[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1187702A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same

Info

Publication number
JPH1187702A
JPH1187702A JP24104197A JP24104197A JPH1187702A JP H1187702 A JPH1187702 A JP H1187702A JP 24104197 A JP24104197 A JP 24104197A JP 24104197 A JP24104197 A JP 24104197A JP H1187702 A JPH1187702 A JP H1187702A
Authority
JP
Japan
Prior art keywords
region
layer
insulating film
gate insulating
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24104197A
Other languages
Japanese (ja)
Inventor
Hideki Haruguchi
秀樹 春口
Hiroshi Yamaguchi
博史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24104197A priority Critical patent/JPH1187702A/en
Publication of JPH1187702A publication Critical patent/JPH1187702A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device such as IGBT, and its manufacturing method, wherein a gate oxide film in a channel region of which latch-up is easy to oxide is locally made thicker to increase a negative current which is controlled by a gate voltage, with an input capacity reduced. SOLUTION: A p<+> -layer 3 selectively formed on a surface part of an n<-> -layer 2, an n<+> -layer 4 formed in a ladder-form, on a surface part of the p<+> -layer 3, a gate electrode 5 formed, via a gate insulating film 6. on the surface of p<+> -layer 3 which is between the n<-> -layer 2 and the n<+> -layer 4. A source electrode 7 so formed as to contact a rung 8 of a ladder of the n<+> -layer 4, are provided, and an gate insulating film 6A at a ladder rung vicinity A of the n<+> -layer 4 is locally thicker than a gate insulating film 6B at a ladder opening part vicinity B, so that a Hall current value Jh at a channel region 10 at the vicinity A of a ladder rung 8 is low, resulting in a structure which is hard to be distracted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は絶縁ゲートを有す
る半導体装置に係り、特に電力用スイッチング素子とし
て好適なゲート絶縁型バイポーラトランジスタに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having an insulated gate, and more particularly to a gate insulated bipolar transistor suitable as a power switching element.

【0002】[0002]

【従来の技術】近年、電力用スイッチング素子として、
絶縁ゲート型バイポーラトランジスタ(以下、IGBT
と記す)と呼ばれる素子が注目されている。図4は従来
のIGBTの基本構成の平面と断面とを示す図であり、
図4aは平面図を、図4bは図4aにおけるI部分の断
面図を、図4cは図4aにおけるII部分の断面図を示
す。
2. Description of the Related Art In recent years, as a power switching element,
Insulated gate bipolar transistor (hereinafter IGBT)
) Is attracting attention. FIG. 4 is a diagram showing a plane and a cross section of a basic configuration of a conventional IGBT,
4A is a plan view, FIG. 4B is a cross-sectional view of a portion I in FIG. 4A, and FIG. 4C is a cross-sectional view of a II portion in FIG. 4A.

【0003】図4a〜図4cにおいて、1は高不純物濃
度で第1導電型の第1領域としてのp+層、2はp+層1
の上に形成された低不純物濃度で第2導電型の第2領域
としてのn-層、3はn-層2の表面部に帯状に選択的に
形成された高不純物濃度で第1導電型の第3領域として
のp+層、4はp+層3の表面部に、表面から見てはしご
形状に選択的に形成された高不純物濃度で第2導電型の
第4領域としてのn+層である。
4A to 4C, reference numeral 1 denotes a p + layer as a first region of a first conductivity type having a high impurity concentration, and 2 denotes a p + layer 1.
The n− layer 3 as a second region of the second conductivity type with a low impurity concentration formed thereon is formed with a high impurity concentration of the first conductivity type selectively formed in a band on the surface portion of the n− layer 2. Layer 4 as a third region, and n + as a fourth region of the second conductivity type with a high impurity concentration selectively formed in a ladder shape when viewed from the surface. Layer.

【0004】5はゲート電極、6はゲート絶縁膜として
のゲート酸化膜であり、n-層2及びn-層2とn+層4
とで挟まれたp+層3における表面上、及びn-層2の表
面上にゲート酸化膜6を介して帯状のゲート電極5が形
成されている。7はソース電極であり、ソース電極7は
はしご形状のn+層4におけるはしごの桟8の部分とこ
のはしごの開口部9に露出したp+層3との両方に接触
し、これらを覆うように帯状に形成されている。10は
チャネル領域であり、前記n-層2とn+層4とで挟まれ
たp+層3の表面近傍がチャネル領域10となる。11
はp+層1の他方の面上に形成されたコレクタ電極であ
る。IGBTの構造は上記の如くであり、縦型DMOS
といわれるパワーMOSFETのドレイン領域となるn
層をp層に置き換えたものということができる。
Reference numeral 5 denotes a gate electrode, 6 denotes a gate oxide film as a gate insulating film, and the n− layer 2 and the n− layer 2 and the n + layer 4
A band-shaped gate electrode 5 is formed on the surface of the p + layer 3 and the surface of the n − layer 2 with the gate oxide film 6 interposed therebetween. Reference numeral 7 denotes a source electrode. The source electrode 7 comes into contact with and covers both the portion of the ladder bar 8 in the ladder-shaped n + layer 4 and the p + layer 3 exposed in the opening 9 of the ladder. It is formed in a belt shape. Reference numeral 10 denotes a channel region, and the vicinity of the surface of the p + layer 3 sandwiched between the n − layer 2 and the n + layer 4 becomes a channel region 10. 11
Is a collector electrode formed on the other surface of the p + layer 1. The structure of the IGBT is as described above, and the vertical DMOS
N which becomes the drain region of the power MOSFET
It can be said that the layer is replaced with a p-layer.

【0005】以下、図4に示したIGBTの動作を説明
する。ソース電極7をアースとして、ゲート電極5及び
コレクタ電極11に正の電圧を加えると、ゲート電極5
の直下のp+層3の表面部が反転してn型のチャネルが
できる為に、このチャネル領域10を電流が流れ、この
IGBTはオン状態となる。このとき、コレクタ電極1
1側のp+層1からn-層2にホールの注入が起こること
による伝導度変調の効果により、n-層2の領域の抵抗
が低くなる。このIGBTはオン状態で、このように低
いオン抵抗を呈するが、反面、その構造から、寄生サイ
リスタ構造に基づくラッチングという現象が大きな欠点
になっている。
Hereinafter, the operation of the IGBT shown in FIG. 4 will be described. When a positive voltage is applied to the gate electrode 5 and the collector electrode 11 with the source electrode 7 being grounded, the gate electrode 5
Since the surface portion of the p + layer 3 immediately below is inverted to form an n-type channel, a current flows through the channel region 10 and the IGBT is turned on. At this time, the collector electrode 1
Due to the effect of conductivity modulation caused by the injection of holes from the p + layer 1 on the one side to the n − layer 2, the resistance in the region of the n − layer 2 decreases. This IGBT exhibits such a low on-resistance in the on state, but on the other hand, its structure has a serious drawback of a latching phenomenon based on a parasitic thyristor structure.

