[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1186885A - Cell of solid electrolyte fuel cell and manufacture thereof - Google Patents

Cell of solid electrolyte fuel cell and manufacture thereof

Info

Publication number
JPH1186885A
JPH1186885A JP9237942A JP23794297A JPH1186885A JP H1186885 A JPH1186885 A JP H1186885A JP 9237942 A JP9237942 A JP 9237942A JP 23794297 A JP23794297 A JP 23794297A JP H1186885 A JPH1186885 A JP H1186885A
Authority
JP
Japan
Prior art keywords
solid electrolyte
cell
fuel electrode
oxidizing agent
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9237942A
Other languages
Japanese (ja)
Inventor
Akihiro Yamashita
晃弘 山下
Tsutomu Hashimoto
勉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9237942A priority Critical patent/JPH1186885A/en
Publication of JPH1186885A publication Critical patent/JPH1186885A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell of a solid electrolyte fuel cell, having a solid electrolyte which does not generate an insulating material while having high denseness, and a manufacturing method therefor. SOLUTION: A fuel electrode 2 is arranged by applying slurry of a material of the fuel electrode 2 on an outer peripheral surface of a base body 1, and after a fuel electrode side solid electrolyte 3a is arranged by applying slurry of a material mainly composed of zirconia on an outer peripheral surface of the fuel electrode 2, an intermediate solid electrolyte 3b is arranged by applying slurry by adding 3 to 5 wt.% of an oxidizing agent, composed of at least either one of Al2 O3 or Bi2 O3 to a material composed mainly of zirconia on an outer peripheral surface of the fuel electrode side solid electrolyte 3a. Then, an air electrode 4 is arranged by applying slurry of a material of the air electrode 4 and is baked at a temperature of less than 1400 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池のセルおよびその製造方法に関する。
The present invention relates to a cell of a solid oxide fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、ジルコニアを
主成分とした材料からなる固体電解質を多孔質性の空気
極および燃料極で挟んで多孔質性の基体上に配設したセ
ルを備えてなっている。
2. Description of the Related Art A solid electrolyte fuel cell includes a cell in which a solid electrolyte made of a material containing zirconia as a main component is disposed on a porous substrate sandwiched between a porous air electrode and a fuel electrode. Has become.

【0003】このようなセルは、燃料極、固体電解質、
空気極などの各原料のスラリを基体上にそれぞれ塗布し
た後に焼結(1400〜1500℃)して成膜する(ス
ラリ一体焼結法)ことにより製造される。
Such a cell comprises an anode, a solid electrolyte,
It is manufactured by applying a slurry of each raw material such as an air electrode on a substrate and then sintering (1400 to 1500 ° C.) to form a film (slurry integrated sintering method).

【0004】このようなセルを用いた固体電解質型燃料
電池では、例えば、基体上に燃料極側を設けた場合、基
体の外側に空気や酸素などの酸化ガスを流通させ、基体
の内側に水素やメタンなどの燃料ガスを流通させる一
方、温度を約800〜1000℃まで上昇させると、燃
料ガスが基体および燃料極を透過すると共に、酸化ガス
が空気極を透過して、これらガスが固体電解質で電気化
学的に反応し、電力を得ることができる。
In a solid oxide fuel cell using such a cell, for example, when a fuel electrode side is provided on a substrate, an oxidizing gas such as air or oxygen flows through the outside of the substrate, and hydrogen flows inside the substrate. When the temperature is increased to about 800 to 1000 ° C. while flowing a fuel gas such as methane or methane, the fuel gas passes through the base and the fuel electrode, and the oxidizing gas passes through the air electrode. React electrochemically to generate electric power.

【0005】[0005]

【発明が解決しようとする課題】前述したような固体電
解質型燃料電池では、定格電流値での運転電圧が高いほ
ど望ましい。この運転電圧Eは、下記の式(1)で示さ
れるように、開回路電圧Vocからセルの内部抵抗による
低下電圧ΔVを差し引いた値となる。
In the solid oxide fuel cell as described above, the higher the operating voltage at the rated current value, the better. The operating voltage E is a value obtained by subtracting the voltage drop ΔV due to the internal resistance of the cell from the open circuit voltage V oc as shown in the following equation (1).

【0006】[0006]

【数1】E=Voc−ΔV (1)E = V oc −ΔV (1)

【0007】よって、運転電圧、すなわち、セルの作動
電圧を向上させるためには、上記低下電圧を小さくする
と共に、上記開回路電圧を高くする必要がある。この開
回路電圧(OCV)は、下記の式(2)で示されるよう
に、酸化ガス中の酸素分圧P O1(atm)と燃料ガス中
の酸素分圧Po2(atm)との比率および作動温度T
(K)により決定される。
Therefore, the operating voltage, that is, the operation of the cell
To improve the voltage, reduce the above-mentioned voltage drop
In addition, it is necessary to increase the open circuit voltage. This opening
The circuit voltage (OCV) is expressed by the following equation (2).
And the oxygen partial pressure P in the oxidizing gas O1(Atm) and in fuel gas
Oxygen partial pressure Po2(Atm) and operating temperature T
(K).

【0008】[0008]

【数2】 Voc=(RT/4F)×ln(PO1/Po2) (2) ただし、Rはガス定数、Fはファラデ定数である。V oc = (RT / 4F) × ln (P O1 / P o2 ) (2) where R is a gas constant and F is a Faraday constant.

