[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1180414A - Double-structure continuous porous body and its production - Google Patents

Double-structure continuous porous body and its production

Info

Publication number
JPH1180414A
JPH1180414A JP24940997A JP24940997A JPH1180414A JP H1180414 A JPH1180414 A JP H1180414A JP 24940997 A JP24940997 A JP 24940997A JP 24940997 A JP24940997 A JP 24940997A JP H1180414 A JPH1180414 A JP H1180414A
Authority
JP
Japan
Prior art keywords
copolymer
phase
porous body
homopolymer
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24940997A
Other languages
Japanese (ja)
Other versions
JP3321392B2 (en
Inventor
Katsunori Funaki
克典 舩木
Koji Jinnai
浩司 陣内
Kiyoharu Tsutsumi
聖晴 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP24940997A priority Critical patent/JP3321392B2/en
Publication of JPH1180414A publication Critical patent/JPH1180414A/en
Application granted granted Critical
Publication of JP3321392B2 publication Critical patent/JP3321392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a porous body having a specific surface area and a heightened permeability to liquids and gases by forming continuous pores having a specified smaller pore diameter in a porous polymer skeleton having continuous pores having a specified pore diameter. SOLUTION: A block copolymer comprising at least two monomers is mixed with a homopolymer, and the mixture is molten by heating or dissolved in a common solvent to establish a randomly mixed state, and the mixture in this state is subjected to temperature lowering or solvent evaporation to form a macrophase separation structure comprising a co-continuous structure comprising a copolymer phase and a homopolymer phase. This structure is subjected to further temperature lowering or solvent evaporation to form a microphase separation structure comprising a co- continuous structure and/or a cylinder structure in the copolymer phase. Next, the homopolymer is eluted from the macroseparation structure to form a porous body entirely consisting of the copolymer skeleton and having continuous pores having a pore diameter of several hundreds nm to several tens μm. Further, either phase of the copolymer is decomposed or the polymer is eluted from the phase to make the copolymer skeleton microporous to an extent that the pore diameter is in the range of several nm to several hundreds nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒用金属微粒子
等の支持担体、さらには、ガス状または液状物質の吸着
体や分離膜などとして使用されるのに好適な新規な構造
の多孔体とその製造方法に関する。
The present invention relates to a porous carrier having a novel structure suitable for use as a support such as metal fine particles for a catalyst, an adsorbent for gaseous or liquid substances, a separation membrane, and the like. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】貴金属等の金属微粒子は触媒として多く
用いられ、その単位重量あたりの触媒活性は粒径が小さ
いほど大きいことが知られている。この場合、粒径の小
さな金属微粒子はそのままでは取り扱いが困難であり、
工業的に用いるには何らかの支持担体へ吸着固定化して
用いられてきた。
2. Description of the Related Art Fine metal particles such as noble metals are widely used as catalysts, and it is known that the smaller the particle size, the greater the catalytic activity per unit weight. In this case, it is difficult to handle metal fine particles having a small particle size as they are,
For industrial use, it has been used by adsorbing and immobilizing it on some kind of support.

【0003】そのための支持体の形態は、比表面積の大
きい微多孔体であることが好ましく、古くからシリカゲ
ル、活性炭、アルミナ等の無機材料が用いられている。
しかしながら、これら無機材料は基本的にはそれ自身が
粉体であるためその成形性・加工性の点で難があり、フ
ィルムや膜の形態として用いるためにはポリマーによる
支持膜が求められていた。
[0003] For this purpose, the form of the support is preferably a microporous body having a large specific surface area, and inorganic materials such as silica gel, activated carbon and alumina have been used for a long time.
However, since these inorganic materials are basically powders themselves, they are difficult in terms of moldability and workability, and a polymer-supporting film has been required for use as a film or film. .

【0004】ポリマーによる微多孔性膜の製法に関して
は、以下に代表される例が知られている。 (1)特開昭64−1739 スチレン誘導体と共役ジエンまたはアクリレート誘導体
のブロックポリマーをミクロ相分離させ、共役ジエンま
たはアクリレート誘導体を加水分解および酸素含有プラ
ズマで処理することにより多孔体を製造する方法。
With respect to a method for producing a microporous membrane using a polymer, the following typical examples are known. (1) JP-A-64-1739 A method for producing a porous body by subjecting a block polymer of a styrene derivative and a conjugated diene or acrylate derivative to microphase separation, and subjecting the conjugated diene or acrylate derivative to hydrolysis and treatment with oxygen-containing plasma.

【0005】(2)特開平2−279741 高分子両末端にイオン結合可能な官能基を持つポリマー
とその官能基とイオン結合可能な官能基を両末端に持つ
別のポリマーの混合物を溶液キャストし、出来たフィル
ムに形成されているミクロ相分離構造の一方の相を塩基
または酸によりブロックコポリマーの結合部を切断し、
一方のポリマーを溶媒で抽出する。
(2) JP-A-2-279741 A mixture of a polymer having functional groups capable of ion bonding at both ends of a polymer and another polymer having functional groups capable of ion bonding to the functional groups at both ends is solution-cast. , One of the phases of the microphase-separated structure formed in the resulting film is cut with a base or an acid to cut the bond of the block copolymer,
One polymer is extracted with a solvent.

【0006】(3)特開平5−287084 触媒等の担体としての可能性を持つとされる数百nmの
孔径を持つ多孔質膜の製法に関する。各種ブロックコポ
リマーの形成するミクロ相分離構造のうち、共連続構造
であることを特徴として、その一方の成分を分解または
溶出する方法であり、共連続構造であるが故に形成され
た孔径分布が非常に狭いことを特徴としている。
(3) Japanese Patent Laid-Open No. 5-287084 This invention relates to a method for producing a porous membrane having a pore diameter of several hundred nm which is considered to have a potential as a carrier for a catalyst or the like. Among the microphase-separated structures formed by various block copolymers, this is a method of decomposing or eluting one component, characterized by a bicontinuous structure, and the pore size distribution formed due to the bicontinuous structure is extremely low. It is characterized by being narrow.