【0006】前記のようにIGBTがオンした状態で
は、コレクタ電極11側のp+層1からn-層2にホール
が注入される。このホールの一部はn+層4よりチャネ
ルを通ってn-層2に注入される電子と再結合して消滅
するが、一部はp+層3のピンチ抵抗部分を通り、ソー
ス電極7へと抜ける。このときp+層3とn+層4の間に
生じているビルトイン電圧の為に、ホールはn+層4の
中を通り抜けることはできない。
When the IGBT is turned on as described above, holes are injected from the p + layer 1 on the collector electrode 11 side to the n − layer 2. Some of the holes recombine with electrons injected from the n + layer 4 through the channel into the n − layer 2 and disappear, but a part passes through the pinch resistance portion of the p + layer 3 and the source electrode 7. Get out. At this time, the holes cannot pass through the n + layer 4 because of the built-in voltage generated between the p + layer 3 and the n + layer 4.

【0007】p+層3の中のホール電流が通過する部分
のピンチ抵抗をRbとし、通過するホール電流の値をJ
hとすると、RbとJhの積で表される電圧がp+層3とn
+層4の間に生じている。この電圧が前記ビルトイン電
圧よりも大きくなるとホールがn+層4へ注入され、こ
れに伴いn+層4からは電子が注入される。つまり、n+
層4とp+層3とn-層2とで形成されるnpnトランジス
タがオンし、n+層4、p+層3、n-層2及びp+層1と
で形成される寄生のnpnpサイリスタがラッチアップして
しまい、電流制御が不可能となり破壊に至る。破壊を防
ぐ為には、ピンチ抵抗Rb又はホール電流Jhの値を低く
する事が効果的である。
The pinch resistance of the portion of the p + layer 3 through which the hole current passes is Rb, and the value of the passing hole current is J.
h, the voltage expressed by the product of Rb and Jh is equal to p + layer 3 and n
+ Occurs between layers 4. When this voltage becomes higher than the built-in voltage, holes are injected into the n + layer 4, and accordingly, electrons are injected from the n + layer 4. That is, n +
An npn transistor formed by the layer 4, the p + layer 3, and the n− layer 2 is turned on, and a parasitic npnp formed by the n + layer 4, the p + layer 3, the n− layer 2, and the p + layer 1 is turned on. The thyristor latches up, making it impossible to control the current and leading to destruction. In order to prevent breakdown, it is effective to lower the value of the pinch resistance Rb or the hole current Jh.

【0008】[0008]

【発明が解決しようとする課題】従来の半導体装置とし
てのIGBTは、n+層4がはしご状に形成されてお
り、はしごの桟8の部分でソース電極7と接触している
が、ゲート電極5及びコレクタ電極11に正の電圧を加
えて、ゲート電極5の直下のp+層3の表面部にチャネ
ル領域10を形成した状態では、ソース電極7に近い部
分、即ち、はしごの桟8に近い部分ほどソース抵抗が少
ない為にこのはしごの桟8の近傍Aのチャネル領域10
を通して多くの電子電流が流れる。
In a conventional IGBT as a semiconductor device, an n @ + layer 4 is formed in a ladder shape, and a source electrode 7 is in contact with a ladder bar 8 but a gate electrode is formed. In the state where a positive voltage is applied to the gate electrode 5 and the collector electrode 11 to form the channel region 10 on the surface of the p + layer 3 immediately below the gate electrode 5, the portion close to the source electrode 7, that is, the ladder rail 8 The closer the portion is, the smaller the source resistance is.
Many electron currents flow through.

【0009】即ち、オン状態でn+層4からp+層3のチ
ャネル領域10を通ってn-層2へ注入される電子電流
量は、ソース電極7からの距離が短い程n-層2の拡散
抵抗が小さい為に大きくなる。電子が多い領域にはホー
ルも多く存在することよりn+層4のはしごの桟8の部
分はホール電流の値Jhが大きくなり、p+層3のチャネ
ル領域10におけるn+層4のはしごの桟8近傍Aは、
他の部分、例えば、n+層4のはしごの開口部9近傍B
と比較してラッチアップしやすいという問題点があっ
た。
That is, in the ON state, the amount of electron current injected from the n + layer 4 to the n − layer 2 through the channel region 10 of the p + layer 3 becomes smaller as the distance from the source electrode 7 becomes shorter. Becomes large because the diffusion resistance is small. Since there are many holes in the region where the number of electrons is large, the value of the hole current Jh in the ladder bar 8 of the n + layer 4 is large, and the ladder of the n + layer 4 in the channel region 10 of the p + layer 3 is large. A near the pier 8
Other parts, for example, near the ladder opening 9 of the n + layer 4 B
There is a problem that latch-up is easier than in the above.

【0010】この発明は上記のような問題点を解決する
為になされたもので、従来に比べ製造工程を増やすこと
なしにラッチアップしにくくし、即ち、十分に大きなラ
ッチング電流を可能にし、又、同時にゲートの入力容量
を減らした高周波数対応の半導体装置及びその製造方法
を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and makes it difficult to latch up without increasing the number of manufacturing steps as compared with the prior art, that is, it enables a sufficiently large latching current. It is another object of the present invention to provide a high-frequency compatible semiconductor device having a reduced gate input capacitance and a method of manufacturing the same.

【0011】[0011]

【課題を解決するための手段】第1の発明に係わる半導
体装置は、高不純物濃度で第1導電型の第1領域上に設
けられた低不純物濃度で第2導電型の第2領域、該第2
領域表面部に選択的に形成された第1導電型の第3領
域、該第3領域表面部に形成された複数の開口部を有す
高不純物濃度で第2導電型の第4領域、前記第2領域と
第4領域とで挟まれた第3領域の表面上にゲート絶縁膜
を介して形成されたゲート電極、前記第4領域における
複数の開口部間の領域に接触するように形成されたソー
ス電極を備え、前記第4領域における複数の開口部間の
領域近傍における前記第2領域と第4領域とで挟まれた
第3領域のゲート絶縁膜が前記開口部近傍における前記
第3領域のゲート絶縁膜よりも厚く形成されたものであ
る。
According to a first aspect of the present invention, there is provided a semiconductor device having a low impurity concentration second conductivity type second region provided on a high impurity concentration first conductivity type first region. Second
A third region of the first conductivity type selectively formed on the surface of the region, a fourth region of the second impurity type having a high impurity concentration and having a plurality of openings formed on the surface of the third region, A gate electrode formed on the surface of the third region sandwiched between the second region and the fourth region via a gate insulating film, formed so as to contact a region between the plurality of openings in the fourth region; A gate electrode in a third region between the second region and the fourth region near the region between the plurality of openings in the fourth region. Formed thicker than the gate insulating film.

【0012】第2の発明に係わる半導体装置は、第1の
発明に係わる半導体装置において、第4領域がはしご形
状に形成された複数の開口部を有し、ソース電極が前記
第4領域におけるはしごの桟の部分に接触するように形
成され、前記第4領域のはしごの桟近傍における第2領
域と前記第4領域とで挟まれた第3領域のゲート絶縁膜
がはしごの開口部近傍における前記第3領域のゲート絶
縁膜より厚く形成されたものである。
A semiconductor device according to a second aspect of the present invention is the semiconductor device according to the first aspect, wherein the fourth region has a plurality of ladder-shaped openings, and the source electrode has a ladder in the fourth region. The gate insulating film of the third region sandwiched between the second region and the fourth region in the vicinity of the ladder of the fourth region is formed so as to be in contact with the portion of the ladder of the fourth region. It is formed thicker than the gate insulating film in the third region.