【0009】このため、例えば、セルの酸化極側の酸化
ガスが燃料極側の燃料ガス中にリークしてしまうと、燃
料ガス中の酸素分圧が上昇して、開回路電圧が低下して
しまう。このようなセルにおいては、その専有面積の最
も大きい固体電解質部分でガスが最も多くリークしやす
いため、固体電解質を緻密にしてガスのリーク量を低減
する必要がある。
Therefore, for example, if the oxidizing gas on the oxidizing electrode side of the cell leaks into the fuel gas on the fuel electrode side, the oxygen partial pressure in the fuel gas increases, and the open circuit voltage decreases. I will. In such a cell, since the gas is most likely to leak in the solid electrolyte portion having the largest occupied area, it is necessary to reduce the amount of gas leakage by making the solid electrolyte dense.

【0010】そこで、先に説明したように、ジルコニア
を主成分とした難焼結性の材料からなる固体電解質を1
400℃以上の高温で焼成することにより、当該固体電
解質の緻密化を図るようにしているものの、1400℃
以上の高温で焼成すると、燃料極や空気極などの他の材
料と化学反応を起こして絶縁物を生成してしまう虞があ
る。
Therefore, as described above, one solid electrolyte made of a hardly sinterable material containing zirconia as a main component is used.
Although the solid electrolyte is densified by firing at a high temperature of 400 ° C. or higher,
When firing at the above high temperature, there is a possibility that a chemical reaction occurs with other materials such as a fuel electrode and an air electrode to generate an insulator.

【0011】このようなことから、本発明は、高い緻密
性を有しながらも絶縁物の生成がない固体電解質を備え
た固体電解質型燃料電池のセルおよびその製造方法を提
供することを目的とした。
In view of the above, an object of the present invention is to provide a cell of a solid oxide fuel cell having a solid electrolyte which has high density and does not generate an insulator, and a method of manufacturing the same. did.

【0012】[0012]

【課題を解決するための手段】前述した課題を解決する
ための、本発明による固体電解質型燃料電池のセルは、
固体電解質を燃料極と空気極とで挟んで基体上に設けた
固体電解質型燃料電池のセルであって、Al2 3 また
はBi2 3 のうちの少なくとも一方からなる酸化剤が
前記固体電解質中に含有されていることを特徴とする。
Means for Solving the Problems To solve the above-mentioned problems, a solid oxide fuel cell according to the present invention comprises:
A cell of a solid oxide fuel cell having a solid electrolyte sandwiched between a fuel electrode and an air electrode and provided on a substrate, wherein an oxidizing agent comprising at least one of Al 2 O 3 and Bi 2 O 3 is used as the solid electrolyte. It is characterized by being contained in.

【0013】上述の固体電解質型燃料電池のセルにおい
て、前記固体電解質が前記燃料極側に設けられた燃料極
側固体電解質と、前記空気極側に設けられた空気極側固
体電解質と、前記燃料極側固体電解質と前記空気極側固
体電解質との間に設けられた中間固体電解質とからな
り、前記中間固体電解質に前記酸化剤が含有されている
ことを特徴とする。
[0013] In the above-mentioned cell of the solid oxide fuel cell, the solid electrolyte is provided on the fuel electrode side on the fuel electrode side, the air electrode side solid electrolyte provided on the air electrode side, and It comprises an intermediate solid electrolyte provided between the electrode-side solid electrolyte and the air electrode-side solid electrolyte, wherein the intermediate solid electrolyte contains the oxidizing agent.

【0014】上述の固体電解質型燃料電池のセルにおい
て、前記酸化剤が3〜5wt%で含有されていることを特
徴とする。
In the above-mentioned solid oxide fuel cell, the oxidizing agent is contained in an amount of 3 to 5% by weight.

【0015】また、前述した課題を解決するための、本
発明による固体電解質型燃料電池のセルの製造方法は、
固体電解質を燃料極と空気極とで挟んで基体上に設ける
ように当該固体電解質、当該燃料極、当該空気極の各ス
ラリを当該基体に塗布して一体焼結する固体電解質型燃
料電池のセルの製造方法であって、Al2 3 またはB
2 3 のうちの少なくとも一方からなる酸化剤を添加
された前記固体電解質のスラリを塗布し、1400℃未
満の温度で一体焼結することを特徴とする。
[0015] Further, a method for manufacturing a cell of a solid oxide fuel cell according to the present invention, which solves the above-mentioned problems, comprises:
A cell of a solid oxide fuel cell in which the solid electrolyte, the fuel electrode, and the slurry of the air electrode are applied to the substrate and sintered integrally so that the solid electrolyte is provided on the substrate sandwiched between the fuel electrode and the air electrode. The method for producing Al 2 O 3 or B
A slurry of the solid electrolyte to which an oxidizing agent composed of at least one of i 2 O 3 is added is applied and sintered integrally at a temperature of less than 1400 ° C.

【0016】上述の固体電解質型燃料電池のセルの製造
方法において、前記酸化剤の添加された前記固体電解質
のスラリを塗布する前後に当該酸化剤の未添加の前記固
体電解質のスラリを塗布することを特徴とする。
In the above-mentioned method for manufacturing a cell of a solid oxide fuel cell, before and after applying the slurry of the solid electrolyte to which the oxidizing agent is added, the slurry of the solid electrolyte to which the oxidizing agent is not added is applied. It is characterized by.

【0017】上述の固体電解質型燃料電池のセルの製造
方法において、前記酸化剤の添加量が3〜5wt%である
ことを特徴とする。
In the above-described method for manufacturing a cell of a solid oxide fuel cell, the amount of the oxidizing agent is 3 to 5 wt%.

【0018】[0018]

【発明の実施の形態】本発明による固体電解質型燃料電
池のセルおよびその製造方法の実施の形態を図1を用い
て説明する。なお、図1は、そのセルの概略構成図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a solid oxide fuel cell according to the present invention and a method for manufacturing the same will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of the cell.