【0007】しかしながら、これらの微多孔体はその孔
径が小さく、比表面積も比較的大きくとれるが、孔径そ
のものが小さいため、例えば、実際に触媒を担持して用
いようとした場合、反応物であるガスや液の透過率が小
さくなる。そのため、メンブレンリアクターとして用い
るような場合には、その膜に加える圧力が増すといった
欠点を持っていた。また、孔径が小さいので、適用され
るガス状または液状物質もその孔径に応じたものに限ら
れていた。
However, these microporous materials have a small pore size and a relatively large specific surface area. However, since the pore size itself is small, for example, when a catalyst is actually supported and used, it is a reactant. Gas and liquid permeability is reduced. Therefore, when it is used as a membrane reactor, it has a disadvantage that the pressure applied to the membrane increases. Further, since the pore diameter is small, the gaseous or liquid substance to be applied has been limited to the one corresponding to the pore diameter.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
のごとき従来の問題点を解決し、比表面積は大きく、し
かも液やガスの透過率を高くすることができ、適用範囲
の広い新しい構造のポリマー多孔体(微多孔体)および
その製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, to provide a large specific surface area, a high liquid and gas permeability, and a wide application range. An object of the present invention is to provide a polymer porous body (microporous body) having a structure and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明に従えば、上記の
課題を解決するものとして、孔径が数百nm〜数十μm
の連続孔を有する多孔性のポリマー骨格中に、孔径が数
nm〜数百nmの連続孔が形成されていることを特徴と
する多孔体が提供される。
According to the present invention, in order to solve the above-mentioned problems, a pore diameter of several hundred nm to several tens μm is required.
The porous body is characterized in that continuous pores having a pore diameter of several nm to several hundred nm are formed in a porous polymer skeleton having continuous pores of

【0010】さらに、本発明に従えば、そのような多孔
体を製造する方法であって、2種以上のモノマーユニ
ットから構成されたコポリマーと、ホモポリマーとを溶
融または溶媒により溶解して無秩序混合状態を形成した
後、温度を低下させるかまたは溶媒を蒸発させることに
よりコポリマーの相とホモポリマーの相との共連続構造
から成るマクロ相分離構造を形成させる工程、引き続
き、温度を低下させるかまたは溶媒を蒸発させることに
より、コポリマーの相中に共連続構造および/またはシ
リンダー構造から成るミクロ相分離構造を形成させる工
程、マクロ相分離構造からホモポリマーを溶出して、
コポリマー骨格のみから成る多孔体を形成する工程、お
よびミクロ相分離構造から、コポリマーの一方の相を
分解するか、および/または該相内に含有されるポリマ
ーを溶出してコポリマー骨格を微多孔性にする工程を含
むことを特徴とする多孔体の製造方法が提供される。本
発明の製造方法の好ましい態様においては、コポリマー
としては、2種以上の互いに非相溶性のブロック鎖が各
々の末端で結合したブロックコポリマーを用いる。別の
態様においては、コポリマーとして、2種以上の互いに
非相溶性のモノマーユニットがランダムに共重合して部
分的に、同一のモノマーユニットの集合部を形成してい
るランダムコポリマーを用いる。
Further, according to the present invention, there is provided a method for producing such a porous body, wherein a copolymer composed of two or more monomer units and a homopolymer are melted or dissolved by a solvent to form a random mixture. After forming the state, lowering the temperature or evaporating the solvent to form a macrophase-separated structure consisting of a bicontinuous structure of the copolymer phase and the homopolymer phase, followed by lowering the temperature or Evaporating the solvent to form a microphase-separated structure consisting of a bicontinuous structure and / or a cylinder structure in a phase of the copolymer; eluting the homopolymer from the macrophase-separated structure;
Forming a porous body consisting solely of a copolymer skeleton, and decomposing one phase of the copolymer and / or eluting a polymer contained in the phase from the microphase-separated structure to make the copolymer skeleton microporous A method for producing a porous body, comprising the step of: In a preferred embodiment of the production method of the present invention, a block copolymer in which two or more mutually incompatible block chains are bonded at each terminal is used. In another embodiment, a random copolymer in which two or more types of mutually incompatible monomer units are randomly copolymerized to partially form an aggregate of the same monomer unit is used as the copolymer.

【0011】[0011]

【発明の実施の形態】本発明は、上記特開平5−280
7804に開示したようなコポリマーのミクロ相分離構
造を利用するとともに、その系に混入したホモポリマー
とコポリマーのマクロ相分離を利用することによって孔
径の異なる2種類の連続孔を有する多重構造(2重構
造)のポリマー微多孔体が得られることを発見すること
によって完成されたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the above-mentioned Japanese Patent Application Laid-Open No. 5-280.
Utilizing a micro phase separation structure of a copolymer as disclosed in 7804, and utilizing a macro phase separation of a homopolymer and a copolymer mixed into the system, a multi-structure (double layer) having two types of continuous pores having different pore diameters. The present invention has been completed by discovering that a polymer microporous material having the following structure is obtained.

