially, since it can be obtained accurately using nine hot coil materials.
図面は本発明の技術的内容を示すものであって、第1図
は本発明の実施例による1200℃スラブ加熱→85G
℃仕上圧嬌→580℃捲取材、第2図は1200℃スラ
ブ加熱→750℃仕上圧延→580℃捲取材の各顕微鏡
組織を示し九写真である。
特許出願人 日本鋼管株式会社
発 明 者 稲 垣 裕 輪間
中 沢 利 雄l!1
11
寥 211IThe drawings show the technical content of the present invention, and Figure 1 shows the heating of a slab at 1200°C → 85G according to an embodiment of the present invention.
℃ finish compression → 580℃ rolling rolling, and Figure 2 is nine photographs showing each microscopic structure of 1200℃ slab heating → 750℃ finishing rolling → 580℃ rolling. Patent applicant Nippon Kokan Co., Ltd. Inventor Yutaka Inagaki Wama
Toshio Nakazawa! 1
11 Treasure 211I
Claims (1)
下、m−&5−191、P:Q、015%以下、g:o
、oos*以下、#:0.0?−以下を含有するととも
に、n:0.01〜0.11G、 Zr: 0.01〜
0.14%Ca: G、001〜&0061iの何れか
1種又は2種以上を含有し、残部が鉄および不可避不純
物からなる鋼を熱間圧延において750〜sso℃の温
tsus内で最終仕上げ圧延し、580〜700℃で捲
堆ることを特徴とする耐水素誘起割れ性に優れ先高靭性
極低炭素ホットコイルの製造方法。 L Cm : 0.2〜0. @ −1Cr:O,S
11以下、N1:Q111i以下、Mo:Q、5−以下
、Nb:Q、1−以下、V:Q、1−以下、l:0.o
o05〜o、oos−の何れか1種又は2種以上をも含
有する鋼を用いる特許請求の範囲第1項に記載の耐水素
誘起割れ性に優れ先高靭性極低炭素ホットコイルの製造
方法。[Claims] 1, C: Q, 001-0.01%, st:o, s* or less, m-&5-191, P:Q, 015% or less, g:o
, oos* and below, #:0.0? -Contains the following, n: 0.01~0.11G, Zr: 0.01~
0.14% Ca: G, final finish rolling of steel containing one or more of 001 to &0061i, with the balance consisting of iron and unavoidable impurities at a temperature of 750 to sso°C. A method for producing an ultra-low carbon hot coil with excellent hydrogen-induced cracking resistance and high tip toughness, characterized by rolling the coil at 580 to 700°C. L Cm: 0.2-0. @-1Cr:O,S
11 or less, N1:Q111i or less, Mo:Q, 5- or less, Nb:Q, 1- or less, V:Q, 1- or less, l:0. o
A method for manufacturing an ultra-low carbon hot coil with excellent hydrogen-induced cracking resistance and high toughness according to claim 1, using steel containing one or more of o05 to o, and oos-. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9835281A JPS581015A (en) | 1981-06-26 | 1981-06-26 | Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9835281A JPS581015A (en) | 1981-06-26 | 1981-06-26 | Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS581015A true JPS581015A (en) | 1983-01-06 |
Family
ID=14217493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9835281A Pending JPS581015A (en) | 1981-06-26 | 1981-06-26 | Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS581015A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6169918A (en) * | 1984-09-12 | 1986-04-10 | Kawasaki Steel Corp | Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness |
JPS61221326A (en) * | 1985-03-27 | 1986-10-01 | Nippon Kokan Kk <Nkk> | Production of steel material having excellent resistance to sulfide corrosion cracking |
US4804021A (en) * | 1986-11-28 | 1989-02-14 | Nippon Steel Corporation | Highly tough ERW steel pipe with distinguished sour resistance |
US4979608A (en) * | 1988-07-04 | 1990-12-25 | Yamato Scale Company, Limited | Two trough, electromagnetically vibratory feeder |
-
1981
- 1981-06-26 JP JP9835281A patent/JPS581015A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6169918A (en) * | 1984-09-12 | 1986-04-10 | Kawasaki Steel Corp | Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness |
JPH0148335B2 (en) * | 1984-09-12 | 1989-10-18 | Kawasaki Steel Co | |
JPS61221326A (en) * | 1985-03-27 | 1986-10-01 | Nippon Kokan Kk <Nkk> | Production of steel material having excellent resistance to sulfide corrosion cracking |
US4804021A (en) * | 1986-11-28 | 1989-02-14 | Nippon Steel Corporation | Highly tough ERW steel pipe with distinguished sour resistance |
US4979608A (en) * | 1988-07-04 | 1990-12-25 | Yamato Scale Company, Limited | Two trough, electromagnetically vibratory feeder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100444248B1 (en) | High manganese duplex stainless steel having superior hot workabilities and method for manufacturing thereof | |
US11313007B2 (en) | High-strength seamless steel pipe for oil country tubular goods, and method for producing the same | |
CN105838992A (en) | High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe | |
CN111057945B (en) | 500 MPa-level high-toughness weather-resistant bridge steel and preparation method thereof | |
CN104099522B (en) | Without the manufacture method of copper nickel acid-resistant pipeline steel X52MS and hot-rolled sheet coil thereof | |
JP3732424B2 (en) | Manufacturing method of hot-rolled steel sheet with high weather resistance and high workability | |
CA2810167A1 (en) | High-strength steel sheet having improved resistance to fracture and to hic | |
JP6112273B1 (en) | Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them | |
US4325748A (en) | Method for producing steel plate having excellent resistance to hydrogen induced cracking | |
EP0375784B1 (en) | Flexible fluid transport pipe | |
CN112522602A (en) | Chromium-free molybdenum hot-rolled steel strip for H2S corrosion resistant L360MS spiral welded pipe and manufacturing method thereof | |
JP3379355B2 (en) | High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same | |
CN107974614A (en) | The production method of the X80 level pipe line steels of resistance against hydrogen cracking | |
US4388123A (en) | Method for the manufacture of steel suitable for electric-welded tubular products having superior resistance to sour gas | |
CN108411197B (en) | Thick X80 hot-rolled coil for phi 1422mm ultra-large-caliber spiral submerged arc welding pipe and manufacturing method thereof | |
JP3879723B2 (en) | High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same | |
WO2019180499A1 (en) | A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof | |
JPS581015A (en) | Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance | |
JPH06179910A (en) | Production of steel plate excellent in hydrogen induced cracking resistance | |
JP2002309349A (en) | Martensitic stainless steel with excellent strength stability | |
CN111961976A (en) | Steel, preparation method and application thereof | |
JPS581168B2 (en) | Greta Line Pipe Hot Coil Size Seizou Hohou | |
JPH08232042A (en) | Corrosion resisting steel for resistance welded tube | |
JPS581014A (en) | Production of hot coil having high hydrogen induced cracking resistance | |
JP3536752B2 (en) | Thin-walled steel plate with excellent resistance to hydrogen-induced cracking and method for producing the same |