【0019】図1に示すように、円筒状をなす多孔質性
の基体1の外周面には、多孔質性の燃料極2が成膜され
ている。燃料極2の外周面上には、ジルコニアを主成分
とした材料からなる燃料極側固体電解質3aが成膜され
ている。燃料極側固体電解質3aの外周面には、ジルコ
ニアを主成分とした材料にAl2 3 またはBi2 3
のうちの少なくとも一方からなる酸化剤を3〜5wt%添
加した中間固体電解質3bが成膜されている。中間固体
電解質3bの外周面には、上記燃料極側固体電解質3a
と同様な材料からなる空気極側固体電解質3cが成膜さ
れている。空気極側固体電解質3cの外周面には、空気
極4が成膜されている。
As shown in FIG. 1, a porous material having a cylindrical shape
A porous fuel electrode 2 is formed on the outer peripheral surface of the base 1.
ing. Zirconia is the main component on the outer peripheral surface of the fuel electrode 2.
Of the fuel electrode side solid electrolyte 3a made of
ing. Zircon is provided on the outer peripheral surface of the fuel electrode side solid electrolyte 3a.
Al as a material mainly containing nearTwoOThreeOr BiTwoO Three
An oxidizing agent consisting of at least one of
The added intermediate solid electrolyte 3b is deposited. Intermediate solid
On the outer peripheral surface of the electrolyte 3b, the fuel electrode side solid electrolyte 3a
The air electrode side solid electrolyte 3c made of the same material as
Have been. On the outer peripheral surface of the air electrode side solid electrolyte 3c, air
The pole 4 is formed.

【0020】つまり、中間固体電解質3bを燃料極側固
体電解質3aと空気極側固体電解質3cとで挟んでなる
固体電解質を燃料極2と空気極4とで挟み、基体1側に
燃料極2を位置させるようにして設けたのである。
That is, a solid electrolyte comprising the intermediate solid electrolyte 3b sandwiched between the fuel electrode side solid electrolyte 3a and the air electrode side solid electrolyte 3c is sandwiched between the fuel electrode 2 and the air electrode 4, and the fuel electrode 2 is placed on the substrate 1 side. It was provided so as to be positioned.

【0021】このようなセルは、基体1の外周面上に燃
料極2の材料のスラリを塗布して燃料極2を設け、ジル
コニアを主成分とした材料のスラリを燃料極2の外周面
上に塗布して燃料極側固体電解質3a設けた後、ジルコ
ニアを主成分とした材料に前記酸化剤を3〜5wt%添加
したスラリを燃料極側固体電解質3aの外周面上に塗布
して中間固体電解質3bを設けたら、ジルコニアを主成
分とした材料のスラリを中間固体電解質3bの外周面上
に塗布して空気極側固体電解質3cを設け、続いて、空
気極4の材料のスラリを塗布して空気極4を設け、14
00℃未満の温度で焼成することにより、容易に得るこ
とができる。
In such a cell, a slurry of a material for the fuel electrode 2 is applied on the outer circumferential surface of the base 1 to provide the fuel electrode 2, and a slurry of a material containing zirconia as a main component is coated on the outer circumferential surface of the fuel electrode 2. The solid electrolyte 3a provided on the anode is coated with a slurry obtained by adding 3 to 5% by weight of the oxidizing agent to a material containing zirconia as a main component. After the electrolyte 3b is provided, a slurry of a material containing zirconia as a main component is applied on the outer peripheral surface of the intermediate solid electrolyte 3b to provide the cathode-side solid electrolyte 3c, and then, a slurry of the material of the cathode 4 is applied. And the air electrode 4 is provided.
It can be easily obtained by firing at a temperature lower than 00 ° C.

【0022】つまり、酸化剤を添加した固体電解質(中
間固体電解質3b)のスラリを塗布する前後に当該酸化
剤の未添加の固体電解質(燃料極側固体電解質3aおよ
び空気極側固体電解質3c)のスラリを塗布することに
より固体電解質を成膜しているのである。
That is, before and after the slurry of the solid electrolyte to which the oxidizing agent is added (the intermediate solid electrolyte 3b), the solid electrolyte to which the oxidizing agent is not added (the fuel electrode side solid electrolyte 3a and the air electrode side solid electrolyte 3c) is formed. The solid electrolyte is formed by applying the slurry.

【0023】ここで、中間固体電解質3bに前記酸化剤
が添加されているので、ジルコニアを主成分とした材料
の焼結を促進することができ、1400℃未満の温度で
焼成しても、中間固体電解質3bの緻密化を図ることが
できる。また、酸化剤を添加していない燃料極側固体電
解質3aを燃料極2と中間固体電解質3bとの間に設け
ると共に、酸化剤の添加していない空気極側固体電解質
3cを空気極4と中間固体電解質3bとの間に設けたの
で、焼成に伴う酸化剤の流動や揮発などを抑えることが
でき、焼結性の低下を防止することができる。
Here, since the oxidizing agent is added to the intermediate solid electrolyte 3b, sintering of the material containing zirconia as a main component can be promoted. Densification of the solid electrolyte 3b can be achieved. Further, a fuel electrode-side solid electrolyte 3a to which no oxidizing agent is added is provided between the fuel electrode 2 and the intermediate solid electrolyte 3b, and an air electrode-side solid electrolyte 3c to which no oxidizing agent is added is provided between the fuel electrode 2 and the air electrode 4. Since it is provided between the solid electrolyte 3b, the flow and volatilization of the oxidizing agent during firing can be suppressed, and a decrease in sinterability can be prevented.