【0012】以下、本発明の多孔体の各構成成分および
各製造工程に沿って本発明の特徴を詳述する。 (1)ブロックコポリマーとホモポリマーの混合体によ
る製法: (i)共連続マクロ相分離構造およびミクロ相分離構造
形成 本発明においては、2種以上のモノマーユニットから構
成されたコポリマーを用いるが、好ましいのは、2種以
上の互いに非相溶性のブロック鎖が各々の末端で結合し
たブロックコポリマーである。すなわち、最終的に微多
孔体の骨格を形成するポリマー鎖(骨格ポリマーと呼
ぶ)と最終的には孔を形成するポリマー鎖(孔形成用ポ
リマーと呼ぶ)がそれらの末端で化学的に結合したブロ
ックコポリマーを用意する。このブロックコポリマーの
少なくとも一方のブロック鎖と非相溶なホモポリマーを
用意し、ブロックコポリマーと混ぜ、その系の「秩序−
無秩序転移温度(TODT ) 」以上に温度を上げ溶融する
か、または、これらの共通溶媒に溶解することにより、
構成成分のすべてが混ざりあった無秩序混合状態を形成
する。この時、ブロックコポリマーとホモポリマーの混
合比率は、共連続構造が形成できればとくに規定する必
要はないが、体積比で70/30〜30/70が好まし
く、60/40〜40/60がより好ましい。また、最
終的なミクロ相分離構造のコントロールのため、他のホ
モポリマーを混合してもよい。これを温度をTODT 以下
に下げるか、または溶媒を蒸発させ濃縮する(キャス
ト)ことにより、まず、ブロックコポリマー相とホモポ
リマー相とにマクロ相分離させ、ブロックコポリマー相
とホモポリマー相の共連続構造を形成する。
Hereinafter, the features of the present invention will be described in detail along with each component and each manufacturing process of the porous body of the present invention. (1) Production method using a mixture of a block copolymer and a homopolymer: (i) Formation of a bicontinuous macrophase separation structure and a microphase separation structure In the present invention, a copolymer composed of two or more types of monomer units is preferably used. Are block copolymers in which two or more mutually incompatible block chains are linked at each end. That is, the polymer chain that finally forms the skeleton of the microporous material (called the skeletal polymer) and the polymer chain that finally forms the pores (the polymer that is called the pore-forming polymer) are chemically bonded at their ends. Prepare a block copolymer. A homopolymer incompatible with at least one block chain of the block copolymer is prepared, mixed with the block copolymer, and the “order-
By increasing the temperature above the "disorder transition temperature (T ODT )" and melting, or dissolving in these common solvents,
All of the components form a mixed disordered state. At this time, the mixing ratio of the block copolymer and the homopolymer does not need to be particularly limited as long as a bicontinuous structure can be formed, but is preferably 70/30 to 30/70, more preferably 60/40 to 40/60 in volume ratio. . Further, for the control of the final microphase separation structure, another homopolymer may be mixed. By lowering the temperature to T ODT or lower or evaporating the solvent and concentrating (casting), first, a macrophase is separated into a block copolymer phase and a homopolymer phase. Form the structure.

【0013】さらに、引き続き、温度を下げるか溶媒を
蒸発させることにより、ブロックコポリマー相の中に各
ブロック鎖相から成るミクロ相分離構造を形成させる。
このミクロ相分離構造は、一般に共連続構造とするのが
好ましいが、多孔体の用途に応じて共連続構造とシリン
ダー構造が混じり合ったミクロ相分離構造、あるいは、
シリンダー構造から成るミクロ相分離構造にすることも
できる。発現させる相分離構造は、ブロックコポリマー
における「骨格ポリマーの相」の体積分率と「孔形成用
ポリマーの相」の体積分率(ミクロ相分離構造のコント
ロールのため他のホモポリマーを混合した場合は、該ホ
モポリマーを加えた体積分率)によりコントロールする
ことができ、共連続構造を得る場合には、後にも記すよ
うに、いずれか一方の体積分率φが0.33を目安と
し、またシリンダー構造は、0.18<φ<0.32を
目安として発現させることができる。
Subsequently, a microphase-separated structure composed of each block chain phase is formed in the block copolymer phase by lowering the temperature or evaporating the solvent.
In general, the microphase separation structure is preferably a bicontinuous structure, but a microphase separation structure in which a bicontinuous structure and a cylinder structure are mixed depending on the use of the porous body, or
A micro phase separation structure having a cylinder structure can also be used. The phase separation structure to be expressed is the volume fraction of the "skeleton polymer phase" and the volume fraction of the "pore forming polymer phase" in the block copolymer (when other homopolymers are mixed to control the micro phase separation structure) Can be controlled by the volume fraction to which the homopolymer is added). When a bicontinuous structure is obtained, as described later, one of the volume fractions φ is set to 0.33 as a standard, Further, the cylinder structure can be expressed with 0.18 <φ <0.32 as a guide.

【0014】(ii)共連続マクロ相分離構造の孔形成 この共連続マクロ相分離構造の一方の相内にミクロ相分
離構造(特に、共連続構造)が形成されたポリマー構造
体を、含有されているホモポリマーの選択的に溶解する
溶媒に浸すことにより、ホモポリマーを溶出し、ブロッ
クコポリマー骨格のみから成る多孔体、すなわち孔径が
数百nm〜数十nmの連続孔を有するポリマーを得る。
(Ii) Pore formation of bicontinuous macrophase separation structure A polymer structure in which a microphase separation structure (particularly, bicontinuous structure) is formed in one phase of the bicontinuous macrophase separation structure is contained. The polymer is immersed in a solvent capable of selectively dissolving the homopolymer, whereby the homopolymer is eluted to obtain a porous body composed only of the block copolymer skeleton, that is, a polymer having continuous pores having a pore diameter of several hundred nm to several tens nm.