【0013】第3の発明に係わる半導体装置の製造方法
は、第1又は第2の発明に係わる半導体装置における、
第4領域の開口部間の領域近傍における第2領域と前記
第4領域とで挟まれた第3領域のゲート絶縁膜及び該ゲ
ート絶縁膜と連続する前記第2領域のゲート絶縁膜を同
一工程で形成するものである。
According to a third aspect of the present invention, there is provided a method of manufacturing a semiconductor device according to the first or second aspect.
Forming a gate insulating film in a third region sandwiched between the second region and the fourth region near the region between the openings of the fourth region and a gate insulating film in the second region continuous with the gate insulating film in the same step; It is formed by.

【0014】第4の発明に係わる半導体装置は、高不純
物濃度で第1導電型の第1領域上に設けられた低不純物
濃度で第2導電型の第2領域、該第2領域表面部に選択
的に形成された第1導電型の第3領域、該第3領域表面
部に形成された開口部を有すと共に該開口部内周に突出
部を有す高不純物濃度で第2導電型の第4領域、前記第
2領域と第4領域とで挟まれた第3領域にゲート絶縁膜
を介して形成されたゲート電極、前記第4領域の開口部
内周の突出部に接触するように形成されたソース電極を
備え、前記第4領域の突出部近傍における前記第2領域
と第4領域とで挟まれた第3領域のゲート絶縁膜が前記
突出部近傍を除く前記第3領域のゲート絶縁膜よりも厚
く形成されたものである。
According to a fourth aspect of the present invention, there is provided a semiconductor device having a second region of a low impurity concentration and a second conductivity type provided on a first region of a high impurity concentration and a first conductivity type. A third region of the first conductivity type selectively formed, a second conductivity type with a high impurity concentration, having an opening formed in the surface of the third region, and having a protrusion on the inner periphery of the opening; A fourth region, a gate electrode formed in a third region sandwiched between the second region and the fourth region via a gate insulating film, formed so as to be in contact with a protrusion on the inner periphery of the opening of the fourth region; A gate electrode in a third region between the second region and the fourth region in the vicinity of the protrusion of the fourth region, and a gate insulation film in the third region excluding the vicinity of the protrusion. It is formed thicker than the film.

【0015】第5の発明に係わる半導体装置の製造方法
は、第4の発明に係わる半導体装置における、第2領域
と第4領域とで挟まれた第3領域表面上における前記第
4領域の開口部内周の突出部近傍のゲート絶縁膜及び該
突出部近傍のゲート絶縁膜と連続する前記第2領域表面
上のゲート絶縁膜を同一工程で形成するものである。
A method of manufacturing a semiconductor device according to a fifth aspect of the present invention is the semiconductor device according to the fourth aspect, wherein the opening of the fourth region on the surface of the third region sandwiched between the second and fourth regions. Forming a gate insulating film in the vicinity of the protruding portion on the inner periphery and a gate insulating film on the surface of the second region continuous with the gate insulating film in the vicinity of the protruding portion in the same step;

【0016】第6の発明に係わる半導体装置は、高不純
物濃度で第1導電型の第1領域上に設けられた低不純物
濃度で第2導電型の第2領域、該第2領域表面部に選択
的に形成された多角形状を為す第1導電型の第3領域、
該第3領域表面部に形成された多角形状で開口部を有す
る高不純物濃度で第2導電型の第4領域、前記第2領域
と第4領域とで挟まれた第3領域の表面上にゲート絶縁
膜を介して形成されたゲート電極、前記第4領域の内周
囲に接触するように形成されたソース電極を備え、前記
第4領域の角近傍における前記第2領域と第4領域とで
挟まれた第3領域のゲート絶縁膜が、前記角近傍を除く
辺近傍における第3領域のゲート絶縁膜よりも厚く形成
されたものである。
According to a sixth aspect of the present invention, there is provided a semiconductor device having a second region of a low impurity concentration and a second conductivity type provided on a first region of a first conductivity type with a high impurity concentration and a second region of the second region having a low impurity concentration. A third region of the first conductivity type having a polygonal shape formed selectively;
On the surface of the fourth region of the second conductivity type having a high impurity concentration and having a polygonal opening formed on the surface of the third region, and on the surface of the third region sandwiched between the second region and the fourth region. A gate electrode formed via a gate insulating film, a source electrode formed to be in contact with the inner periphery of the fourth region, and the second region and the fourth region in the vicinity of a corner of the fourth region; The gate insulating film in the third region sandwiched therebetween is formed to be thicker than the gate insulating film in the third region near the side excluding the corner.

【0017】第7の発明に係わる半導体装置の製造方法
は、第5の発明に係わる半導体装置における、第4領域
の角近傍における第2領域と第4領域とで挟まれた第3
領域のゲート絶縁膜及び該ゲート絶縁膜と連続する前記
第2領域のゲート絶縁膜を同一工程で形成するものであ
る。
The method of manufacturing a semiconductor device according to a seventh aspect of the present invention is directed to the semiconductor device according to the fifth aspect, wherein the third device sandwiched between the second region and the fourth region near the corner of the fourth region is provided.
The gate insulating film in the region and the gate insulating film in the second region continuous with the gate insulating film are formed in the same step.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.第1〜第3の発明の一実施の形態を図1
により説明する。図1は半導体装置としてのIGBTの
基本構成の平面と断面とを示す図であり、図1aは平面
図を、図1bは図1aにおけるI部分の断面図を、図1
cは図1aにおけるII部分の断面図を示す。図中、従来
例と同じ符号で示されたものは従来例のそれと同一もし
くは同等なものを示す。
Embodiment 1 FIG. FIG. 1 shows an embodiment of the first to third inventions.
This will be described below. 1A and 1B are a plan view and a cross-sectional view, respectively, of a basic configuration of an IGBT as a semiconductor device. FIG. 1A is a plan view, FIG. 1B is a cross-sectional view of a portion I in FIG.
c shows a sectional view of II part in FIG. 1a. In the figure, those denoted by the same reference numerals as those of the conventional example indicate the same or equivalent parts as those of the conventional example.

【0019】以下、図1に示したIGBTの動作を説明
する。従来例で説明したIGBTの場合と同様に、ソー
ス電極7をアースとして、ゲート電極5及びコレクタ電
極11に正の電流を加えると、ゲート電極5の直下のp
+層3の表面部が反転してn型のチャネルができるた
め、このチャネル領域10を電流が流れるが、p+層3
の中のホール電流が通過する部分のピンチ抵抗Rbと通
過するホール電流の値Jhとの積で表される電圧がp+層
3とn+層4の間に生じているビルトイン電圧よりも大
きくなると、n+層4、p+層3、n-層2、p+層1で形
成される寄生のnpnpサイリスタがラッチアップする。
Hereinafter, the operation of the IGBT shown in FIG. 1 will be described. As in the case of the IGBT described in the conventional example, when a positive current is applied to the gate electrode 5 and the collector electrode 11 with the source electrode 7 being grounded, p
Since the surface portion of + layer 3 is inverted to form an n-type channel, current flows through channel region 10, but p + layer 3
Is larger than the built-in voltage generated between the p + layer 3 and the n + layer 4 by the product of the pinch resistance Rb of the portion through which the hole current passes and the value Jh of the passing hole current. Then, the parasitic npnp thyristor formed by the n + layer 4, the p + layer 3, the n− layer 2, and the p + layer 1 latches up.