【0024】したがって、高い緻密性を有しながらも絶
縁物の生成を抑えた固体電解質を有するセルとすること
ができるので、酸化極側の酸化ガスが燃料極側の燃料ガ
ス中にリークしてしまうことを防止することができ、開
回路電圧(OCV)を高くして作動電圧を向上させるこ
とができる。
Therefore, it is possible to obtain a cell having a high density and a solid electrolyte in which the generation of an insulator is suppressed, so that the oxidizing gas on the oxidation electrode side leaks into the fuel gas on the fuel electrode side. Can be prevented, and the open circuit voltage (OCV) can be increased to improve the operating voltage.

【0025】なお、本実施の形態では、燃料極2を基体
1側に設けた場合の固体電解質型燃料電池のセルについ
て説明したが、空気極4を基体1側に設けた場合の固体
電解質型燃料電池のセルでも、上述の場合と同様な効果
を得ることができる。
In the present embodiment, the cell of the solid electrolyte type fuel cell in which the fuel electrode 2 is provided on the base 1 side has been described. However, the solid electrolyte type fuel cell in which the air electrode 4 is provided on the base 1 side. The same effect as in the above case can be obtained in the fuel cell.

【0026】[0026]

【実施例】本発明による固体電解質型燃料電池のセルお
よびその製造方法の効果を確認するため、前述した実施
の形態に基づいた確認試験を次のようにして行った。
EXAMPLES In order to confirm the effects of the cells of the solid oxide fuel cell according to the present invention and the method of manufacturing the same, a confirmation test based on the above-described embodiment was performed as follows.

【0027】《セルの各材料の調整》 [基体管]ZrO2 −13mol%CaOからなる、長
さ50mm、外径21mm、内径17mmの多孔質管を
用意した。
<< Adjustment of Cell Materials >> [Base Tube] A porous tube made of ZrO 2 -13 mol% CaO and having a length of 50 mm, an outer diameter of 21 mm and an inner diameter of 17 mm was prepared.

【0028】[燃料極のスラリ]NiOとYSZ(Zr
2 −8mol%Y2 3 )とを重量比で60:40の
割合で混合し、この混合粉体とエタノールとエチレング
リコールとを重量比で80:10:10の割合で混合し
てペースト状とした。
[Slurry of fuel electrode] NiO and YSZ (Zr
O 2 -8 mol% Y 2 O 3 ) is mixed at a weight ratio of 60:40, and the mixed powder is mixed with ethanol and ethylene glycol at a weight ratio of 80:10:10 to form a paste. Shape.

【0029】[空気極のスラリ]酸化ランタンと炭酸ス
トロンチウムと炭酸マンガンとを所定の割合で混合して
1400℃で5時間焼成したら、ボールミルで粉砕して
中心粒径0.3〜0.5μmのLa0.9 Sr0.1 MnO
3 の粉体を得た後、当該粉体とテレピン油とを重量比で
80:20の割合で混合した。
[Slurry of air electrode] Lanthanum oxide, strontium carbonate and manganese carbonate are mixed at a predetermined ratio and fired at 1400 ° C. for 5 hours, and then pulverized with a ball mill to have a center particle diameter of 0.3 to 0.5 μm. La 0.9 Sr 0.1 MnO
After powder 3 was obtained, the powder and turpentine oil were mixed at a weight ratio of 80:20.

【0030】[燃料極側固体電解質および空気極側固体
電解質のスラリ]YSZ(ZrO2 −8mol%Y2
3 )とエタノールとを重量比で60:40の割合で混合
した。
[Slurry of Fuel Electrode Side Solid Electrolyte and Air Electrode Side Solid Electrolyte] YSZ (ZrO 2 -8 mol% Y 2 O)
3 ) and ethanol were mixed at a weight ratio of 60:40.

【0031】[中間固体電解質のスラリ]YSZ(Zr
2 −8mol%Y2 3 )に酸化剤(Al2 3 また
はBi23 の二種類)を所定の割合(0、1、3、5w
t%の四種類)で添加し(計八種類)、蒸留水を加えて
ボールミルで混合したら、乾燥機で蒸留水を蒸発させた
後、この粉体とエタノールとを重量比で60:40の割
合で混合した。
[Slurry of Intermediate Solid Electrolyte] YSZ (Zr
An oxidizing agent (two kinds of Al 2 O 3 or Bi 2 O 3 ) is added to O 2 -8 mol% Y 2 O 3 ) at a predetermined ratio (0, 1, 3 , 5 w).
(four types of t%) (total eight types), distilled water was added and mixed with a ball mill. After the distilled water was evaporated with a dryer, the powder and ethanol were mixed at a weight ratio of 60:40. Mix in proportions.