【0015】(iii) ミクロ相分離構造の孔形成 得られたブロックコポリマー骨格は各ブロック鎖の相か
ら成るミクロ相分離構造体でもあるため、この一方の相
を分解するか、(または/そして)この相内に含有する
ホモポリマーを溶出することにより、ポリマー骨格その
ものを微多孔性にすることができ、該骨格中に孔径が数
nm〜数百nmの連続孔が形成される。
(Iii) Formation of pores in microphase-separated structure Since the obtained block copolymer skeleton is also a microphase-separated structure composed of phases of each block chain, one of these phases is decomposed or (and / or) By eluting the homopolymer contained in this phase, the polymer skeleton itself can be made microporous, and continuous pores having a pore size of several nm to several hundred nm are formed in the skeleton.

【0016】(iv)ブロックコポリマーに対する要求特性 骨格を形成すべきブロックコポリマーに必要とされる特
性は以下のとおりである。ホモポリマーと混合しマクロ
相分離させたときに共連続構造を形成できればブロック
鎖の数は特に制限はないが、A−Bタイプのジブロック
コポリマー、A−B−Aタイプのトリブロックコポリマ
ーが好ましい。
(Iv) Required properties for the block copolymer The properties required for the block copolymer for forming the skeleton are as follows. The number of block chains is not particularly limited as long as a bicontinuous structure can be formed when mixed with a homopolymer and subjected to macrophase separation, but an AB type diblock copolymer and an ABA type triblock copolymer are preferred. .

【0017】このブロックコポリマーを構成する孔形成
用のポリマー鎖としては、それ自身が分解性であること
が好ましい。例えば、オゾン分解可能な共役ジエン系ポ
リマーが最も適しているが、ポリメチルビニルケトン等
の光分解性のポリマーを用いても良い。
The pore-forming polymer chain constituting the block copolymer is preferably itself decomposable. For example, an ozonolytic conjugated diene polymer is most suitable, but a photodegradable polymer such as polymethyl vinyl ketone may be used.

【0018】最終マトリックスを形成すべき骨格ポリマ
ーはこの”孔形成用ポリマー”と相溶性がなく、孔形成
操作において分解または溶出しない物であれば何でも良
いが、室温で構造変化しないこと(ガラス転移温度(T
G ) が高いこと)が必要である。例えば、ガラス転移温
度が約100℃の汎用ポリマーであるポリスチレンが代
表的なものである。また、マトリックス構成用のポリマ
ーに架橋性の官能基(例えば、アミノ基、イミノ基、カ
ルボキシル基、水酸基、ハロゲン、ジメチル−プロポキ
シシリル基等)があれば、形成された空孔の保持の観点
からはさらに好ましい。その例としてはポリ(2−ビニ
ルピリジン)、ポリ(ジメチル−2−プロポキシシリル
スチレン)等がある。また、このような官能基を持って
いる場合はTG が室温以下のポリマー鎖でも使用可能で
ある。
The skeletal polymer to be used for forming the final matrix is not particularly limited as long as it is not compatible with the "polymer for forming pores" and does not decompose or elute during the pore forming operation. Temperature (T
G ) is high). For example, polystyrene which is a general-purpose polymer having a glass transition temperature of about 100 ° C. is typical. If the polymer for forming the matrix has a crosslinkable functional group (for example, an amino group, an imino group, a carboxyl group, a hydroxyl group, a halogen, a dimethyl-propoxysilyl group, and the like), from the viewpoint of retaining formed pores. Is more preferred. Examples include poly (2-vinylpyridine) and poly (dimethyl-2-propoxysilylstyrene). In addition, when such a functional group is provided, a polymer chain having a TG of room temperature or lower can be used.

【0019】各ブロック鎖のポリマーの数平均分子量M
nはそれぞれ、1,000 〜1,000,000であればよく、その
分子量は最終的に形成すべきミクロ孔の大きさに応じて
設計することができる。しかしながら、各ブロック鎖の
分子量比には制限があり、孔形成用ポリマーの分解のみ
により孔形成を行い共連続ミクロ相分離構造を得る場合
は、一方のブロック鎖の体積分率が33%±(10%)
となるよう分子量をコントロールすることが必要であ
る。
Number average molecular weight M of polymer of each block chain
n may be 1,000 to 1,000,000, respectively, and its molecular weight can be designed according to the size of the micropore to be finally formed. However, there is a limit to the molecular weight ratio of each block chain, and when pore formation is performed only by decomposition of the pore-forming polymer to obtain a bicontinuous microphase-separated structure, the volume fraction of one block chain is 33% ± ( 10%)
It is necessary to control the molecular weight so that

【0020】孔形成用のポリマー鎖が分解性でない場合
は、特開平5−287084に示されているような溶出
用ホモポリマー、すなわち、該孔形成用ポリマー鎖と相
溶性のあるホモポリマーを添加し溶出させることにより
ミクロ相分離構造を形成してもよい。さらに、そのブロ
ックコポリマーの結合様式がイオン結合、エステル結
合、アミド結合等の酸、塩基により切断できるブロック
コポリマーを用い、ポリマー間結合を切断し、一方の相
のみを溶出する方法(特開平2−279741等)を用
いることもできる。
If the polymer chain for forming pores is not decomposable, a homopolymer for elution as disclosed in JP-A-5-287084, that is, a homopolymer compatible with the polymer chain for forming pores is added. And eluted to form a microphase-separated structure. Further, a method of using a block copolymer which can be cleaved by an acid or base such as an ionic bond, an ester bond, or an amide bond, and cleaving the inter-polymer bond and eluting only one phase (Japanese Patent Laid-Open Publication No. 279741) can also be used.