【0020】コレクタ電極11とゲート電極5に印加す
る電圧が一定の場合、IGBTに流れる電流値は前記n
型のチャネルを形成する為に必要なゲート電圧(以下、
Vthと記す)と相関があり、Vthが高いと電流が流れに
くいが、このVthを決定する要因はチャネル領域10に
おけるチャネル長、チャネルが形成されるp+層3の不
純物濃度及びゲート絶縁膜の厚さ等である。
When the voltage applied to the collector electrode 11 and the gate electrode 5 is constant, the value of the current flowing through the IGBT is n
Gate voltage required to form a channel of
Vth), the current hardly flows when Vth is high, but the factors that determine Vth are the channel length in the channel region 10, the impurity concentration of the p + layer 3 where the channel is formed, and the gate insulating film. Thickness and the like.

【0021】第1及び第2の発明に係わるIGBTは、
図1b、図1cに示すごとく、はしご形状に形成された
複数の開口部9を有するn+層4における、開口部9間
の領域であるはしごの桟8近傍Aのゲート酸化膜6Aを
他の部分、即ち、n+層4のはしごの開口部9近傍Bの
ゲート酸化膜6Bより厚く形成することで、局所的にV
thを高くしたものである。この結果、従来、ラッチアッ
プを起こしやすかったn+層4のはしごの桟8近傍Aの
チャネル領域10におけるホール電流の値Jhが低くな
り、破壊しにくい構造となった。
The IGBT according to the first and second inventions is
As shown in FIGS. 1B and 1C, in the n + layer 4 having a plurality of openings 9 formed in a ladder shape, the gate oxide film 6A in the vicinity of the ladder bar 8 which is a region between the openings 9 is separated from the other. By forming a portion thicker than the gate oxide film 6B in the vicinity of the opening 9 of the ladder of the n + layer 4, the V +
The th is higher. As a result, the value Jh of the hole current in the channel region 10 in the vicinity A of the ladder bar 8 of the n + layer 4 where the latch-up is apt to occur conventionally becomes low, and the structure is hardly broken.

【0022】以上のごとく、ソース電極7と接触してい
るn+層4近傍のチャネル領域表面上のゲート酸化膜の
少なくとも一部分を他の部分より厚く形成することによ
り、Vthを局所的に高くして電流を流れにくくし、ラッ
チング現象を起こりにくくして高破壊耐量を得ると共
に、ゲート電極5の入力容量Ciesを減らし、高周波数
での動作を可能とした。
As described above, by forming at least a portion of the gate oxide film on the surface of the channel region near the n + layer 4 in contact with the source electrode 7 to be thicker than the other portions, Vth is locally increased. As a result, it is difficult to cause a current to flow, a latching phenomenon is less likely to occur and a high breakdown strength is obtained, and the input capacitance Cies of the gate electrode 5 is reduced, thereby enabling operation at a high frequency.

【0023】図1に示した実施の形態はn+層4がはし
ご形状をなすものであるが、第4の領域としてのn+層
4ははしご形状に限定されるものではなく、n+層4に
複数の任意の形状の開口部を有し、ソース電極7がn+
層4における開口部間の領域に接触するように形成さ
れ、ソース電極7と接触しているn+層4における開口
部間の領域近傍におけるn+層2とn+層4で挟まれたp
+層3(チャネル領域)表面上のゲート絶縁膜がn+層4
の開口部近傍における前記p+層3(チャネル領域)表
面上のゲート絶縁膜よりも厚く形成されたものであって
も同様な効果が得られる。
In the embodiment shown in FIG. 1, the n + layer 4 has a ladder shape, but the n + layer 4 as the fourth region is not limited to the ladder shape. 4 has a plurality of openings of any shape, and the source electrode 7 has n +
P is formed so as to be in contact with a region between openings in layer 4 and is sandwiched between n + layers 2 and 4 in the vicinity of a region between openings in n + layer 4 that is in contact with source electrode 7.
The gate insulating film on the surface of the + layer 3 (channel region) is the n + layer 4
A similar effect can be obtained even if the gate insulating film is formed thicker than the gate insulating film on the surface of the p + layer 3 (channel region) near the opening.

【0024】次に、第3の発明に係わる半導体装置の製
造方法について説明する。図1に示したIGBTの製造
工程において、n+層4における複数の開口部9間の領
域としてのはしごの桟8近傍Aにおけるp+層3表面上
のゲート酸化膜6Aを開口部9近傍Bにおけるp+層3
表面上のゲート酸化膜6Bよりも厚く、局所的かつ選択
的に形成するに際し、このはしごの桟8近傍Aのゲート
酸化膜6Aを、p+層3と接するn-層2の表面上のゲー
ト酸化膜6Cと同時に、同一工程にて形成する。このゲ
ート酸化膜6Aとゲート酸化膜6Cとはほぼ同一の絶縁
厚さに形成されるので、この製造方式によれば、従来の
製法に比べ、製造工程数を増やすことなくp+層3のチ
ャネル領域10の表面上のゲート酸化膜を局所的かつ選
択的に厚く形成することができる。
Next, a method of manufacturing a semiconductor device according to the third invention will be described. In the manufacturing process of the IGBT shown in FIG. 1, the gate oxide film 6A on the surface of the p + layer 3 in the vicinity A of the ladder bar 8 as a region between the plurality of openings 9 in the n + layer 4 P + layer 3 in
When locally and selectively forming a gate oxide film 6A thicker than the gate oxide film 6B on the surface, the gate oxide film 6A in the vicinity A of the ladder bar 8 is formed on the surface of the n− layer 2 in contact with the p + layer 3. It is formed in the same step as the oxide film 6C. Since the gate oxide film 6A and the gate oxide film 6C are formed with substantially the same insulating thickness, according to this manufacturing method, the channel of the p + layer 3 can be formed without increasing the number of manufacturing steps as compared with the conventional manufacturing method. The gate oxide film on the surface of the region 10 can be locally and selectively formed thick.

【0025】実施の形態2.次に、第4及び第5の発明
の一実施の形態を図2により説明する。図2は半導体装
置としてのIGBTの基本構成の平面と断面とを示す図
であり、図2aは平面図を、図2bは図2aにおけるI
部分の断面図を、図2cは図2aにおけるII部分の断面
図を示す。
Embodiment 2 Next, one embodiment of the fourth and fifth inventions will be described with reference to FIG. 2A and 2B are a plan view and a sectional view, respectively, showing the basic structure of an IGBT as a semiconductor device. FIG. 2A is a plan view, and FIG.
FIG. 2c is a cross-sectional view of the portion II in FIG. 2a.

【0026】図2a〜図2cにおいて、3はn-層2の
表面部に選択的に形成された高不純物濃度で第1導電型
の第3領域としてのp+層3であり、六角形状に形成さ
れている。
In FIGS. 2A to 2C, reference numeral 3 denotes a p + layer 3 as a third region of the first conductivity type having a high impurity concentration and selectively formed on the surface portion of the n − layer 2, and has a hexagonal shape. Is formed.

【0027】4はp+層3の表面部に選択的に形成され
た高不純物濃度で第2導電型の第4領域としてのn+
層、7はソース電極であり、n+層4には表面から見て
対向する位置に対を為す突出部12を有する六角形状の
開口部9が形成されている。又、ソース電極7はn+層
4の開口部9の中央に位置し、前記突出部12と開口部
9に露出したp+層3との両方に接触するように形成さ
れている。5はゲート電極、6はゲート絶縁膜としての
ゲート酸化膜であり、前記n-層2とn+層4とで挟まれ
たp+層3の表面近傍がチャネル領域10となる。
Reference numeral 4 denotes a high impurity concentration selectively formed on the surface of the p + layer 3 and an n + as a fourth region of the second conductivity type.
A layer 7 is a source electrode, and a hexagonal opening 9 having a pair of projecting portions 12 is formed in the n + layer 4 at a position facing each other when viewed from the surface. The source electrode 7 is located at the center of the opening 9 of the n + layer 4 and is formed so as to be in contact with both the protrusion 12 and the p + layer 3 exposed at the opening 9. Reference numeral 5 denotes a gate electrode, and reference numeral 6 denotes a gate oxide film as a gate insulating film. The vicinity of the surface of the p + layer 3 sandwiched between the n − layer 2 and the n + layer 4 becomes a channel region 10.

【0028】第4の発明に係わるIGBTは、図2b、
図2cに示すごとく、ソース電極7と接触しているn+
層4の突出部12近傍Aにおけるp+層3(チャネル領
域10)表面上のゲート酸化膜6Aがその他の部分B、
即ち、n+層4の突出部12近傍Aから離れたp+層3
(チャネル領域10)の表面上のゲート酸化膜6Bより
も厚く形成されている。この結果として、図1に示した
第1、第2の発明の実施の形態の場合と同様に、Vthを
局所的に高くでき、ラッチアップを起こしやすいn+層
4の突出部12近傍におけるチャネル領域10のホール
電流値Jhを低くでき、破壊しにくい構造が得られる。
The IGBT according to the fourth invention is shown in FIG.
As shown in FIG. 2c, n + in contact with the source electrode 7
The gate oxide film 6A on the surface of the p + layer 3 (channel region 10) in the vicinity A of the protruding portion 12 of the layer 4 is
That is, the p + layer 3 remote from the vicinity A of the protruding portion 12 of the n + layer 4
It is formed thicker than the gate oxide film 6B on the surface of the (channel region 10). As a result, similarly to the first and second embodiments of the invention shown in FIG. 1, Vth can be locally increased, and the channel in the vicinity of the protruding portion 12 of the n + layer 4 which is liable to cause latch-up. The hole current value Jh in the region 10 can be reduced, and a structure that is not easily broken can be obtained.

【0029】以上のごとく、n+層4がはしご状に形成
されていない場合でも、n+層4とソース電極7が接触
している近傍のチャネル領域表面上のゲート酸化膜の少
なくとも一部分を他の部分より厚く形成することによ
り、Vthを局所的に高くして電流を流れにくくし、ラッ
チング現象を起こりにくくして高破壊耐量を得ると共
に、ゲート電極5の入力容量を減らし、高周波数での動
作を可能とした。
As described above, even when the n + layer 4 is not formed in a ladder shape, at least a portion of the gate oxide film on the surface of the channel region near the contact between the n + layer 4 and the source electrode 7 is removed. By increasing the thickness locally, the Vth is locally increased to make it difficult for current to flow, the latching phenomenon is less likely to occur and a high breakdown strength is obtained, and the input capacitance of the gate electrode 5 is reduced, and Operation enabled.

【0030】上記実施の形態は、第4領域としてのn+
層4が六角形状をなし、対を為す突出部12が角部の内
側に位置していたが、六角形状に限定されるものではな
く、その他の多角形、丸形、細長型等、任意の形状のセ
ルに適用できる。例えば、図1に示した実施の形態にお
いて、はしご形状をなすn+層4におけるはしごの桟8
の代わりに対をなす複数の突出部12が形成され、これ
らの対をなす複数の突出部12がソース電極7と接触し
ている形状であっても、図1に示した実施の形態と同様
な効果が得られる。
In the above embodiment, the n + as the fourth region
The layer 4 has a hexagonal shape, and the paired protrusions 12 are located inside the corners. However, the present invention is not limited to the hexagonal shape, and any other polygons, rounds, elongated shapes, etc. Applicable to shaped cells. For example, in the embodiment shown in FIG. 1, the ladder bar 8 in the ladder-shaped n + layer 4 is formed.
Instead of the embodiment, a plurality of pairs of protrusions 12 are formed, and the plurality of pairs of protrusions 12 are in contact with the source electrode 7 in the same manner as in the embodiment shown in FIG. Effects can be obtained.

【0031】上記例において、複数の突出部12は必ず
しも対をなす必要はなく、任意に突出したものであって
も、例えば細長型の開口内周部に千鳥足状に複数の突出
部12が形成され、これらの複数の突出部12がソース
電極7と接触している形状であっても、図1に示した実
施の形態と同様な効果が得られる。
In the above example, the plurality of protruding portions 12 do not necessarily have to form a pair, and even if they protrude arbitrarily, the plurality of protruding portions 12 are formed, for example, in a staggered manner on the inner peripheral portion of the elongated opening. Thus, even if the plurality of protrusions 12 are in contact with the source electrode 7, the same effect as that of the embodiment shown in FIG. 1 can be obtained.

【0032】尚、図2に示した実施の形態において、対
を為す突出部12が中央部で一体に接合したものは、第
1の発明に相当し、当然、図2に示した実施の形態と同
様な効果が得られる。
The embodiment shown in FIG. 2 in which the pair of projecting portions 12 are integrally joined at the center corresponds to the first invention, and naturally, the embodiment shown in FIG. The same effect can be obtained.

【0033】次に、第5の発明に係わる半導体装置の製
造方法について説明する。図2に示したIGBTのゲー
ト酸化膜6の形成工程において、n+層4の突出部12
近傍Aから離れたp+層3(チャネル領域10)表面上
Bを除く、ソース電極7と接触しているn+層4の突出
部12近傍Aにおけるチャネル領域10のゲート酸化膜
6A及びこのp+層3(チャネル領域10)に接するn-
層2の表面上のゲート酸化膜6Cを同時に、同一工程で
形成する。
Next, a method of manufacturing a semiconductor device according to the fifth invention will be described. In the step of forming the gate oxide film 6 of the IGBT shown in FIG.
Except for the surface B of the p + layer 3 (channel region 10) remote from the vicinity A, the gate oxide film 6A of the channel region 10 and the gate oxide film 6A in the vicinity A of the protrusion 12 of the n + layer 4 in contact with the source electrode 7 N− in contact with + layer 3 (channel region 10)
A gate oxide film 6C on the surface of layer 2 is formed simultaneously and in the same step.

【0034】上記製造方式によれば、第3の発明に係わ
る半導体装置の製造方法と同様に、従来の製法に比べ、
製造工程数を増やすことなくp+層3のチャネル領域1
0の表面上のゲート酸化膜を局所的かつ選択的に厚く形
成することができる。
According to the above-described manufacturing method, as in the method of manufacturing a semiconductor device according to the third aspect, the manufacturing method is different from the conventional manufacturing method.
Channel region 1 of p + layer 3 without increasing the number of manufacturing steps
The thickness of the gate oxide film on the surface 0 can be locally and selectively increased.

【0035】実施の形態3.第6及び第7の発明の一実
施の形態を図3により説明する。図3はIGBTの基本
構成の平面図である。図において、3はn-層2の表面
部に選択的に形成された高不純物濃度で第1導電型の第
3領域としてのp+層であり、四角形状に形成されてい
る。4はp+層3の表面部に選択的に形成された高不純
物濃度で第2導電型の第4領域としての高不純物濃度の
n層であり、表面から見て四角形をなし、かつ、四角形
の開口部9を有し、開口部9からp+層3が露出してい
る。
Embodiment 3 FIG. One embodiment of the sixth and seventh inventions will be described with reference to FIG. FIG. 3 is a plan view of the basic configuration of the IGBT. In the figure, reference numeral 3 denotes a p + layer as a third region of the first conductivity type having a high impurity concentration selectively formed on the surface portion of the n − layer 2 and is formed in a square shape. Reference numeral 4 denotes an n-layer having a high impurity concentration selectively formed on the surface of the p + layer 3 and having a high impurity concentration as a second region of the second conductivity type, and has a quadrangular shape as viewed from the surface. And the p + layer 3 is exposed from the opening 9.

【0036】7はソース電極であり、四角形状をなし、
その外周がn+層4の開口部9における内周の全周囲と
接触すると共に、開口部9から露出しているp+層3と
も接触するように形成されている。5はゲート電極、6
はゲート絶縁膜としてのゲート酸化膜であり、前記n-
層2とn+層4とで挟まれたp+層3の表面近傍がチャネ
ル領域10となる。
Reference numeral 7 denotes a source electrode, which has a square shape,
The outer periphery thereof is formed so as to be in contact with the entire periphery of the inner periphery of the opening 9 of the n + layer 4 and also to contact the p + layer 3 exposed from the opening 9. 5 is a gate electrode, 6
Denotes a gate oxide film as a gate insulating film, and the n-
The vicinity of the surface of the p + layer 3 sandwiched between the layer 2 and the n + layer 4 is a channel region 10.

【0037】第6の発明に係わるIGBTにおいては、
図3より明らかなごとく、ソース電極7がn+層4の全
周囲と接触しているが、n+層4の角13の近傍Aにお
けるチャネル領域10表面上のゲート酸化膜6Aがその
他の部分、即ち、n+層4の角部分から離れた辺近傍B
におけるチャネル領域10表面上のゲート酸化膜6Bよ
りも厚く形成されたものである。
In the IGBT according to the sixth invention,
As is clear from FIG. 3, the source electrode 7 is in contact with the entire periphery of the n + layer 4, but the gate oxide film 6 A on the surface of the channel region 10 near the corner 13 of the n + layer 4 is That is, near the side B away from the corner of the n + layer 4
Is formed thicker than the gate oxide film 6B on the surface of the channel region 10 in FIG.

【0038】即ち、n+層4の全周囲とソース電極7が
均一に接触している様な構造であっても、セルの構造が
四角形の場合は第3領域の拡散濃度が不均一となる、即
ち、角部13の近傍の拡散濃度が低くなる。この為角張
った部分のVthが他の領域に比べて低くなり、電流が集
中する為Jhが大きくなり破壊しやくなるが、本発明で
はセルの角張った部分(図3の点線で囲まれた領域)の
ゲート酸化膜6Aを他の領域のゲート酸化膜6Bより厚
くし、局所的にVthを大きくしてやることで電流集中を
防ぎ、破壊耐量を大きくしている。
That is, even if the entire periphery of the n + layer 4 and the source electrode 7 are in uniform contact with each other, the diffusion concentration of the third region becomes non-uniform if the cell structure is square. That is, the diffusion density in the vicinity of the corner 13 decreases. For this reason, Vth of the angular portion becomes lower than that of the other regions, and Jh increases due to the concentration of current, which makes the cell more likely to be broken. However, in the present invention, the angular portion of the cell (the region surrounded by the dotted line in FIG. 3) 4) The gate oxide film 6A is thicker than the gate oxide film 6B in the other region, and the Vth is locally increased to prevent current concentration and increase the breakdown strength.

【0039】尚、図3には4角セルを描いているが、3
角形以上の多角形セルに対しても同様な効果が得られ
る。又、セルの角の部分が若干丸みを帯びていてもほぼ
同様な効果が得られる。
FIG. 3 shows a square cell.
A similar effect can be obtained for polygonal cells having more than a square. Also, even if the corners of the cell are slightly rounded, substantially the same effect can be obtained.

【0040】次に、第7の発明に係わる半導体装置の製
造方法について説明する。図3に示したIGBTのゲー
ト酸化膜6の形成工程において、n+層4の角近傍Aに
おけるチャネル領域10ゲート酸化膜6A及びこのチャ
ネル領域10に接するn-層2の表面上のゲート酸化膜
6Bを同時に形成する。この製造方式によれば、従来の
製法に比べ、製造工程数を増やすことなくp+層3のチ
ャネル領域10の表面上のゲート酸化膜を局所的かつ選
択的に厚く形成することができる。
Next, a method of manufacturing a semiconductor device according to the seventh invention will be described. In the step of forming the gate oxide film 6 of the IGBT shown in FIG. 3, the gate oxide film 6A on the channel region 10 near the corner A of the n + layer 4 and the gate oxide film on the surface of the n − layer 2 in contact with the channel region 10 6B are simultaneously formed. According to this manufacturing method, the gate oxide film on the surface of the channel region 10 of the p + layer 3 can be locally and selectively thickened without increasing the number of manufacturing steps as compared with the conventional manufacturing method.

【0041】尚、図1〜図3に示した実施の形態はnチ
ャネル型のIGBTに関するものであったが、nとpが
反転したpチャネル型のIGBTに適用した場合にも同
様な効果が得られる。又、IGBT以外の、寄生サイリ
スタ構造を有する全ての素子に適用した場合にも同様な
効果が得られる。
Although the embodiment shown in FIGS. 1 to 3 relates to an n-channel IGBT, the same effect can be obtained when applied to a p-channel IGBT in which n and p are inverted. can get. Similar effects can be obtained when the invention is applied to all devices having a parasitic thyristor structure other than the IGBT.