【0032】《セルの製造》基体管の外周面上に燃料極
のスラリを厚さ約100μm、長さ30mmで塗布し、
100℃で2時間乾燥して燃料極を設けたら、燃料極側
固体電解質のスラリを圧縮空気によるエアスプレで燃料
極上にスプレして厚さ約20μm、長さ10mmの燃料
極側固体電解質を設け、当該燃料極側固体電解質上に上
記中間固体電解質のスラリを上述と同様にスプレして上
記サイズと同様な中間固体電解質を設け、当該中間固体
電解質上に空気極側固体電解質のスラリを上述と同様に
スプレして上記サイズと同様な空気極側固体電解質を設
けた後、当該空気極側固体電解質上に空気極のスラリを
金属製のヘラにより厚さ約300μm、長さ10mmで
塗布し、次に、大気中、1350℃で5時間焼成して一
体化することにより、中間固体電解質の酸化剤の種類お
よび添加量の異なるセルを製造(計八種類)した。
<< Production of Cell >> A slurry of a fuel electrode is applied on the outer peripheral surface of the base tube in a thickness of about 100 μm and a length of 30 mm,
After drying at 100 ° C. for 2 hours to provide the fuel electrode, a slurry of the fuel electrode side solid electrolyte is sprayed on the fuel electrode by air spray using compressed air to provide a fuel electrode side solid electrolyte having a thickness of about 20 μm and a length of 10 mm, Spray the slurry of the intermediate solid electrolyte on the fuel electrode side solid electrolyte in the same manner as described above to provide an intermediate solid electrolyte having the same size as the above, and on the intermediate solid electrolyte, slurry the air electrode side solid electrolyte on the intermediate solid electrolyte as described above. After providing an air electrode side solid electrolyte having the same size as the above, a slurry of an air electrode was applied on the air electrode side solid electrolyte with a metal spatula to a thickness of about 300 μm and a length of 10 mm. Then, by firing at 1350 ° C. for 5 hours in the air and integrating them, cells having different types and amounts of oxidizing agents of the intermediate solid electrolyte were manufactured (eight types in total).

【0033】《試験方法》上述したようにして製造した
各セル(計八種類)の開回路電圧(OCV)を測定する
ことにより、各セルのガスリーク特性を評価した。OC
Vの測定に用いた試験装置の概略構成を図2に示す。
<< Test Method >> The gas leakage characteristics of each cell (eight kinds in total) manufactured as described above were evaluated by measuring the open circuit voltage (OCV). OC
FIG. 2 shows a schematic configuration of the test apparatus used for the measurement of V.

【0034】図2に示すように、円筒容器11の周囲に
は、当該容器11内を加熱する電気炉12が配設されて
いる。円筒容器11の内部下方には、円筒支持台13が
当該容器11と同軸をなして貫通して挿入されている。
円筒支持台13上には、ジルコニア支持管14が当該支
持台13と同軸をなして立設されている。円筒支持台1
3およびジルコニア支持管14内には、導入管15が当
該円筒支持台13の下部を貫通して挿入されている。円
筒容器11の上部には、当該容器11内へ乾燥空気を送
給するエアマスフロー16が連結されている。導入管1
5の下端には、水素ガスを送給する水素ガスマスフロー
17および窒素ガスを送給する窒素ガスマスフロー18
が加湿器19を介して連結されている。円筒容器11の
下方周縁寄りには、排気管20の一端が連結されてい
る。排気管20の他端は、ドレンポット22および水封
ポット24を介して外部と連絡している。導入管15の
側部下方寄りには、排気管21の一端が連結されてい
る。排気管21の他端は、ドレンポット23および水封
ポット25を介して外部と連絡している。
As shown in FIG. 2, around the cylindrical container 11, an electric furnace 12 for heating the inside of the container 11 is provided. Below the inside of the cylindrical container 11, a cylindrical support 13 is inserted penetrating coaxially with the container 11.
On the cylindrical support 13, a zirconia support tube 14 stands upright coaxially with the support 13. Cylindrical support 1
An introduction tube 15 is inserted through the lower portion of the cylindrical support 13 into the zirconia support tube 3 and the zirconia support tube 14. An air mass flow 16 for supplying dry air into the container 11 is connected to an upper portion of the cylindrical container 11. Introductory pipe 1
5, a hydrogen gas mass flow 17 for supplying hydrogen gas and a nitrogen gas mass flow 18 for supplying nitrogen gas are provided.
Are connected via a humidifier 19. One end of an exhaust pipe 20 is connected near the lower peripheral edge of the cylindrical container 11. The other end of the exhaust pipe 20 communicates with the outside via a drain pot 22 and a water seal pot 24. One end of an exhaust pipe 21 is connected to the lower side of the introduction pipe 15. The other end of the exhaust pipe 21 communicates with the outside via a drain pot 23 and a water seal pot 25.

【0035】このような試験装置では、セル10をジル
コニア支持管14上にパイレックスガラス製の固定具2
6で取り付け、セル10の空気極および燃料極に白金線
を取り付けて図示しない電圧測定器と接続した後、電気
炉12を作動して円筒容器11内を所定の速度で昇温
(100℃/h)し、所定の温度(1000℃)になっ
たら、エアマスフロー16を作動して円筒容器11内に
乾燥空気を所定の流量(500cc/min)で送給し
てセル10の外周面、すなわち、空気極側に空気を流通
させる一方、水素ガスマスフロー16および窒素ガスマ
スフロー17を作動して希釈した水素ガスを加湿器19
で加湿しながら導入管15内に所定の流量(100cc
/min)で送給してセル10の内周面、すなわち、燃
料極側に水素ガスを流通させると共に、空気中の酸素と
水素ガスとをセル10部分で電気化学反応させ、当該セ
ル10の開回路電圧(OCV)を測定し、その大きさに
より、当該セル10のガスリーク特性を評価することが
できる。なお、セル10で発電に供された空気は、排気
管20からドレンポット22および水封ポット24を介
して外部に排出され、セル10で発電に供された水素ガ
スおよび窒素ガスは、排気管21からドレンポット23
および水封ポット25を介して外部に排出される。
In such a test apparatus, the cell 10 is mounted on the zirconia support tube 14 with the fixture 2 made of Pyrex glass.
6 and a platinum wire is attached to the air electrode and the fuel electrode of the cell 10 and connected to a voltage measuring device (not shown). Then, the electric furnace 12 is operated to heat the inside of the cylindrical container 11 at a predetermined speed (100 ° C. / h) Then, when the temperature reaches a predetermined temperature (1000 ° C.), the air mass flow 16 is operated to supply dry air into the cylindrical container 11 at a predetermined flow rate (500 cc / min), so that the outer peripheral surface of the cell 10, that is, While the air is circulated to the air electrode side, the hydrogen gas mass flow 16 and the nitrogen gas mass flow 17 are operated to dilute the hydrogen gas into a humidifier 19.
A predetermined flow rate (100 cc)
/ Min) to allow hydrogen gas to flow through the inner peripheral surface of the cell 10, that is, the fuel electrode side, and cause oxygen and hydrogen gas in the air to undergo an electrochemical reaction in the cell 10 portion. The open circuit voltage (OCV) is measured, and the magnitude thereof allows the gas leak characteristics of the cell 10 to be evaluated. The air used for power generation in the cell 10 is discharged from the exhaust pipe 20 to the outside via the drain pot 22 and the water sealing pot 24. The hydrogen gas and the nitrogen gas used for power generation in the cell 10 are discharged from the exhaust pipe 20. 21 to drain pot 23
And the water is discharged to the outside through the water seal pot 25.