【0021】(2)ランダムコポリマーとホモポリマー
の混合体による製法:完全ランダムのランダムコポリマ
ーでは本発明の多孔体が目的とするミクロ相分離構造を
形成することは困難であるが、通常、多くのランダムコ
ポリマーは部分的に各モノマーユニットが結合した集合
部(一般に数個〜数十個のモノマーユニットから成る)
を形成している。したがって、上記のように明確なブロ
ック鎖から成るブロックコポリマーではなく、2種以上
のモノマーユニットがランダムに共重合して部分的に、
同一のモノマーユニットの集合部を形成しているような
ランダムコポリマーを用いてもこれらの集合部の形成す
るミクロ相分離構造を形成することで同様の多重構造連
続多孔体を形成することも可能である。
(2) Production method using a mixture of a random copolymer and a homopolymer: It is difficult to form a desired microphase-separated structure of the porous body of the present invention with a completely random random copolymer. A random copolymer is an assembly where each monomer unit is partially bonded (generally consisting of several to several tens of monomer units)
Is formed. Therefore, instead of a block copolymer consisting of distinct block chains as described above, two or more monomer units are randomly copolymerized and partially
Even if a random copolymer that forms an aggregate of the same monomer unit is used, it is possible to form a similar multi-structure continuous porous body by forming a microphase-separated structure formed by these aggregates. is there.

【0022】[0022]

【実施例】以下、本発明の特徴をさらに明らかにするた
め実施例を示すが、本発明はこの実施例によって限定さ
れるものではない。 実施例 ポリ(2−ビニルピリジン)(P2VP)とポリイソプレン
(PI)から成るブロックコポリマーP2VP-b-PI (Mn=23
200-b-17100)100mgとPI(Mn=22000)40mgをク
ロロホルムに溶解し、40℃、1日の条件でキャストフ
ィルムを作成した。その過程でまず、PIホモポリマーリ
ッチな溶液相とP2VP-b-PI リッチな溶液相とにマクロ相
分離が起こる。この時、大きく2相に分離することを防
ぐため、ポリマー濃度が30%を超えた時点で、大きく
マクロ相分離している溶液を超音波ホモジナイザーによ
り、両相を互いに微分散させることにより、ブロックコ
ポリマー相とホモポリマー相の共連続構造を形成させ
た。その後、溶媒を蒸発させることにより、ブロックコ
ポリマー相内に各ブロック相からなる共連続構造を形成
したキャストフィルムを得、室温下、24時間真空乾燥
した。
EXAMPLES The following examples are provided to further clarify the features of the present invention, but the present invention is not limited by these examples. Example A block copolymer P2VP-b-PI (Mn = 23) composed of poly (2-vinylpyridine) (P2VP) and polyisoprene (PI)
200-b-17100) and 100 mg of PI (Mn = 22000) were dissolved in chloroform, and a cast film was prepared at 40 ° C. for one day. In the process, first, macro phase separation occurs between a PI homopolymer-rich solution phase and a P2VP-b-PI-rich solution phase. At this time, in order to prevent large separation into two phases, when the polymer concentration exceeds 30%, the solution in which macro separation is largely performed is finely dispersed with an ultrasonic homogenizer so that both phases are finely dispersed with each other. A co-continuous structure of a copolymer phase and a homopolymer phase was formed. Thereafter, the solvent was evaporated to obtain a cast film in which a co-continuous structure composed of each block phase was formed in the block copolymer phase, and was dried under vacuum at room temperature for 24 hours.

【0023】この乾燥キャストフィルムを、1,4−ジ
ヨードブタンを入れた小容器と共に、真空容器内にセッ
トし、真空容器全体を−78℃に冷却して容器内を減圧
した。その後、この減圧された容器全体を改めて40℃
に暖めることにより、容器内を1,4−ジヨードブタン
蒸気で充満させる。この状態で3日間放置することで
1,4−ジヨードブタン蒸気によるP2VPブロック鎖の架
橋を行うことで、キャストフィルム内の相分離構造を固
定した。
The dried cast film was set in a vacuum vessel together with a small vessel containing 1,4-diiodobutane, and the whole vacuum vessel was cooled to -78 ° C. to reduce the pressure in the vessel. After that, the whole of the depressurized container is again heated to 40 °
To fill the vessel with 1,4-diiodobutane vapor. In this state, the P2VP block chain was cross-linked with 1,4-diiodobutane vapor by leaving the film to stand for 3 days, thereby fixing the phase separation structure in the cast film.

【0024】P2VP相を架橋固定したキャストフィルム
を、ヘキサンで洗浄することにより、共連続マクロ相分
離構造の一方の相を形成しているPIホモポリマーを溶出
し、P2VP-b-PI ブロックコポリマーのみから成る網目構
造体を得た。この孔径は約2μmであった。
The cast film in which the P2VP phase is cross-linked and fixed is washed with hexane to elute the PI homopolymer forming one phase of the bicontinuous macrophase separation structure, and the P2VP-b-PI block copolymer alone is eluted. Was obtained. The pore size was about 2 μm.

【0025】次に、このP2VP-b-PI ブロックコポリマー
のみから成る網目構造体をオゾンによって2日間分解
し、エタノール中のPIブロック鎖を空洞とした。その結
果、図1に示すような(0.5〜2μm)の網状構造体
のマトリックス(骨格)部分(図1のA)が更に細かい
(50〜100nm)の網目となっている(図1のB)
2重構造の多孔体を得た。
Next, the network structure composed of only the P2VP-b-PI block copolymer was decomposed with ozone for 2 days to make the PI block chains in ethanol hollow. As a result, the matrix (skeleton) portion (A in FIG. 1) of the (0.5 to 2 μm) network structure shown in FIG. 1 is a finer (50 to 100 nm) network (FIG. 1). B)
A porous body having a double structure was obtained.