【0042】又、通常のIGBTは、第2領域としての
n-層2の表面部に複数の第3領域としてのp+層3が選
択的に形成され、それぞれのp+層3にIGBTセルが
形成されるが、この場合においても、当然、上記実施の
形態が適用できる。更に、この場合におけるゲート酸化
膜の形成工程において、ラッチング現象を起こしやすい
p+層3におけるチャネル領域部分のゲート酸化膜とこ
のチャネル領域に接するn-層2の表面上のゲート酸化
膜、即ち、第3領域と第3領域の間の第2領域としての
n-層2の表面上のゲート酸化膜とを同時に同一工程で
形成することにより、従来の製造方法に比べ、製造工程
数を増やすことなくp+層3のチャネル領域10の表面
上のゲート酸化膜を局所的かつ選択的に厚く形成するこ
とができる。
In a normal IGBT, a plurality of p + layers 3 as third regions are selectively formed on the surface of the n − layer 2 as second regions, and an IGBT cell is formed on each p + layer 3. Is formed, but also in this case, the above embodiment can be applied. Further, in the step of forming the gate oxide film in this case, the gate oxide film in the channel region portion of the p + layer 3 and the gate oxide film on the surface of the n − layer 2 in contact with the channel region, that is, the latching phenomenon is likely to occur. By simultaneously forming the gate oxide film on the surface of the n − layer 2 as the second region between the third region and the third region in the same step, the number of manufacturing steps can be increased as compared with the conventional manufacturing method. In addition, the gate oxide film on the surface of the channel region 10 of the p + layer 3 can be locally and selectively formed thick.

【0043】[0043]

【発明の効果】第1、第2、第4及び第6の発明によれ
ば、半導体装置の内部でラッチング現象を起こしやすい
部分のゲート酸化膜を局所的に厚くして電流を流れにく
くしたので、ラッチング電流の十分大きな素子を作る事
ができ、ゲート電圧により制御できる負荷電流の大きな
素子を得ることができると共に、ゲート酸化膜の厚い部
分が増えることで、入力容量Ciesを減らすことがで
き、高周波対応の素子とすることができる。
According to the first, second, fourth and sixth aspects of the present invention, the gate oxide film in the portion where the latching phenomenon is likely to occur in the semiconductor device is locally thickened so that the current does not easily flow. An element having a sufficiently large latching current can be produced, an element having a large load current controlled by the gate voltage can be obtained, and the input capacitance Cies can be reduced by increasing the thick portion of the gate oxide film. The element can be a high-frequency element.

【0044】又、第3、第5及び第7の発明によれば、
半導体装置のゲート酸化膜の形成工程において、ラッチ
ング現象を起こしやすいp+層におけるチャネル領域部
分のゲート酸化膜とこのチャネル領域に接するn-層の
表面上のゲート酸化膜とを同時に形成するようにしたの
で、従来の製造方法に比べ、製造工程数を増やすことな
くp+層のチャネル領域表面上のゲート酸化膜を局所的
かつ選択的に厚く形成することができる効果がある。
According to the third, fifth and seventh aspects of the present invention,
In a step of forming a gate oxide film of a semiconductor device, a gate oxide film in a channel region portion of a p + layer which is liable to cause a latching phenomenon and a gate oxide film on the surface of an n− layer in contact with the channel region are formed simultaneously. Therefore, as compared with the conventional manufacturing method, there is an effect that the gate oxide film on the surface of the channel region of the p + layer can be locally and selectively formed thick without increasing the number of manufacturing steps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1及び第3の発明の一実施の形態による半
導体装置の平面と断面を示す図である。
FIG. 1 is a plan view and a sectional view of a semiconductor device according to an embodiment of the first and third inventions.

【図2】 第4及び第5の発明の一実施の形態による半
導体装置の平面と断面を示す図である。
FIG. 2 is a diagram showing a plane and a cross section of a semiconductor device according to an embodiment of the fourth and fifth inventions.

【図3】 第6及び第7の発明の一実施の形態による半
導体装置の平面と断面を示す図である。
FIG. 3 is a diagram showing a plane and a cross section of a semiconductor device according to an embodiment of the sixth and seventh inventions.

【図4】 従来の半導体装置の平面と断面を示す図であ
る。
FIG. 4 is a diagram showing a plane and a cross section of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 p層(第1領域)、2 n層(第2領域)、3 p
拡散層(第3領域)、4 n拡散層(第4領域)、5
ゲート電極、6 ゲート酸化膜、7 ソース電極、8
はしごの桟部分、9 開口部、10 チャネル領域、1
1 コレクタ電極、12 突出部、13 角部
1 p layer (first region), 2 n layer (second region), 3 p layer
Diffusion layer (third region), 4n diffusion layer (fourth region), 5
Gate electrode, 6 Gate oxide film, 7 Source electrode, 8
Ladder beam, 9 opening, 10 channel area, 1
1 collector electrode, 12 protrusion, 13 corner

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高不純物濃度で第1導電型の第1領域上
に設けられた低不純物濃度で第2導電型の第2領域、該
第2領域表面部に選択的に形成された第1導電型の第3
領域、該第3領域表面部に形成された複数の開口部を有
す高不純物濃度で第2導電型の第4領域、前記第2領域
と第4領域とで挟まれた第3領域の表面上にゲート絶縁
膜を介して形成されたゲート電極、前記第4領域におけ
る複数の開口部間の領域に接触するように形成されたソ
ース電極を備え、前記第4領域における複数の開口部間
の領域近傍における前記第2領域と第4領域とで挟まれ
た第3領域のゲート絶縁膜が前記開口部近傍における前
記第3領域のゲート絶縁膜よりも厚く形成された半導体
装置。
1. A low impurity concentration second conductivity type second region provided on a high impurity concentration first conductivity type first region, and a first region selectively formed on a surface of the second region. Third of conductivity type
A region, a fourth region of a second conductivity type having a high impurity concentration and having a plurality of openings formed in a surface portion of the third region, and a surface of the third region sandwiched between the second region and the fourth region A gate electrode formed thereon with a gate insulating film interposed therebetween, a source electrode formed so as to contact a region between the plurality of openings in the fourth region, and a source electrode formed between the plurality of openings in the fourth region. A semiconductor device, wherein a gate insulating film in a third region near the region between the second region and the fourth region is formed thicker than a gate insulating film in the third region near the opening.
【請求項2】 請求項1記載の半導体装置において、
第4領域ははしご形状に形成された複数の開口部を有
し、ソース電極は前記第4領域におけるはしごの桟の部
分に接触するように形成され、前記第4領域のはしごの
桟近傍における第2領域と前記第4領域とで挟まれた第
3領域のゲート絶縁膜がはしごの開口部近傍における前
記第3領域のゲート絶縁膜より厚く形成された半導体装
置。
2. The semiconductor device according to claim 1, wherein
The fourth region has a plurality of openings formed in a ladder shape, and the source electrode is formed so as to be in contact with the ladder bar in the fourth region, and the fourth region has a ladder bar near the ladder bar in the fourth region. A semiconductor device in which a gate insulating film in a third region sandwiched between two regions and the fourth region is formed to be thicker than the gate insulating film in the third region near an opening of a ladder.
【請求項3】 請求項1又は請求項2記載の半導体装置
における、第4領域の開口部間領域近傍における第2領
域と前記第4領域とで挟まれた第3領域のゲート絶縁膜
及び該ゲート絶縁膜と連続する前記第2領域のゲート絶
縁膜を同一工程で形成することを特徴とする半導体装置
の製造方法。
3. The semiconductor device according to claim 1, wherein a gate insulating film in a third region sandwiched between the second region and the fourth region in the vicinity of the region between the openings in the fourth region, and A method for manufacturing a semiconductor device, comprising: forming a gate insulating film in the second region that is continuous with a gate insulating film in the same step.
【請求項4】 高不純物濃度で第1導電型の第1領域上
に設けられた低不純物濃度で第2導電型の第2領域、該
第2領域表面部に選択的に形成された第1導電型の第3
領域、該第3領域表面部に形成された開口部を有すと共
に該開口部内周に突出部を有す高不純物濃度で第2導電
型の第4領域、前記第2領域と第4領域とで挟まれた第
3領域にゲート絶縁膜を介して形成されたゲート電極、
前記第4領域の開口部内周の突出部に接触するように形
成されたソース電極を備え、前記第4領域の突出部近傍
における前記第2領域と第4領域とで挟まれた第3領域
のゲート絶縁膜が前記突出部近傍を除く前記第3領域の
ゲート絶縁膜よりも厚く形成された半導体装置。
4. A second region of a second conductivity type having a low impurity concentration provided on a first region of a first conductivity type having a high impurity concentration, and a first region selectively formed on a surface portion of the second region. Third of conductivity type
A fourth region of high impurity concentration and a second conductivity type having a region, an opening formed in the surface of the third region and a protrusion on the inner periphery of the opening, and the second region and the fourth region; A gate electrode formed via a gate insulating film in a third region sandwiched by
A source electrode formed so as to be in contact with a protrusion on the inner periphery of the opening of the fourth region; and a third region sandwiched between the second region and the fourth region in the vicinity of the protrusion of the fourth region. A semiconductor device in which a gate insulating film is formed thicker than a gate insulating film in the third region excluding the vicinity of the protrusion.
【請求項5】 請求項4記載の半導体装置における、第
2領域と第4領域とで挟まれた第3領域表面上における
前記第4領域の開口部内周の突出部近傍のゲート絶縁膜
及び該突出部近傍のゲート絶縁膜と連続する前記第2領
域表面上のゲート絶縁膜を同一工程で形成することを特
徴とする半導体装置の製造方法。
5. The semiconductor device according to claim 4, wherein the gate insulating film is formed on the surface of the third region sandwiched between the second region and the fourth region, near the protruding portion on the inner periphery of the opening of the fourth region. A method for manufacturing a semiconductor device, comprising: forming a gate insulating film on a surface of the second region which is continuous with a gate insulating film in the vicinity of a protrusion in the same step.
【請求項6】 高不純物濃度で第1導電型の第1領域上
に設けられた低不純物濃度で第2導電型の第2領域、該
第2領域表面部に選択的に形成された多角形状を為す第
1導電型の第3領域、該第3領域表面部に形成された多
角形状で開口部を有する高不純物濃度で第2導電型の第
4領域、前記第2領域と第4領域とで挟まれた第3領域
の表面上にゲート絶縁膜を介して形成されたゲート電
極、前記第4領域の内周囲に接触するように形成された
ソース電極を備え、前記第4領域の角近傍における前記
第2領域と第4領域とで挟まれた第3領域のゲート絶縁
膜が、前記角近傍を除く辺近傍における第3領域のゲー
ト絶縁膜よりも厚く形成された半導体装置。
6. A low impurity concentration second region of a second conductivity type provided on the first region of the first conductivity type with a high impurity concentration, and a polygonal shape selectively formed on the surface of the second region. A third region of the first conductivity type, a fourth region of the second conductivity type with a high impurity concentration and a polygonal opening formed in the surface of the third region, and the second and fourth regions. A gate electrode formed on the surface of the third region sandwiched by the gate insulating film via a gate insulating film, and a source electrode formed so as to be in contact with the inner periphery of the fourth region, and near a corner of the fourth region. In the semiconductor device, the gate insulating film in the third region sandwiched between the second region and the fourth region is formed thicker than the gate insulating film in the third region near the side excluding the corner.
【請求項7】 請求項5記載の半導体装置における、第
4領域の角近傍における第2領域と第4領域とで挟まれ
た第3領域のゲート絶縁膜及び該ゲート絶縁膜と連続す
る前記第2領域のゲート絶縁膜を同一工程で形成するこ
とを特徴とする半導体装置の製造方法。
7. The semiconductor device according to claim 5, wherein a gate insulating film in a third region between the second region and the fourth region in the vicinity of a corner of the fourth region and the first region continuous with the gate insulating film. A method for manufacturing a semiconductor device, comprising forming two regions of a gate insulating film in the same step.
JP24104197A 1997-09-05 1997-09-05 Semiconductor device and method for manufacturing the same Pending JPH1187702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24104197A JPH1187702A (en) 1997-09-05 1997-09-05 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24104197A JPH1187702A (en) 1997-09-05 1997-09-05 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JPH1187702A true JPH1187702A (en) 1999-03-30

Family

ID=17068442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24104197A Pending JPH1187702A (en) 1997-09-05 1997-09-05 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH1187702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091191A1 (en) * 2000-05-22 2001-11-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091191A1 (en) * 2000-05-22 2001-11-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6683348B1 (en) 2000-05-22 2004-01-27 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar semiconductor device transistor with a ladder shaped emitter

Similar Documents

Publication Publication Date Title
US8344480B2 (en) Insulated gate bipolar transistor
US6870200B2 (en) Insulated gate type semiconductor device having a diffusion region contacting bottom and side portions of trenches
US20030141542A1 (en) Insulated gate semiconductor device and method of manufacturing the same
US20030102486A1 (en) Semiconductor device with trench gate
JPH10178176A (en) Trench gate type insulated-gate bipolar transistor having trench gate structure
US6133607A (en) Semiconductor device
JP2001168333A (en) Semiconductor device equipped with trench gate
US10438946B2 (en) Semiconductor device and electrical apparatus
JPS62145777A (en) Insulated gate transistor in which latching is forbidden
US20060081919A1 (en) Semiconductor device
US7250639B1 (en) Insulated gate bipolar transistor
US6388280B2 (en) Semiconductor device
GB2572442A (en) Power semiconductor device with a double gate structure
US5079607A (en) Mos type semiconductor device
JP2864629B2 (en) Conductivity modulation type MOSFET
US20070075376A1 (en) Semiconductor device
JPH10173170A (en) Semiconductor device
US9153678B2 (en) Power semiconductor device and method of manufacturing the same
US5336907A (en) MOS gate controlled thyristor having improved turn on/turn off characteristics
KR100423369B1 (en) Semiconductor device
JPH1187702A (en) Semiconductor device and method for manufacturing the same
JPH07111324A (en) Insulated-gate type thyristor
KR0163928B1 (en) Emitter switch thrystor
JPH11195784A (en) Insulated-gate semiconductor element
JPH05190561A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040213

A131 Notification of reasons for refusal

Effective date: 20040217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615