【0036】以上のような試験装置および試験方法に基
づいて、各種セルのOCVを測定した。その結果を図3
に示す。
Based on the test apparatus and test method as described above, the OCV of each cell was measured. The result is shown in FIG.
Shown in

【0037】図3からわかるように、中間固体電解質に
酸化剤を添加していないセルでは、OCV値が約1.0
9Vとなり、理論OCV値(約1.195V)に対して
約91%であった。これに対し、中間固体電解質に酸化
剤を1wt%添加したセルでは、OCV値が1.11〜
1.13Vと上昇し、理論OCV値に対して約93〜9
5%まで上昇し、中間固体電解質に酸化剤を3〜5wt%
添加したセルでは、OCV値が1.17〜1.19とな
り、理論OCV値に対して約98〜99.6%となっ
た。
As can be seen from FIG. 3, in the cell where the oxidizing agent is not added to the intermediate solid electrolyte, the OCV value is about 1.0.
9V, which was about 91% of the theoretical OCV value (about 1.195 V). On the other hand, in the cell in which the oxidizing agent was added to the intermediate solid electrolyte at 1 wt%, the OCV value was 1.11 to 11.
1.13 V, which is about 93 to 9 with respect to the theoretical OCV value.
Up to 5%, 3 ~ 5wt% oxidizing agent in the intermediate solid electrolyte
In the added cell, the OCV value was 1.17 to 1.19, which was about 98 to 99.6% of the theoretical OCV value.

【0038】以上の結果から、酸化剤を3〜5wt%添加
すれば、理論OCV値とほぼ等しくすることができるの
で、固体電解質を緻密化させてガスリークを防止できる
ことが確認された。
From the above results, it was confirmed that when the oxidizing agent was added in an amount of 3 to 5% by weight, the theoretical OCV value could be made almost equal to the theoretical OCV value, so that the solid electrolyte could be densified to prevent gas leakage.

【0039】[0039]

【発明の効果】本発明による固体電解質型燃料電池のセ
ルは、固体電解質を燃料極と空気極とで挟んで基体上に
設けた固体電解質型燃料電池のセルであって、Al2
3 またはBi2 3 のうちの少なくとも一方からなる酸
化剤が前記固体電解質中に含有されていることから、高
い緻密性を有しながらも絶縁物の生成を抑えた固体電解
質を有するセルとすることができるので、酸化極側の酸
化ガスが燃料極側の燃料ガス中にリークしてしまうこと
を防止することができ、開回路電圧(OCV)を高くし
て作動電圧を向上させることができる。
Solid oxide fuel cell of the cell according to the present invention exhibits, a solid electrolyte or a solid electrolyte fuel cell of a cell provided on a substrate by being sandwiched between a fuel electrode and an air electrode, Al 2 O
Since the solid electrolyte contains an oxidizing agent consisting of at least one of 3 and Bi 2 O 3, the cell has a solid electrolyte that has high density and suppresses generation of an insulator. Therefore, it is possible to prevent the oxidizing gas on the oxidizing electrode side from leaking into the fuel gas on the fuel electrode side, and it is possible to increase the open circuit voltage (OCV) and improve the operating voltage. .

【0040】また、前記固体電解質が前記燃料極側に設
けられた燃料極側固体電解質と、前記空気極側に設けら
れた空気極側固体電解質と、前記燃料極側固体電解質と
前記空気極側固体電解質との間に設けられた中間固体電
解質とからなり、前記中間固体電解質に前記酸化剤が含
有されていることから、焼成時の酸化剤の流動や揮発な
どが抑えられ、焼結性の低下が防止されるので、上述し
た効果をより確実に得ることができる。
Further, the solid electrolyte is provided on the fuel electrode side, the fuel electrode side solid electrolyte, the air electrode side solid electrolyte provided on the air electrode side, the fuel electrode side solid electrolyte, and the air electrode side. It is composed of an intermediate solid electrolyte provided between the solid electrolyte and the solid electrolyte, and the intermediate solid electrolyte contains the oxidizing agent. Since the lowering is prevented, the above-described effects can be obtained more reliably.

【0041】また、前記酸化剤が3〜5wt%で含有され
ていれば、上述した効果をさらに確実に得ることができ
る。
Further, if the oxidizing agent is contained at 3 to 5 wt%, the above-mentioned effects can be more reliably obtained.

【0042】本発明による固体電解質型燃料電池のセル
の製造方法は、固体電解質を燃料極と空気極とで挟んで
基体上に設けるように当該固体電解質、当該燃料極、当
該空気極の各スラリを当該基体に塗布して一体焼結する
固体電解質型燃料電池のセルの製造方法であって、Al
2 3 またはBi2 3 のうちの少なくとも一方からな
る酸化剤を添加された前記固体電解質のスラリを塗布
し、1400℃未満の温度で一体焼結することから、酸
化剤により固体電解質の焼結を促進することができ、1
400℃未満の温度で焼成しても、固体電解質の緻密化
を図ることができるので、高い緻密性を有しながらも絶
縁物の生成を抑えた固体電解質を有するセルとすること
ができる。その結果、酸化極側の酸化ガスが燃料極側の
燃料ガス中にリークしてしまうことを防止することがで
き、開回路電圧(OCV)を高くして作動電圧を向上さ
せることができる。
The method of manufacturing a cell of a solid oxide fuel cell according to the present invention is characterized in that the solid electrolyte, the fuel electrode, and the slurry of the air electrode are provided on a substrate sandwiched between the fuel electrode and the air electrode. Is applied to the substrate and integrally sintered, the method comprising the steps of:
2 O 3 or Bi 2 O 3 slurry of the solid electrolyte which is added an oxidizing agent consisting of at least one of the coating, since the integrally sintered at a temperature below 1400 ° C., the solid electrolyte by an oxidant baked Can promote
Even if firing is performed at a temperature of less than 400 ° C., the solid electrolyte can be densified, so that a cell having a solid electrolyte with high density and suppressed generation of an insulator can be obtained. As a result, the oxidizing gas on the oxidizing electrode side can be prevented from leaking into the fuel gas on the fuel electrode side, and the operating voltage can be improved by increasing the open circuit voltage (OCV).

【0043】また、前記酸化剤の添加された前記固体電
解質のスラリを塗布する前後に当該酸化剤の未添加の前
記固体電解質のスラリを塗布するので、焼成に伴う酸化
剤の流動や揮発などを抑えることができ、焼結性の低下
を防止することができる。
Further, before and after applying the slurry of the solid electrolyte to which the oxidizing agent is added, the slurry of the solid electrolyte to which the oxidizing agent is not added is applied. Thus, the sinterability can be prevented from lowering.

【0044】また、前記酸化剤の添加量が3〜5wt%で
あれば、上述した効果をさらに確実に得ることができ
る。
When the amount of the oxidizing agent is 3 to 5% by weight, the above-described effects can be obtained more reliably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体電解質型燃料電池のセルの実
施の形態の概略構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a cell of a solid oxide fuel cell according to the present invention.

【図2】確認試験に用いた試験装置の概略構成図であ
る。
FIG. 2 is a schematic configuration diagram of a test device used for a confirmation test.

【図3】確認試験結果を表すグラフである。FIG. 3 is a graph showing a confirmation test result.

【符号の説明】[Explanation of symbols]

1 基体 2 燃料極 3a 燃料極側固体電解質 3b 中間固体電解質 3c 空気極側固体電解質 4 空気極 10 セル 11 円筒容器 12 電気炉 13 円筒支持台 14 ジルコニア支持管 15 導入管 16 エアマスフロー 17 水素ガスマスフロー 18 窒素ガスマスフロー 19 加湿器 20,21 排気管 22,23 ドレンポット 24,25 水封ポット 26 取付具 DESCRIPTION OF SYMBOLS 1 Base 2 Fuel electrode 3a Fuel electrode side solid electrolyte 3b Intermediate solid electrolyte 3c Air electrode side solid electrolyte 4 Air electrode 10 Cell 11 Cylindrical container 12 Electric furnace 13 Cylindrical support stand 14 Zirconia support pipe 15 Introducing pipe 16 Air mass flow 17 Hydrogen gas mass flow 18 Nitrogen gas mass flow 19 Humidifier 20, 21 Exhaust pipe 22, 23 Drain pot 24, 25 Water seal pot 26 Fixture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質を燃料極と空気極とで挟んで
基体上に設けた固体電解質型燃料電池のセルであって、
Al2 3 またはBi2 3 のうちの少なくとも一方か
らなる酸化剤が前記固体電解質中に含有されていること
を特徴とする固体電解質型燃料電池のセル。
1. A cell of a solid oxide fuel cell having a solid electrolyte sandwiched between a fuel electrode and an air electrode and provided on a substrate,
Al 2 O 3 or Bi 2 solid oxide fuel cell of a cell made of at least one oxidizing agent, characterized in that it is contained in the solid electrolyte of the O 3.
【請求項2】 請求項1に記載の固体電解質型燃料電池
のセルにおいて、前記固体電解質が前記燃料極側に設け
られた燃料極側固体電解質と、前記空気極側に設けられ
た空気極側固体電解質と、前記燃料極側固体電解質と前
記空気極側固体電解質との間に設けられた中間固体電解
質とからなり、前記中間固体電解質に前記酸化剤が含有
されていることを特徴とする固体電解質型燃料電池のセ
ル。
2. The solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte is provided on the fuel electrode side and the fuel electrode side solid electrolyte is provided on the air electrode side. A solid electrolyte comprising: a solid electrolyte; an intermediate solid electrolyte provided between the fuel electrode-side solid electrolyte and the air electrode-side solid electrolyte, wherein the intermediate solid electrolyte contains the oxidizing agent. Electrolyte fuel cell.
【請求項3】 請求項1または2に記載の固体電解質型
燃料電池のセルにおいて、前記酸化剤が3〜5wt%で含
有されていることを特徴とする固体電解質型燃料電池の
セル。
3. The cell of a solid oxide fuel cell according to claim 1, wherein the oxidizing agent is contained in an amount of 3 to 5% by weight.
【請求項4】 固体電解質を燃料極と空気極とで挟んで
基体上に設けるように当該固体電解質、当該燃料極、当
該空気極の各スラリを当該基体に塗布して一体焼結する
固体電解質型燃料電池のセルの製造方法であって、Al
2 3 またはBi2 3 のうちの少なくとも一方からな
る酸化剤を添加された前記固体電解質のスラリを塗布
し、1400℃未満の温度で一体焼結することを特徴と
する固体電解質型燃料電池のセルの製造方法。
4. A solid electrolyte in which the solid electrolyte, the fuel electrode, and the slurry of the air electrode are applied to the substrate and sintered integrally so that the solid electrolyte is provided on the substrate sandwiched between the fuel electrode and the air electrode. A method of manufacturing a cell of a fuel cell, comprising:
2 O 3 or Bi 2 O 3 slurry of the solid electrolyte which is added an oxidizing agent consisting of at least one of the coating, the solid electrolyte type fuel cell, characterized by integrally sintering at temperatures below 1400 ° C. Cell manufacturing method.
【請求項5】 請求項4に記載の固体電解質型燃料電池
のセルの製造方法において、前記酸化剤の添加された前
記固体電解質のスラリを塗布する前後に当該酸化剤の未
添加の前記固体電解質のスラリを塗布することを特徴と
する固体電解質型燃料電池のセルの製造方法。
5. The method for producing a cell of a solid oxide fuel cell according to claim 4, wherein the solid electrolyte to which the oxidizing agent is not added before and after applying the slurry of the solid electrolyte to which the oxidizing agent is added. A method for producing a cell of a solid oxide fuel cell, comprising applying a slurry.
【請求項6】 請求項4または5に記載の固体電解質型
燃料電池のセルの製造方法において、前記酸化剤の添加
量が3〜5wt%であることを特徴とする固体電解質型燃
料電池のセルの製造方法。
6. The cell for a solid oxide fuel cell according to claim 4, wherein the amount of the oxidizing agent is 3 to 5 wt%. Manufacturing method.
JP9237942A 1997-09-03 1997-09-03 Cell of solid electrolyte fuel cell and manufacture thereof Withdrawn JPH1186885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9237942A JPH1186885A (en) 1997-09-03 1997-09-03 Cell of solid electrolyte fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9237942A JPH1186885A (en) 1997-09-03 1997-09-03 Cell of solid electrolyte fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1186885A true JPH1186885A (en) 1999-03-30

Family

ID=17022754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9237942A Withdrawn JPH1186885A (en) 1997-09-03 1997-09-03 Cell of solid electrolyte fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1186885A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
US7402356B2 (en) 2003-11-28 2008-07-22 Sanyo Electric Co., Ltd. Solid oxide electrolyte material and method of producing solid oxide electrolyte
US20170141429A1 (en) * 2015-11-18 2017-05-18 Korea Institute Of Energy Research Lithium-ion conducting solid electrolyte, method for manufacturing the same, and lithium battery including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
US7402356B2 (en) 2003-11-28 2008-07-22 Sanyo Electric Co., Ltd. Solid oxide electrolyte material and method of producing solid oxide electrolyte
US20170141429A1 (en) * 2015-11-18 2017-05-18 Korea Institute Of Energy Research Lithium-ion conducting solid electrolyte, method for manufacturing the same, and lithium battery including the same

Similar Documents

Publication Publication Date Title
CA2447855C (en) Electrode-supported solid state electrochemical cell
CN105981207B (en) Electrochemical energy conversion equipment, battery and its negative side material
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JPH04115469A (en) Solid electrolyte film and solid electrolyte type fuel cell therewith and manufacture thereof
KR20010024177A (en) Sintered electrode for solid oxide fuel cells
US5277995A (en) Electrode and method of interconnection sintering on an electrode of an electrochemical cell
KR20150003364A (en) Sensor employing internal reference electrode
JPH07153469A (en) Solid electrolyte fuel cell
Zhang et al. A study of the process parameters for yttria-stabilized zirconia electrolyte films prepared by screen-printing
CN106688130A (en) Electrochemical element, cell for solid oxide fuel cell, and preparation methods for these
JPH1021935A (en) Solid electrolyte fuel cell
Nomura et al. Fabrication of YSZ electrolyte for intermediate temperature solid oxide fuel cell using electrostatic spray deposition: II–Cell performance
JPH1186885A (en) Cell of solid electrolyte fuel cell and manufacture thereof
US6379830B1 (en) Solid electrolyte fuel cell having anode comprising metal oxide particles in a porous platinum layer
JPH1079259A (en) Unit cell of cylindrical solid electrolyte fuel cell and manufacture of unit cell
JP5110337B2 (en) Electrode structure for solid oxide fuel cell and method for producing the same
CN100514731C (en) Method of producing electrolyte membrane of tubular anode support type fuel cell
JP3377693B2 (en) Method for manufacturing solid oxide fuel cell
JP3339299B2 (en) Method for forming dense lanthanum chromite thin film
JPH1173975A (en) Manufacture of cell of solid electrolyte fuel cell
JPH11343185A (en) Production of dense sintered film
JP3238086B2 (en) Solid oxide fuel cell
JP3354793B2 (en) Cell of cylindrical solid electrolyte fuel cell
JP2003092113A (en) Fuel electrode membrane for solid electrolyte fuel cell and its manufacturing method
JP2001297781A (en) Film forming method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207