【0026】[0026]

【発明の効果】本発明に従えば、大きい連続孔をホモポ
リマーとコポリマーのマクロ相分離構造を利用して形成
し、小さな連続孔をブロックコポリマーのミクロ相分離
構造を利用して形成することによって、2重構造の微多
孔体を得ることができる。この際、マクロ相分離構造
は、ホモポリマーとコポリマーの相分離により形成され
るため、その相分離構造の大きさは無秩序状態からの秩
序構造形成速度によりコントロールできる。一方、ミク
ロ相分離構造の大きさは構造形成速度には依存せず、ブ
ロックコポリマーの場合は、各ブロック鎖の分子量およ
びその体積分率により設定できる。このように、本発明
の方法によると、それぞれの相分離構造形成条件は独立
してコントロールすることが可能となり、目的に応じて
単一の多孔体中に複数種の自由な孔サイズ(孔径)設計
が可能となる。
According to the present invention, large continuous pores are formed using a macro phase separation structure of a homopolymer and a copolymer, and small continuous pores are formed using a micro phase separation structure of a block copolymer. Thus, a microporous body having a double structure can be obtained. At this time, since the macro phase separation structure is formed by the phase separation of the homopolymer and the copolymer, the size of the phase separation structure can be controlled by the speed of forming the ordered structure from the disordered state. On the other hand, the size of the microphase-separated structure does not depend on the structure formation speed, and in the case of a block copolymer, can be set by the molecular weight of each block chain and its volume fraction. As described above, according to the method of the present invention, the conditions for forming each phase separation structure can be independently controlled, and a plurality of types of free pore sizes (pore diameters) can be formed in a single porous body according to the purpose. Design becomes possible.

【0027】本発明の多孔体は、小径の連続孔に因り大
きい比表面積を保持しながら、大径の連続孔を有してい
るので液やガスの透過率が高く、メンブレンリアクター
として用いるような場合に膜に加える圧力を下げること
ができる。また、本発明の多孔体においては、適用され
る液状またはガス状物質の数、分子の大きさまたは性状
などに応じて複数種の孔径を自由に設計できるので、触
媒の支持担体、吸着体や分離膜などとして用いられるの
に適用範囲の広い多孔体が得られる。
The porous body of the present invention has a large specific hole while maintaining a large specific surface area due to the small diameter continuous holes, and therefore has a high liquid or gas permeability since it has a large diameter continuous hole, so that it can be used as a membrane reactor. In some cases, the pressure applied to the membrane can be reduced. Further, in the porous body of the present invention, the number of kinds of liquid or gaseous substances to be applied, a plurality of types of pore diameters can be freely designed according to the size or properties of the molecule, etc. A porous body having a wide range of application to be used as a separation membrane or the like can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の2重構造連続多孔体の1例の結晶構造
を示す走査電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph showing a crystal structure of one example of a continuous porous body having a double structure of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 陣内 浩司 京都府相楽郡精華町光台7丁目36番地8− 1 サンモールハイツE101 (72)発明者 堤 聖晴 奈良県奈良市西登美ヶ丘2−15−D−511 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Jinnai, Inventor Koji Jinnai 7-36-8-1, Kodai, Seika-cho, Soraku-gun, Kyoto Prefecture Sun Mall Heights E101 (72) Inventor Seiji Tsutsumi 2 Nishitomigaoka, Nara City, Nara Prefecture -15-D-511

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 孔径が数百nm〜数十μmの連続孔を有
する多孔性のポリマー骨格中に、孔径が数nm〜数百n
mの連続孔が形成されていることを特徴とする多孔体。
1. A porous polymer skeleton having continuous pores having a pore diameter of several hundred nm to several tens of μm has a pore diameter of several nm to several hundred n.
A porous body, wherein m continuous holes are formed.
【請求項2】 請求項1の多孔体を製造する方法であっ
て、2種以上のモノマーユニットから構成されたコポ
リマーと、ホモポリマーとを溶融または溶媒により溶解
して無秩序混合状態を形成した後、温度を低下させるか
または溶媒を蒸発させることによりコポリマーの相とホ
モポリマーの相との共連続構造から成るマクロ相分離構
造を形成させる工程、引き続き、温度を低下させるか
または溶媒を蒸発させることにより、コポリマーの相中
に共連続構造および/またはシリンダー構造から成るミ
クロ相分離構造を形成させる工程、マクロ相分離構造
からホモポリマーを溶出して、コポリマー骨格のみから
成る多孔体を形成する工程、およびミクロ相分離構造
から、コポリマーの一方の相を分解するか、および/ま
たは該相内に含有されるポリマーを溶出してコポリマー
骨格を微多孔性にする工程を含むことを特徴とする多孔
体の製造方法。
2. The method for producing a porous body according to claim 1, wherein a copolymer composed of two or more monomer units and a homopolymer are melted or dissolved by a solvent to form a disordered mixed state. Forming a macrophase-separated structure consisting of a co-continuous structure of a copolymer phase and a homopolymer phase by lowering the temperature or evaporating the solvent, followed by lowering the temperature or evaporating the solvent Forming a microphase-separated structure consisting of a co-continuous structure and / or a cylinder structure in a phase of a copolymer, eluting a homopolymer from the macrophase-separated structure to form a porous body consisting solely of a copolymer skeleton, And / or decompose one phase of the copolymer from the microphase-separated structure and / or A process for producing a porous body, comprising a step of eluting a mer to make the copolymer skeleton microporous.
【請求項3】 コポリマーとして、2種以上の互いに非
相溶性のブロック鎖が各々の末端で結合したブロックコ
ポリマーを用いることを特徴とする請求項2の多孔体の
製造方法。
3. The method for producing a porous body according to claim 2, wherein a block copolymer in which two or more types of mutually incompatible block chains are bonded at each terminal is used as the copolymer.
【請求項4】 コポリマーとして、2種以上の互いに非
相溶性のモノマーユニットがランダムに共重合して部分
的に、同一のモノマーユニットの集合部を形成している
ランダムコポリマーを用いることを特徴とする請求項2
の多孔体の製造方法。
4. A random copolymer in which two or more types of mutually incompatible monomer units are randomly copolymerized to partially form an aggregate of the same monomer unit as the copolymer. Claim 2
A method for producing a porous body.
JP24940997A 1997-08-29 1997-08-29 Double structure continuous porous body and method for producing the same Expired - Fee Related JP3321392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24940997A JP3321392B2 (en) 1997-08-29 1997-08-29 Double structure continuous porous body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24940997A JP3321392B2 (en) 1997-08-29 1997-08-29 Double structure continuous porous body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1180414A true JPH1180414A (en) 1999-03-26
JP3321392B2 JP3321392B2 (en) 2002-09-03

Family

ID=17192552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24940997A Expired - Fee Related JP3321392B2 (en) 1997-08-29 1997-08-29 Double structure continuous porous body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3321392B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565764B2 (en) 2000-08-11 2003-05-20 Kabushiki Kaisha Toshiba Method of manufacturing a material having a fine structure
US7090784B2 (en) * 1999-06-07 2006-08-15 Kabushiki Kaisha Toshiba Method for manufacturing porous structure and method for forming pattern
WO2008084778A1 (en) 2007-01-11 2008-07-17 Nitto Denko Corporation Process for producing microporous polymeric object, microporous polymeric object, and separation membrane
WO2009104423A1 (en) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション Polymer composition and molded article produced from the composition
JP2012000745A (en) * 2010-05-19 2012-01-05 Toyo Tire & Rubber Co Ltd Polishing pad
WO2013028308A1 (en) 2011-08-22 2013-02-28 Dow Global Technologies Llc Composite membrane formed from polymer blend including self-assembling block copolymers
US8394483B2 (en) 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
WO2013039223A1 (en) * 2011-09-15 2013-03-21 三菱レイヨン株式会社 Method for manufacturing porous hollow fiber film
US8426313B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
WO2013126238A1 (en) 2012-02-21 2013-08-29 Dow Global Technologies Llc Composite membrane
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US8956713B2 (en) 2007-04-18 2015-02-17 Micron Technology, Inc. Methods of forming a stamp and a stamp
US8993088B2 (en) 2008-05-02 2015-03-31 Micron Technology, Inc. Polymeric materials in self-assembled arrays and semiconductor structures comprising polymeric materials
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
CN104592543A (en) * 2015-02-02 2015-05-06 四川大学 Porous polymer material with dual-peak pore structure and preparation method thereof
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9142420B2 (en) 2007-04-20 2015-09-22 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US9257256B2 (en) 2007-06-12 2016-02-09 Micron Technology, Inc. Templates including self-assembled block copolymer films
US9276059B2 (en) 2007-04-18 2016-03-01 Micron Technology, Inc. Semiconductor device structures including metal oxide structures
US9539547B2 (en) 2011-08-03 2017-01-10 Mitsubishi Rayon Co., Ltd. Porous film manufacturing method and apparatus
US9682857B2 (en) 2008-03-21 2017-06-20 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids and materials produced therefrom

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090784B2 (en) * 1999-06-07 2006-08-15 Kabushiki Kaisha Toshiba Method for manufacturing porous structure and method for forming pattern
US7097781B2 (en) * 1999-06-07 2006-08-29 Kabushiki Kaisha Toshiba Method for manufacturing porous structure and method for forming pattern
US7517466B2 (en) 1999-06-07 2009-04-14 Kabushiki Kaisha Toshiba Method for manufacturing porous structure and method for forming pattern
US8778201B2 (en) 1999-06-07 2014-07-15 Kabushiki Kaisha Toshiba Method for manufacturing porous structure and method for forming pattern
US8435416B2 (en) 1999-06-07 2013-05-07 Kabushiki Kaisha Toshiba Method for manufacturing porous structure and method for forming pattern
US8043520B2 (en) 1999-06-07 2011-10-25 Kabushiki Kaisha Toshiba Method for manufacturing porous structure and method for forming pattern
US8394877B2 (en) 1999-06-07 2013-03-12 Kabushika Kaisha Toshiba Method for manufacturing porous structure and method for forming pattern
US6565764B2 (en) 2000-08-11 2003-05-20 Kabushiki Kaisha Toshiba Method of manufacturing a material having a fine structure
US8357754B2 (en) 2007-01-11 2013-01-22 Nitto Denko Corporation Process for producing microporous polymeric object, and microporous polymeric object and separation membrane
WO2008084778A1 (en) 2007-01-11 2008-07-17 Nitto Denko Corporation Process for producing microporous polymeric object, microporous polymeric object, and separation membrane
US8338534B2 (en) 2007-01-11 2012-12-25 Nitto Denko Corporation Process for producing microporous polymeric object, and microporous polymeric object and separation membrane
US8394483B2 (en) 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8956713B2 (en) 2007-04-18 2015-02-17 Micron Technology, Inc. Methods of forming a stamp and a stamp
US9768021B2 (en) 2007-04-18 2017-09-19 Micron Technology, Inc. Methods of forming semiconductor device structures including metal oxide structures
US9276059B2 (en) 2007-04-18 2016-03-01 Micron Technology, Inc. Semiconductor device structures including metal oxide structures
US9142420B2 (en) 2007-04-20 2015-09-22 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US9257256B2 (en) 2007-06-12 2016-02-09 Micron Technology, Inc. Templates including self-assembled block copolymer films
US10005308B2 (en) 2008-02-05 2018-06-26 Micron Technology, Inc. Stamps and methods of forming a pattern on a substrate
US11560009B2 (en) 2008-02-05 2023-01-24 Micron Technology, Inc. Stamps including a self-assembled block copolymer material, and related methods
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US10828924B2 (en) 2008-02-05 2020-11-10 Micron Technology, Inc. Methods of forming a self-assembled block copolymer material
JP4576479B2 (en) * 2008-02-22 2010-11-10 有限会社サンサーラコーポレーション Polymer composition and molded article comprising the same
US8519033B2 (en) 2008-02-22 2013-08-27 Sanc Salaam Corporation Polymer composition and molded products formed thereof
JP2010228455A (en) * 2008-02-22 2010-10-14 Sansaara Corporation:Kk Method of manufacturing molding, and method of manufacturing molding contamination-preventive composite
US9644091B2 (en) 2008-02-22 2017-05-09 Sanc Salaam Corporation Polymer composition and molded products formed thereof
WO2009104423A1 (en) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション Polymer composition and molded article produced from the composition
JPWO2009104423A1 (en) * 2008-02-22 2011-06-23 有限会社サンサーラコーポレーション Polymer composition and molded article comprising the same
US10153200B2 (en) 2008-03-21 2018-12-11 Micron Technology, Inc. Methods of forming a nanostructured polymer material including block copolymer materials
US11282741B2 (en) 2008-03-21 2022-03-22 Micron Technology, Inc. Methods of forming a semiconductor device using block copolymer materials
US8426313B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US9315609B2 (en) 2008-03-21 2016-04-19 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US9682857B2 (en) 2008-03-21 2017-06-20 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids and materials produced therefrom
US8993088B2 (en) 2008-05-02 2015-03-31 Micron Technology, Inc. Polymeric materials in self-assembled arrays and semiconductor structures comprising polymeric materials
JP2012000745A (en) * 2010-05-19 2012-01-05 Toyo Tire & Rubber Co Ltd Polishing pad
US9539547B2 (en) 2011-08-03 2017-01-10 Mitsubishi Rayon Co., Ltd. Porous film manufacturing method and apparatus
WO2013028308A1 (en) 2011-08-22 2013-02-28 Dow Global Technologies Llc Composite membrane formed from polymer blend including self-assembling block copolymers
JPWO2013039223A1 (en) * 2011-09-15 2015-03-26 三菱レイヨン株式会社 Method for producing porous hollow fiber membrane
JP5633576B2 (en) * 2011-09-15 2014-12-03 三菱レイヨン株式会社 Method for producing porous hollow fiber membrane
WO2013039223A1 (en) * 2011-09-15 2013-03-21 三菱レイヨン株式会社 Method for manufacturing porous hollow fiber film
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US9431605B2 (en) 2011-11-02 2016-08-30 Micron Technology, Inc. Methods of forming semiconductor device structures
US9440196B2 (en) 2012-02-21 2016-09-13 Dow Global Technologies Llc Composite membrane
WO2013126238A1 (en) 2012-02-21 2013-08-29 Dow Global Technologies Llc Composite membrane
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US10049874B2 (en) 2013-09-27 2018-08-14 Micron Technology, Inc. Self-assembled nanostructures including metal oxides and semiconductor structures comprised thereof
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
US11532477B2 (en) 2013-09-27 2022-12-20 Micron Technology, Inc. Self-assembled nanostructures including metal oxides and semiconductor structures comprised thereof
CN104592543A (en) * 2015-02-02 2015-05-06 四川大学 Porous polymer material with dual-peak pore structure and preparation method thereof

Also Published As

Publication number Publication date
JP3321392B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP3321392B2 (en) Double structure continuous porous body and method for producing the same
US6054507A (en) Metal-organic polymer composite structure and production thereof
Araki et al. Metal ion-selective membrane prepared by surface molecular imprinting
US4873037A (en) Method for preparing an asymmetric semi-permeable membrane
JP3244652B2 (en) Metal / organic polymer composite structure and porous body having high metal content and method for producing the same
US5770631A (en) Production process of connected microgel particles and articles treated with connected microgel particles
US6214936B1 (en) Use of microphase-separated polymer blends for the preparation of permeable membranes
JP2007138052A (en) Polymeric thin film, preparation method of pattern base plate, pattern transcriptional body, and pattern vehicle for magnetic recording
US5120600A (en) Porous composite materials and methods for preparing them
Kho et al. Precipitation of Nylon 6 membranes using compressed carbon dioxide
Berro et al. From plastic to silicone: the novelties in porous polymer fabrications
Lu et al. Preparation of molecularly imprinted Fe3O4/P (St‐DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amino acid
Okubo et al. Synthesis of micron-sized monodispersed, core-shell composite polymer particles by seeded dispersion polymerization
JP3227109B2 (en) Metal / organic polymer composite and porous body
Zhang et al. The fabrication of porous hollow polysulfone microspheres with PEG as a porogen for methylene blue adsorption
Guo et al. Perpendicular Alignment and Selective Swelling-Induced Generation of Homopores of Polystyrene-b-poly (2-vinylpyridine)-b-poly (ethylene oxide) Triblock Terpolymer
WO2005063365A1 (en) A process for the preparation of free standing membranes
JP3000000B1 (en) Metal / organic polymer composite structure and manufacturing method thereof
JPH0388B2 (en)
US6590096B1 (en) Process for the production of polysaccharide beads
Guo et al. Highly Efficient Production of Nanoporous Block Copolymers with Arbitrary Structural Characteristics for Advanced Membranes
JP3244653B2 (en) Metal / organic polymer composite structure, porous body, and method for producing the same
JP3156955B2 (en) Method for producing linked microgel particles and articles treated therewith
JP4255150B2 (en) Polymer hydrogenation process
Arshady In the name of particle formation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees