JPH1179822A - Hydraulic composition and mortar or concrete using the same - Google Patents
Hydraulic composition and mortar or concrete using the sameInfo
- Publication number
- JPH1179822A JPH1179822A JP23972297A JP23972297A JPH1179822A JP H1179822 A JPH1179822 A JP H1179822A JP 23972297 A JP23972297 A JP 23972297A JP 23972297 A JP23972297 A JP 23972297A JP H1179822 A JPH1179822 A JP H1179822A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- pts
- hydraulic composition
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は土木建築構造物およ
びコンクリート二次製品に使用される水硬性組成物及び
それを使用したモルタル又はコンクリートに関する。詳
しくは、高炉スラグをJIS規格値以上に配合した水硬
性物質をベースとした良作業性で、初期及び長期強度を
改善したセメント組成物及びそれを使用したモルタル又
はコンクリートに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic composition used for civil engineering construction structures and secondary concrete products, and to mortar or concrete using the same. More specifically, the present invention relates to a cement composition based on a hydraulic substance in which blast furnace slag is blended to a JIS standard value or more and having improved initial and long-term strength and a mortar or concrete using the same.
【0002】[0002]
【従来の技術とその課題】従来、高炉スラグは潜在水硬
性物質として利用されており、CaイオンやNaイオン
等の強アルカリとの共存下では水硬性を発揮し硬化す
る。そしてJISR5211では高炉セメントとしてポ
ルトランドセメントに対して30%以下(内割添加,A
種)、30%を超え60%以下(B種)、60%を超え
70%以下(C種)に分類され、第一に水和熱が低いこ
とと、第二に塩素イオンの浸透に対して抵抗性があるこ
と、第三にアルカリ−骨材反応を抑制する等の特性を生
かして大型構造物や海洋構造物に多用されている。ま
た、高炉スラグの需要増加により1995年3月にはJ
ISA6206「コンクリート用高炉スラグ」が制定さ
れている。2. Description of the Related Art Conventionally, blast furnace slag has been used as a latent hydraulic substance and exhibits hydraulic properties and hardens in the presence of a strong alkali such as Ca ions and Na ions. According to JISR5211, blast furnace cement is 30% or less of Portland cement.
Species), more than 30% and less than 60% (type B), more than 60% and less than 70% (type C). First, the heat of hydration is low. It is widely used in large structures and marine structures, taking advantage of its properties such as its high resistance and thirdly the suppression of alkali-aggregate reaction. In addition, due to an increase in demand for blast furnace slag,
ISA 6206 “Blast furnace slag for concrete” has been enacted.
【0003】このような良特性を有する高炉スラグの配
合率を上げ、その利用率を高くすることはわが国にとっ
て省資源、省エネルギーの観点から重要な課題である。[0003] It is an important task for Japan to increase the blending ratio of blast furnace slag having such good characteristics and increase its utilization from the viewpoint of resource saving and energy saving.
【0004】しかしながら、高炉スラグの混和率が多く
なるほど初期強度が小さくなり、かつ、長期強度も低下
する等の基本的な課題が示されることからJIS規格に
おいても70%を上限としているものである。However, as the mixing ratio of the blast furnace slag increases, the initial strength decreases and the long-term strength also decreases. Therefore, the upper limit is set at 70% in the JIS standard. .
【0005】なお、実際の使用に当たっては40〜45
%配合の高炉B種セメントが一般的であり、より小さい
水和熱が要求されるダム等の内部コンクリートには55
%程度の高炉B種セメントが使用される場合もある。In actual use, 40-45
% Blast furnace B cement is common, and 55% is used for internal concrete such as dams that require a smaller heat of hydration.
% Blast furnace type B cement may be used.
【0006】また、高性能減水剤は、通常、減水率が大
きいので高強度の発現を促すが、高炉スラグ含有率が7
0%を超えて多くなると水セメント比を下げても強度低
下を改善することは出来なく、かつ、モルタルフローや
コンクリートスランプの経時低下量も大きく作業時間が
20〜30分程度しかないという課題を抱えている。A high-performance water reducing agent usually promotes the development of high strength due to a large water reduction rate, but the blast furnace slag content is 7%.
If the ratio exceeds 0%, even if the water-cement ratio is lowered, the strength cannot be reduced even if the water-cement ratio is lowered, and the mortar flow and concrete slump decrease greatly with time, and the working time is only about 20 to 30 minutes. I have.
【0007】本発明者は高炉スラグをJIS規格値以上
に配合した水硬性物質をベースとし、良作業性と、初期
及び長期強度を改善することを目的として鋭意研究した
結果、高性能減水剤と従来からセメントの凝結促進剤と
して知られている特定成分と、さらに石膏類及び/又は
活性シリカ、さらにはポゾラン物質を特定量用いること
により、解決できることを知見し、本発明を完成させる
に至った。The inventor of the present invention has conducted intensive studies to improve the workability and the initial and long-term strength of a blast furnace slag based on a hydraulic substance in which the blast furnace slag is blended to a JIS standard value or higher. The present inventors have found that a specific component conventionally known as a setting accelerator for cement and a specific amount of gypsum and / or activated silica, and even a pozzolan substance can be used to solve the problem, and have completed the present invention. .
【0008】[0008]
【課題を解決するための手段】すなわち、本発明は、
(1)高炉スラグ粉末を70〜98重量部含み、残部
が、セメント、生石灰、及び消石灰の1種又は2種以上
の無機物質に置換された水硬性物質100重量部に対し
て、高性能減水剤0.3〜3.0重量部、アルカリ金属
の亜硫酸塩、アルカリ金属の重亜硫酸塩、アルカリ金属
のピロ硫酸塩、アルカリ金属のピロ亜硫酸塩及び亜硫酸
カルシウムの1種又は2種以上0.05〜2.0重量部
を含有してなる水硬性組成物、(2)(1)記載の水硬
性組成物に、II型無水石膏1〜15重量部及び/又は活
性シリカ1〜15重量部を含有してなる水硬性組成物、
(3)(1)又は(2)記載の水硬性組成物に、更に、
ポゾラン物質2〜15重量部を含有してなる水硬性組成
物、(4)(1)〜(3)のいずれかに記載の水硬性組
成物を使用することを特徴とするモルタル又はコンクリ
ートである。That is, the present invention provides:
(1) High performance water reduction with respect to 100 parts by weight of a hydraulic substance containing 70 to 98 parts by weight of blast furnace slag powder and the remainder replaced with one or more inorganic substances of cement, quicklime and slaked lime. 0.3 to 3.0 parts by weight of one or more of alkali metal sulfite, alkali metal bisulfite, alkali metal pyrosulfate, alkali metal pyrosulfite and calcium sulfite 0.05 To 2.0 parts by weight of the hydraulic composition according to (2) or (1), 1 to 15 parts by weight of type II anhydrous gypsum and / or 1 to 15 parts by weight of activated silica A hydraulic composition comprising
(3) The hydraulic composition according to (1) or (2), further comprising:
A hydraulic composition comprising 2 to 15 parts by weight of a pozzolanic substance, and (4) a mortar or concrete using the hydraulic composition according to any one of (1) to (3). .
【0009】以下、本発明を詳細に説明する。本発明に
おいて高炉スラグを70〜98重量部含み、残部が、セ
メント、生石灰、及び消石灰の1種又は2種以上の無機
物質に置換された水硬性物質をベース(以下、単に、水
硬性物質という)とする。この際、セメント又は生石
灰、消石灰及び生石灰、消石灰の無機物質(以下、セメ
ント等という)は、それぞれ単独配合でも、任意の割合
で上記範囲で配合しても良いものである。Hereinafter, the present invention will be described in detail. In the present invention, 70 to 98 parts by weight of blast furnace slag is contained, and the remainder is based on a hydraulic substance replaced with one or more inorganic substances of cement, quicklime and slaked lime (hereinafter, simply referred to as hydraulic substance). ). At this time, cement or quicklime, slaked lime and inorganic substances of slaked lime and slaked lime (hereinafter referred to as cement and the like) may be used alone or in an arbitrary ratio in the above range.
【0010】本発明において使用される高炉スラグは、
JISR5211やJISA6206に規定されるもの
を用いるが、その粉末度は3000cm2 /g程度以上
あれば良く特に限定はされない。さらに、高炉スラグの
配合率が70重量部を超え、98重量部までは、その配
合率に拘らず、ほぼ、同様に初期強度は促進され、長期
に高い強度は得られるが、98重量部を超える場合は全
く水硬性を失うものである。The blast furnace slag used in the present invention is:
Those specified in JISR5211 and JISA6206 are used, and the fineness thereof is not particularly limited as long as it is about 3000 cm 2 / g or more. Furthermore, even if the blending ratio of the blast furnace slag exceeds 70 parts by weight and up to 98 parts by weight, regardless of the blending ratio, almost the same initial strength is promoted, and high strength can be obtained for a long time. If it exceeds, the hydraulic property is completely lost.
【0011】また、セメント等は、高炉スラグの潜在水
硬性を引き出すための刺激材としての作用を有し、JI
SR5210に規定される各種ポルトランドセメント及
び白色セメント、ビーライトセメント及び生石灰、消石
灰及び生石灰を含むセメント膨張材等も使用可能であ
る。市販の生石灰を含むセメント膨張材としては電気化
学工業社製商品名「デンカCSA」、秩父小野田セメン
ト社製商品名「小野田エクスパン」、日本セメント社製
商品名「アサノジプカル」、住友大阪セメント社製商品
名「住友サクス」等が挙げられるが、これらを使用する
場合は、粉末度が粗いので膨張させないために粉末度は
3000cm2 /g以上に微粉砕したもの又は一部水和
させたものを用いるのが好ましい。Also, cement and the like have an action as a stimulating material for extracting the potential hydraulicity of blast furnace slag.
Various portland cements and white cements, belite cements, and cement expanding materials including quicklime, slaked lime and quicklime specified in SR5210 can also be used. Commercially available cement expanders containing quicklime include Denka CSA (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.), Onoda Expan (trade name, manufactured by Chichibu Onoda Cement Co., Ltd.), Asano Dipcal (trade name, manufactured by Nippon Cement Co., Ltd.), and products manufactured by Sumitomo Osaka Cement Co., Ltd. The name "Sumitomo Sachs" may be used, but when these are used, those which are finely pulverized to 3000 cm 2 / g or more or partially hydrated are used in order to prevent swelling due to coarseness. Is preferred.
【0012】本発明で使用される高性能減水剤の種類と
しては、ポリアルキルアリルスルホン酸塩系、メラミン
ホルマリン樹脂スルホン酸塩系、芳香族アミノスルホン
酸塩系高分子のいずれかを主成分とするものであり、さ
らに、これらの混合型もあるが、この中の1種、又は2
種以上の混合使用も可能である。The type of the high-performance water reducing agent used in the present invention is mainly composed of a polyalkylallyl sulfonate type, a melamine formalin resin sulfonate type, or an aromatic amino sulfonate type polymer. There are also mixed types of these, but one or two of them
Mixed use of more than one species is also possible.
【0013】その一例としては、一般に市販されている
ポリアルキルアリルスルホン酸塩系の高性能減水剤は、
メチルナフタレンスルホン酸ホルマリン縮合物、ナフタ
レンスルホン酸ホルマリン縮合物、及びアントラセンス
ルホン酸ホルマリン縮合物等の塩が挙げられ、その市販
品としては電気化学工業社製商品名「FT−500」、
花王社製商品名「マイティー100」や「マイティー1
50」等、第一工業製薬社製商品名「セルフロー110
P」等、竹本油脂社製商品名「ポールファイン510
N」等、日本製紙社製商品名「サンフローPS」、「サ
ンフローHS700」等が代表的なものであり、芳香族
アミノスルホン酸塩系としては藤沢薬品社製商品名「F
P−200」シリーズがあり、メラミンホルマリン樹脂
スルホン酸塩系高性能減水剤としてはデンカグレース社
製商品名「FT−3S」、昭和電工社製商品名「モルマ
スター10」や「モルマスター20」等が挙げられる。As one example, a commercially available high performance water reducing agent based on polyalkylallyl sulfonate is
Salts such as methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, and anthracene sulfonic acid formalin condensate are listed as commercial products of which are trade names “FT-500” manufactured by Denki Kagaku Kogyo Co., Ltd.
"Mighty 100" and "Mighty 1"
50, etc., manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
P "and other product names" Pole Fine 510 "manufactured by Takemoto Yushi Co., Ltd.
N "and the like, trade names" Sunflow PS "and" Sunflow HS700 "manufactured by Nippon Paper Industries Co., Ltd. are typical.
P-200 "series, and melamine formalin resin sulfonate-based high performance water reducing agent" FT-3S "manufactured by Denka Grace Co., Ltd .;" Molmaster 10 "and" Molmaster 20 "manufactured by Showa Denko KK And the like.
【0014】高性能減水剤は水硬性物質100重量部に
対して、固形分換算で0.3〜3.0重量部配合される
が、好ましくは0.4〜2.5重量部、より好ましくは
0.6〜2重量部である。0.3重量部未満では亜硫酸
塩等の添加量が適量であってもモルタルフローやコンク
リートスランプの経時低下量を低減する効果は小さく、
又、3.0重量部以上では高炉スラグ含有率が多くなる
とブリージング等の材料分離を生じ易く、強度低下を生
ずるので好ましくない。The high-performance water reducing agent is added in an amount of 0.3 to 3.0 parts by weight, preferably 0.4 to 2.5 parts by weight, more preferably 100 parts by weight of the hydraulic substance. Is 0.6 to 2 parts by weight. If less than 0.3 parts by weight, even if the addition amount of sulfite and the like is an appropriate amount, the effect of reducing the amount of mortar flow or concrete slump with time is small,
On the other hand, if the content of blast furnace slag is more than 3.0 parts by weight, material separation such as bleeding is likely to occur and strength decreases, which is not preferable.
【0015】また、本発明で使用されるアルカリ金属の
亜硫酸塩、アルカリ金属の重亜硫酸塩、アルカリ金属の
ピロ硫酸塩、アルカリ金属のピロ亜硫酸塩及び亜硫酸カ
ルシウムの1種、又は2種以上(以下、亜硫酸塩等とい
う)とは、例えば、亜硫酸カリウム、亜硫酸ナトリウ
ム、重亜硫酸カリウム、重亜硫酸ナトリウム、ピロ硫酸
カリウム、ピロ硫酸ナトリウム、ピロ亜硫酸カリウム、
ピロ亜硫酸ナトリウム及び亜硫酸カルシウムであり、そ
の1種又は2種以上の配合も可能である。ここでアルカ
リ金属とはナトリウム、カリウム、リチウムを示す。Further, one or more of the alkali metal sulfites, alkali metal bisulfites, alkali metal pyrosulfites, alkali metal pyrosulfites and calcium sulfites used in the present invention (hereinafter referred to as “sulfites”). , And sulfites) are, for example, potassium sulfite, sodium sulfite, potassium bisulfite, sodium bisulfite, potassium pyrosulfate, sodium pyrosulfate, potassium pyrosulfite,
These are sodium pyrosulfite and calcium sulfite, and one or more of them can be blended. Here, the alkali metal refers to sodium, potassium and lithium.
【0016】本発明で使用する亜硫酸塩等は、高性能減
水剤を使用したモルタルフローやコンクリートスランプ
の経時低下を低減し、良作業性とする。また、II型無水
石膏等との併用により初期、及び長期強度の増大を助長
する。The sulfites and the like used in the present invention reduce aging of mortar flows and concrete slumps using a high-performance water reducing agent, thereby improving workability. In addition, the combined use with type II anhydrous gypsum promotes an increase in initial and long-term strength.
【0017】亜硫酸塩等は、水硬性物質100重量部に
対して0.05〜2.0重量部配合され、好ましくは
0.1〜1.5重量部、より好ましくは0.2〜1.0
重量部である。0.05重量部未満では高性能減水剤の
添加量が適量であってもコンクリートスランプ等の経時
低下を改善する作用は小さく、2.0重量部を超えて配
合した場合は、逆に、前記改善作用は低下するので好ま
しくはない。The sulfite or the like is incorporated in an amount of 0.05 to 2.0 parts by weight, preferably 0.1 to 1.5 parts by weight, more preferably 0.2 to 1.0 part by weight, per 100 parts by weight of the hydraulic substance. 0
Parts by weight. If less than 0.05 part by weight, even if the amount of the high-performance water reducing agent is an appropriate amount, the effect of improving the deterioration over time such as concrete slump is small. It is not preferable because the improving effect is reduced.
【0018】本発明で使用する石膏は、II型無水石膏で
あり、フッ酸発生時の副成するII型無水石膏や二水石膏
や半水石膏及びIII 型無水石膏を350℃以上の温度で
熱処理したものである。なお、二水石膏や半水石膏及び
III 型無水石膏では添加量が多くなると膨張作用が大き
くなり、長期安定性を欠くので使用できないものであ
る。The gypsum used in the present invention is a type II anhydrous gypsum, and a type II anhydrous gypsum, a dihydrate gypsum, a hemihydrate gypsum and a type III anhydrous gypsum by-produced at the time of generating hydrofluoric acid at a temperature of 350 ° C. or more. It has been heat treated. In addition, gypsum and hemihydrate gypsum and
Type III anhydrous gypsum cannot be used because the swelling action increases as the amount added increases and the long-term stability is lacking.
【0019】II型無水石膏は初期強度を増大して長期的
にも高強度化を図る作用を有するものであり、水硬性物
質100重量部に対して1〜15重量部配合される。好
ましくは2〜12重量部、より好ましくは4〜10重量
部である。1重量部未満では初期及び長期強度の改善効
果は小さく、15重量部を超えて添加しても強度の改善
効果は停滞し、それ以上望めないものである。尚、刺激
材として粉砕した市販の膨張材を使用する場合は膨張材
に含まれるII型無水石膏量も加えて上記範囲とするもの
である。The type II anhydrous gypsum has the effect of increasing the initial strength and increasing the strength over the long term, and is blended in an amount of 1 to 15 parts by weight with respect to 100 parts by weight of the hydraulic substance. Preferably it is 2 to 12 parts by weight, more preferably 4 to 10 parts by weight. If the amount is less than 1 part by weight, the effect of improving the initial and long-term strength is small, and if it exceeds 15 parts by weight, the effect of improving the strength stagnates and cannot be expected any more. In the case where a commercially available pulverized intumescent material is used as the stimulant, the above range is added by adding the amount of type II anhydrous gypsum contained in the intumescent material.
【0020】本発明において、活性シリカとは、シリカ
フューム、ケイ化木の焼成灰、カオリン鉱物の焼成物で
あるメタカオリン及びアエロジルを示す。シリカフュー
ムは金属シリカ又はシリカ合金を電気炉で製造するとき
に発生する非晶質のSiO2 の超微粉であり、ケイ化木
の焼成灰は稲藁や籾殻、竹、葦等を焼成した時の灰(非
晶質のSiO2) である。又、メタカオリンはカオリン
鉱物であるカオリナイト、ディッカイト、モハロイサイ
ト等を500℃以上で焼成した非晶質のアルミノケイ酸
塩であり、アエロジルは合成された非晶質SiO2の超
微粉である。これらは1種又は2種以上の併用が可能で
ある。In the present invention, the activated silica refers to silica fume, calcined ash of silicified wood, metakaolin and aerosil, which are calcined kaolin minerals. Silica fume is amorphous of SiO 2 ultrafine generated when producing an electric furnace metal silica or silica alloy, sintered ash silicified tree rice straw and chaff, bamboo, when firing the reeds and the like Ash (amorphous SiO 2 ). Metakaolin is an amorphous aluminosilicate obtained by calcining kaolinite, kaolinite, dickite, mohaloisite or the like at 500 ° C. or higher, and Aerosil is an ultrafine powder of synthesized amorphous SiO 2 . These may be used alone or in combination of two or more.
【0021】活性シリカ等は、他のポゾラン物質とは異
なり水和活性が高く、初期及び長期強度の増加を助長
し、水硬性物質100重量部に対して1〜15重量部配
合される。好ましくは2〜12重量部、より好ましくは
4〜10重量部である。1重量部未満では初期及び長期
強度の助長効果は小さく、15重量部を超えて配合して
も強度の助長効果は停滞し、それ以上望めないものであ
る。なお、この中で、性能、経済性、安定供給等も考慮
すると、最も好ましいのはシリカフューム及びメタカオ
リンである。Active silica and the like, unlike other pozzolanic substances, have a high hydration activity, promote an increase in initial and long-term strength, and are blended in an amount of 1 to 15 parts by weight based on 100 parts by weight of the hydraulic substance. Preferably it is 2 to 12 parts by weight, more preferably 4 to 10 parts by weight. If the amount is less than 1 part by weight, the effect of promoting the initial and long-term strength is small, and if the amount is more than 15 parts by weight, the effect of promoting the strength stagnates and cannot be expected any more. Among them, silica fume and metakaolin are most preferable in consideration of performance, economy, stable supply and the like.
【0022】さらに、本発明で使用するポゾラン物質と
は、カオリン鉱物(カオリナイト、ディッカイト、モハ
ロイサイトの未焼成物)、その他の粘土鉱物(ベントナ
イト、酸性白土、活性白土、ゼオライト、パイロフェラ
イト等のアルミナケイ酸質の粘土鉱物)の未焼成物並び
にその500℃以上の焼成物(但し、メタカオリンを除
く)、フライアッシュ、ケイソウ土やオパール質シリカ
である。The pozzolanic substance used in the present invention includes kaolin minerals (unfired kaolinite, dickite, mohaloisite) and other clay minerals (bentonite, acid clay, activated clay, zeolite, pyroferrite, etc.). Unfired products of alumina silicate clay minerals), fired products thereof (except for metakaolin) at 500 ° C. or higher, fly ash, diatomaceous earth and opal silica.
【0023】ポゾラン物質は強度発現を助長する作用を
示し、その配合量は、水硬性物質100重量部に対して
2.0〜15重量部である。好ましい配合量は3〜12
重量部、より好ましくは5〜10重量部である。15重
量部を超えて配合しても初期、及び長期強度の助長効果
は増大しなく、また、未焼成の粘土鉱物等は単位水量を
著しく増加させる場合もあるので好ましくない。2.0
重量部未満では、初期、及び長期強度の助長効果が小さ
くなり好ましくない。The pozzolanic substance has an effect of promoting the development of strength, and its blending amount is 2.0 to 15 parts by weight based on 100 parts by weight of the hydraulic substance. The preferred amount is 3-12.
Parts by weight, more preferably 5 to 10 parts by weight. Addition of more than 15 parts by weight does not increase the effect of promoting initial and long-term strength, and unfired clay minerals and the like are not preferred because they may significantly increase the unit water content. 2.0
If the amount is less than part by weight, the effect of promoting the initial and long-term strength is undesirably small.
【0024】本発明においてモルタル又はコンクリート
の配合条件には限定されない。すなわち、最大骨材寸
法、細骨材率、単位水硬性物質量、水/水硬性物質比は
初期強度や長期強度に影響を与える因子ではあるが、高
炉スラグとセメント等と高性能減水剤との組み合わせの
比較例に対して、同一条件での比較という観点から、全
く拘束を受けないものである。In the present invention, the mixing conditions of the mortar or concrete are not limited. In other words, although the maximum aggregate size, fine aggregate ratio, unit hydraulic material amount, and water / hydraulic material ratio are factors that affect the initial strength and long-term strength, blast furnace slag, cement, etc. Are not restricted at all from the viewpoint of comparison under the same conditions with respect to the comparative example of the combination.
【0025】[0025]
【実施例】以下、実施例により本発明を詳しく説明する
が、本発明はこれらに限定されるものではない。以下、
実施例で使用した各種材料を一括して示す。 「使用材料」 「水硬性物質」 (1)高炉スラグ(BFSという):ブレーン比表面積
4200cm2/g に粉砕したもの (2)セメント(Cという) :普通ポルトランド
セメント、ブレーン比表面積3050cm2/g (3)消石灰(CHという) :試薬1級 (4)生石灰(CaOという) :試薬1級、ブレー
ン比表面積8000cm2/g に粉砕 「高性能減水剤」 A:第一工業製薬社製 粉末状、ポリアルキルアリルス
ルホン酸塩系 商品名「セルフロー110P」 B:昭和電工社製、粉末状、メラミンホルマリン樹脂ス
ルホン酸塩系 商品名「モルマスター10」 「亜硫酸塩等」 a:亜硫酸カリウム :工業用 b.重亜硫酸ナトリウム :工業用 c.重亜硫酸カリウム :工業用 d.亜硫酸ナトリウム :工業用 e.亜硫酸カルシウム :試薬1級 f.ピロ硫酸ナトリウム :工業用 g.ピロ硫酸カリウム :工業用 h.ピロ亜硫酸ナトリウム :工業用 i.ピロ亜硫酸カリウム :工業用 「II型無水石膏」:フッ酸発生副成石膏、ブレーン比表
面積6020cm2/g 「活性シリカ」 α.シリカフューム:エジプトエファコ社産,BET比
表面積 19.2 m2/g β.ケイ化木(稲藁)の焼却灰:BET比表面積 1.0 m
2/g γ.メタカオリン:関東ベントナイト鉱業社製、商品名
[SEMクレー]を700℃で焼成しブレーン比表面積
8100cm2/g に粉砕したもの ε.アエロジル:日本アエロジル社製、BET比表面積
160 m2/g 「ポゾラン物質」 I.カオリン:関東ベントナイト鉱業社製、商品名[S
EMクレー]をブレーン比表面積8040cm2/g に粉砕
したもの II.酸性白土の熱処理品:関東ベントナイト鉱業社製、
酸性白土を1000℃で焼成しブレーン比表面積550
0cm2/g に粉砕したもの III .ゼオライトの熱処理品:関東ベントナイト鉱業社
製、ゼオライトG35品を比表面積6550cm2/g に粉
砕したもの IV.フライアッシュ:東北発電社製フライアッシュ(ブ
レーン比表面積4200cm2/g )をブレーン比表面積6
400cm2/g に粉砕したものに粉砕したもの V.オパール質シリカ: VI.ケイソウ土:関東ベントナイト鉱業社商品名[Celi
teFC]をブレーン比表面積7200cm2/g に粉砕した
ものEXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Less than,
Various materials used in the examples are shown collectively. "Materials Used""hydraulicsubstance" (1) blast furnace slag (referred BFS): which was pulverized to a Blaine specific surface area of 4200cm 2 / g (2) Cement (referred C): ordinary Portland cement, Blaine specific surface area of 3050 cm 2 / g (3) Slaked lime (referred to as CH): Reagent 1st grade (4) Quicklime (referred to as CaO): Reagent 1st grade, pulverized to a Blaine specific surface area of 8000 cm 2 / g “High-performance water reducing agent” A: Powder made by Daiichi Kogyo Seiyaku Co., Ltd. , Polyalkylallyl sulfonate-based product name "Cell Flow 110P" B: manufactured by Showa Denko KK, powdered melamine formalin resin sulfonate-based product name "Molmaster 10""sulfite,etc." a: Potassium sulfite: industrial use b. Sodium bisulfite: industrial c. Potassium bisulfite: industrial d. Sodium sulfite: industrial use e. Calcium sulfite: Reagent 1st grade f. Sodium pyrosulfate: industrial g. Potassium pyrosulfate: industrial h. Sodium pyrosulfite: industrial i. Potassium pyrosulfite: Industrial "Type II anhydrous gypsum": Hydrofluoric acid generating by-product gypsum, Blaine specific surface area 6020 cm 2 / g "Active silica" α. Silica fume: Efaco, Egypt, BET specific surface area 19.2 m 2 / g β. Incinerated ash of silicified wood (rice straw): BET specific surface area 1.0 m
2 / g γ. Metakaolin: manufactured by Kanto Bentonite Mining Co., Ltd., trade name [SEM clay] baked at 700 ° C. and ground to a Blaine specific surface area of 8100 cm 2 / g ε. Aerosil: manufactured by Nippon Aerosil Co., Ltd., BET specific surface area
160 m 2 / g “Pozzolanic substance” Kaolin: Kanto bentonite mining company, trade name [S
EM clay] pulverized to a specific surface area of 8040 cm 2 / g II. Heat treated product of acid clay: manufactured by Kanto Bentonite Mining Co., Ltd.
The acid clay is calcined at 1000 ° C and the Blaine specific surface area is 550.
Pulverized to 0 cm 2 / g III. Heat treated product of zeolite: Zeolite G35 product, manufactured by Kanto Bentonite Mining Co., Ltd., pulverized to a specific surface area of 6550 cm 2 / g IV. Fly ash: Northeast Power Co., Ltd. fly ash (Blaine specific surface area 4200cm 2 / g) the Blaine specific surface area 6
Crushed to 400 cm 2 / g; Opal silica: VI. Diatomaceous earth: Kanto bentonite mining company [Celi
teFC] ground to a specific surface area of 7,200 cm 2 / g
【0026】実施例1 高性能減水剤、亜硫酸塩等の添加量を変えてモルタルに
よるフローの経時変化を測定した。モルタルは高炉スラ
グに普通セメント又は消石灰の配合量を変えた水硬性物
質100重量部に対して天然川砂(新潟県姫川産,FM
2.90)300重量部とし、JISR5201による
フローが250±10mmとなるように、高性能減水剤
の添加量によって練混ぜ水量を調整した。その結果を表
1、表2に示す。Example 1 The time-dependent changes in the flow of the mortar were measured while changing the amounts of the high-performance water reducing agent, sulfite and the like. Mortar is made of natural river sand (from Himekawa, Niigata Prefecture, FM) for 100 parts by weight of hydraulic material in which blast furnace slag is mixed with ordinary cement or slaked lime.
2.90) The mixing water amount was adjusted by the addition amount of the high-performance water reducing agent so that the flow rate according to JISR5201 was 250 ± 10 mm, and the flow according to JISR5201 was 250 ± 10 mm. The results are shown in Tables 1 and 2.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】表1、表2において、高性能減水剤のみの
比較例(実験No.1−1〜1−11)に対して、本発
明例の亜硫酸塩等を一定として高性能減水剤の添加量を
変えた場合(実験No.1−13〜1−20)は、高性
能減水剤の添加量は0.3重量部以上でその添加量が多
くなるほどモルタルフローの経時低下量は小さくなり良
作業性を示すが、多くなり過ぎると経時低下量は大きく
なる傾向があり、3.0重量部の添加ではブリージング
も発生する。従って、高性能減水剤の添加量は0.3〜
3.0重量部の範囲において、好ましくは0.4〜2.
5重量部であり、0.6〜2.0重量部がより好ましい
ことが示される。また、高性能減水剤の添加量を一定と
して亜硫酸塩等の添加量を変えた場合(実験No.1−
22〜1−28)は、亜硫酸塩等の添加量が多くなるほ
どモルタルフローの経時低下量は小さくなりが、多くな
り過ぎると経時低下量は大きくなる傾向があり、亜硫酸
塩等の添加量が0.05〜2.0重量部の範囲において
0.1〜1.5重量部が好ましく、より好ましくは0.
2〜1.0重量部であることが示される。In Tables 1 and 2, the high-performance water reducing agent was added to the comparative example (Experiment Nos. 1-1 to 1-11) using only the high-performance water reducing agent while keeping the sulfite and the like of the present invention constant. When the amount was changed (Experiment Nos. 1-13 to 1-20), the addition amount of the high-performance water reducing agent was 0.3 parts by weight or more. Workability is shown, but if the amount is too large, the amount of decrease with time tends to be large, and addition of 3.0 parts by weight also causes breathing. Therefore, the addition amount of the high-performance water reducing agent is 0.3 to
In the range of 3.0 parts by weight, preferably 0.4 to 2.0.
5 parts by weight, indicating that 0.6 to 2.0 parts by weight is more preferable. When the amount of the sulfite or the like was changed while the amount of the high-performance water reducing agent was kept constant (Experiment No. 1-).
In Nos. 22 to 1-28), as the amount of the sulfite or the like is increased, the amount of the mortar flow decreasing with time tends to be small. However, when the amount is too large, the amount of the mortar flow with the time tends to increase. In the range of 0.05 to 2.0 parts by weight, the amount is preferably 0.1 to 1.5 parts by weight, more preferably 0.1 to 1.5 parts by weight.
2 to 1.0 parts by weight.
【0030】実施例2 実施例1の任意の実験No.の水硬性組成物を含んだモ
ルタルを用いて粗骨材(新潟県姫川産)を添加してコン
クリートを練混ぜた。この際、II型無水石膏、活性シリ
カ及びポゾラン物質の種類と添加量の組み合わせを変え
て標準養生における材齢1日、7日、28日の圧縮強度
を測定した。その結果を表3、表4に示す。Example 2 An arbitrary experiment of Example 1 was performed. Using a mortar containing the hydraulic composition of Example 1, coarse aggregate (from Himekawa, Niigata Prefecture) was added and the concrete was mixed. At this time, the compressive strengths of the standard aging at 1 day, 7 days and 28 days were measured by changing the combination of the type and the amount of the type II anhydrous gypsum, activated silica and pozzolanic substances. The results are shown in Tables 3 and 4.
【0031】[0031]
【表3】 [Table 3]
【0032】[0032]
【表4】 [Table 4]
【0033】尚、コンクリートは最大骨材寸法が20m
mの砕石を用い、単位砕石量を1034kg/m3 一定とし
て、残りを空気量3%を含んだモルタルとして配合し
た。この場合、概ね、単位セメント量は300kg/m3 、
砂は900kg/m3 であり、スランプは8cm程度であ
る。但し、II型無水石膏や活性シリカ、ポゾラン物質は
水硬性組成物の中の水硬性物質100重量部に対して外
割り添加とし、砂と置き換えて重量を容積換算して添加
し、水硬性組成物中の亜硫酸塩等や高性能減水剤は水に
溶解するので容積換算はしなかった。また、コンクリー
トの練混ぜは、容量100リットルの遊星型強制練りミ
キサーで30リットル分のコンクリートを3分間行い、
水硬性組成物の中にII型無水石膏や活性シリカ、ポゾラ
ン物質を軽く混合して、骨材と一緒に投入して撹拌と同
時に練混ぜ水を注入した。供試体はφ10×20cmと
し、棒バイブレーターを用いて成形した。The concrete has a maximum aggregate size of 20 m.
m crushed stone, the unit crushed stone amount was fixed at 1034 kg / m 3 , and the rest was blended as mortar containing 3% of air. In this case, the unit cement amount is generally 300 kg / m 3 ,
The sand is 900 kg / m 3 and the slump is about 8 cm. However, type-II anhydrous gypsum, activated silica, and pozzolanic substances are externally added to 100 parts by weight of the hydraulic substance in the hydraulic composition. Since the sulfites and the high-performance water reducing agent in the product were dissolved in water, the volume conversion was not performed. In addition, the mixing of the concrete is performed for 30 minutes by using a 100-liter planetary forced kneading mixer for 3 minutes.
Type II anhydrous gypsum, activated silica, and pozzolanic substances were lightly mixed into the hydraulic composition, added together with the aggregate, mixed with stirring, and water was injected. The specimen was φ10 × 20 cm and was molded using a rod vibrator.
【0034】表3、表4において、石膏類の添加量を一
定とした場合、水硬性物質の組成や減水剤の添加量の違
い拘わらず亜硫酸塩等の添加は、モルタルフローやコン
クリートスランプの保持だけではなく、初期及び長期強
度を増大させる(実験No.2−1〜2−12と実験N
o.2−16〜2−20の比較)。さらに、添加量依存
性では0.05〜2重量部の範囲で添加効果が示され、
添加量が多くなるほど初期及び長期強度は増大するが、
多すぎても長期強度はおさえられる傾向となり、好まし
くは、0.1〜1.5重量部、より好ましくは0.2〜
1.0重量部であることが示される(実験No.2−2
4〜2−30)。また、亜硫酸塩等の単独添加でも初期
及び長期強度が高くなることも示される(実験No.2
−7〜2−23の比較)。水硬性物質の組成、亜硫酸塩
等及び減水剤の添加量を一定として石膏類の添加量を変
えた場合は、1重量部から添加効果が示され、かつ、添
加量が多くなるほど長期強度は増大するが15重量部で
は強度は低下してくる傾向が示され、好ましくは2〜1
2重量部、より好ましくは4〜10重量部であることが
示される(実験No.2−23、2−31〜2−3
8)。同様に、活性シリカも添加量が多くなるほど長期
強度を増大させる。そして1重量部より添加効果が示さ
れるが15重量部を超えて添加しても、それ以上の強度
の伸びはできないことが示される。そして2〜12重量
部が好ましく、より好ましくは4〜10重量部であるこ
とも示される(実験No.2−39〜2−46)。ポゾ
ラン物質も2〜15重量部の範囲で長期強度の増大効果
が示される。そして添加量が多くなるほど長期強度を増
大させるが、添加量が多すぎても強度の伸びは僅かずつ
低下し、好ましくは3〜12重量部、より好ましくは5
〜10重量部であることが示される(実験No.2−4
7〜2−53)。さらに石膏類、活性シリカ、ポゾラン
物質の2種以上の併用は相乗的に長期強度の伸びが大き
くなることも示される(実験No.2−54〜2−6
3)。In Tables 3 and 4, when the amount of gypsum is constant, the addition of sulfite and the like is not affected by the difference in the composition of the hydraulic substance and the amount of the water reducing agent. Not only increase the initial and long-term strength (Experiment Nos. 2-1 to 2-12 and Experiment N
o. 2-16 to 2-20). Further, in the addition amount dependency, the addition effect is shown in the range of 0.05 to 2 parts by weight,
The initial and long-term strength increases as the amount added increases,
Even if it is too large, the long-term strength tends to be suppressed, preferably 0.1 to 1.5 parts by weight, more preferably 0.2 to 1.5 parts by weight.
1.0 part by weight (Experiment No. 2-2).
4 to 2-30). In addition, it is also shown that the initial and long-term strength increases even when sulfite or the like is added alone (Experiment No. 2).
-7 to 2-23). When the amount of gypsum is changed while the composition of the hydraulic substance, the amount of sulfite, etc. and the amount of the water reducing agent are kept constant, the effect of addition is shown from 1 part by weight, and the longer the amount, the longer the strength increases However, when the amount is 15 parts by weight, the strength tends to decrease.
2 parts by weight, more preferably 4 to 10 parts by weight (Experiment No. 2-23, 2-31 to 2-3)
8). Similarly, the active silica increases the long-term strength as the added amount increases. The effect of addition is shown from 1 part by weight, but it is shown that even if added over 15 parts by weight, no further increase in strength can be achieved. It is also shown that the content is preferably 2 to 12 parts by weight, more preferably 4 to 10 parts by weight (Experiment Nos. 2-39 to 2-46). The pozzolanic substance also shows an effect of increasing the long-term strength in the range of 2 to 15 parts by weight. The longer the strength, the greater the added amount, but the longer the strength, the less the elongation of the strength decreases even if the added amount is too large, preferably 3 to 12 parts by weight, more preferably 5 to 12 parts by weight.
-10 to 10 parts by weight (Experiment No. 2-4).
7-2-53). It is also shown that the combination of two or more of gypsum, active silica, and pozzolanic substances synergistically increases the long-term strength (Experiment Nos. 2-54 to 2-6).
3).
【0035】[0035]
【発明の効果】本発明の水硬性組成物及びそれを使用し
たモルタル又はコンクリートを用いることにより、従来
よりも高炉スラグを多量に配合した場合の強度低下を防
止するだけでなく、良作業性で、かつ、高強度を得るこ
とが可能となる。従って、高炉スラグの活用範囲が広が
り、省資源、省エネルギー的となるばかりでなく、セメ
ントの焼成時には多量の炭酸ガスを分解排出させている
が、この炭酸ガスによる温暖化等の地球環境への対策の
一つとなるものである。By using the hydraulic composition of the present invention and the mortar or concrete using the same, not only can the strength be reduced when a large amount of blast furnace slag is blended than before, but also good workability can be achieved. , And high strength can be obtained. Therefore, the range of use of blast furnace slag is widened, which not only saves resources and energy, but also decomposes and discharges a large amount of carbon dioxide during the firing of cement. It is one of the.
Claims (4)
み、残部が、セメント、生石灰、及び消石灰の1種又は
2種以上の無機物質に置換された水硬性物質100重量
部に対して、高性能減水剤0.3〜3.0重量部、アル
カリ金属の亜硫酸塩、アルカリ金属の重亜硫酸塩、アル
カリ金属のピロ硫酸塩、アルカリ金属のピロ亜硫酸塩及
び亜硫酸カルシウムの1種又は2種以上を0.05〜
2.0重量部含有してなる水硬性組成物。1. A blast furnace slag powder containing 70 to 98 parts by weight, with the balance being 100 parts by weight of a hydraulic substance replaced with one or more inorganic substances of cement, quicklime and slaked lime. 0.3 to 3.0 parts by weight of a water reducing agent, one or more of alkali metal sulfite, alkali metal bisulfite, alkali metal pyrosulfate, alkali metal pyrosulfite and calcium sulfite 0.05 ~
A hydraulic composition containing 2.0 parts by weight.
水石膏1〜15重量部及び/又は活性シリカ1〜15重
量部を含有してなる水硬性組成物。2. A hydraulic composition comprising the hydraulic composition according to claim 1 and 1 to 15 parts by weight of type II anhydrous gypsum and / or 1 to 15 parts by weight of activated silica.
更に、ポゾラン物質2〜15重量部を含有してなる水硬
性組成物。3. The hydraulic composition according to claim 1 or 2,
A hydraulic composition further comprising 2 to 15 parts by weight of a pozzolanic substance.
組成物を使用することを特徴とするモルタル又はコンク
リート。4. Mortar or concrete using the hydraulic composition according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23972297A JP3608911B2 (en) | 1997-09-04 | 1997-09-04 | Hydraulic composition and mortar or concrete using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23972297A JP3608911B2 (en) | 1997-09-04 | 1997-09-04 | Hydraulic composition and mortar or concrete using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1179822A true JPH1179822A (en) | 1999-03-23 |
JP3608911B2 JP3608911B2 (en) | 2005-01-12 |
Family
ID=17048958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23972297A Expired - Lifetime JP3608911B2 (en) | 1997-09-04 | 1997-09-04 | Hydraulic composition and mortar or concrete using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3608911B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001039760A (en) * | 1999-07-28 | 2001-02-13 | Denki Kagaku Kogyo Kk | Low environmental load type high strength concrete |
JP2001039759A (en) * | 1999-07-28 | 2001-02-13 | Denki Kagaku Kogyo Kk | Low environmental load type high strength concrete |
JP2003246657A (en) * | 2002-02-26 | 2003-09-02 | Denki Kagaku Kogyo Kk | Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition |
WO2009144141A1 (en) | 2008-05-30 | 2009-12-03 | Construction Research & Technology Gmbh | Mixture, in particular construction material mixture containing furnace slag |
WO2010143629A1 (en) * | 2009-06-09 | 2010-12-16 | 株式会社竹中工務店 | Concrete composition using blast furnace slag composition |
JP2010285289A (en) * | 2009-06-09 | 2010-12-24 | Takenaka Komuten Co Ltd | Concrete composition using blast furnace slag composition |
JP2010285290A (en) * | 2009-06-09 | 2010-12-24 | Takenaka Komuten Co Ltd | Concrete composition using blast-furnace cement composition |
JP2011006321A (en) * | 2010-08-26 | 2011-01-13 | Ohbayashi Corp | Cement composition |
KR101085044B1 (en) | 2010-11-03 | 2011-11-18 | 주식회사 씨엠디기술단 | Inorgarnic binder for manufacturing secondary concrete product |
WO2012026240A1 (en) * | 2010-08-26 | 2012-03-01 | 株式会社大林組 | Cement composition, process for production of mixed material, and process for production of cement composition |
JP2012086992A (en) * | 2010-10-15 | 2012-05-10 | Ohbayashi Corp | Method for producing mixed material, and method for producing cement composition |
JPWO2010143630A1 (en) * | 2009-06-09 | 2012-11-22 | 株式会社竹中工務店 | Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same |
JP2014114176A (en) * | 2012-12-06 | 2014-06-26 | Nishimatsu Constr Co Ltd | Concrete material |
JP2014125370A (en) * | 2012-12-26 | 2014-07-07 | Takenaka Komuten Co Ltd | Hydraulic blast furnace slag composition and concrete cured body |
JP2015180604A (en) * | 2015-07-15 | 2015-10-15 | 株式会社大林組 | Production method of admixture and production method of cement composition |
JP2015180603A (en) * | 2015-07-14 | 2015-10-15 | 株式会社大林組 | cement composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5288929B2 (en) * | 2008-08-05 | 2013-09-11 | 鹿島建設株式会社 | Construction method of concrete embankment |
-
1997
- 1997-09-04 JP JP23972297A patent/JP3608911B2/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001039760A (en) * | 1999-07-28 | 2001-02-13 | Denki Kagaku Kogyo Kk | Low environmental load type high strength concrete |
JP2001039759A (en) * | 1999-07-28 | 2001-02-13 | Denki Kagaku Kogyo Kk | Low environmental load type high strength concrete |
JP2003246657A (en) * | 2002-02-26 | 2003-09-02 | Denki Kagaku Kogyo Kk | Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition |
WO2009144141A1 (en) | 2008-05-30 | 2009-12-03 | Construction Research & Technology Gmbh | Mixture, in particular construction material mixture containing furnace slag |
US8118931B2 (en) | 2008-05-30 | 2012-02-21 | Construction Research & Technology Gmbh | Mixture, in particular construction material mixture containing furnace slag |
JP2010285293A (en) * | 2009-06-09 | 2010-12-24 | Takenaka Komuten Co Ltd | Concrete composition using blast-furnace slag composition |
JP5545678B2 (en) * | 2009-06-09 | 2014-07-09 | 株式会社竹中工務店 | Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same |
JP2010285290A (en) * | 2009-06-09 | 2010-12-24 | Takenaka Komuten Co Ltd | Concrete composition using blast-furnace cement composition |
JP2010285289A (en) * | 2009-06-09 | 2010-12-24 | Takenaka Komuten Co Ltd | Concrete composition using blast furnace slag composition |
WO2010143629A1 (en) * | 2009-06-09 | 2010-12-16 | 株式会社竹中工務店 | Concrete composition using blast furnace slag composition |
KR20120027330A (en) * | 2009-06-09 | 2012-03-21 | 다케모토 유시 가부시키 가이샤 | Concrete composition using blast furnace slag composition |
JPWO2010143630A1 (en) * | 2009-06-09 | 2012-11-22 | 株式会社竹中工務店 | Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same |
JP2011006321A (en) * | 2010-08-26 | 2011-01-13 | Ohbayashi Corp | Cement composition |
WO2012026240A1 (en) * | 2010-08-26 | 2012-03-01 | 株式会社大林組 | Cement composition, process for production of mixed material, and process for production of cement composition |
JP2012086992A (en) * | 2010-10-15 | 2012-05-10 | Ohbayashi Corp | Method for producing mixed material, and method for producing cement composition |
KR101085044B1 (en) | 2010-11-03 | 2011-11-18 | 주식회사 씨엠디기술단 | Inorgarnic binder for manufacturing secondary concrete product |
JP2014114176A (en) * | 2012-12-06 | 2014-06-26 | Nishimatsu Constr Co Ltd | Concrete material |
JP2014125370A (en) * | 2012-12-26 | 2014-07-07 | Takenaka Komuten Co Ltd | Hydraulic blast furnace slag composition and concrete cured body |
JP2015180603A (en) * | 2015-07-14 | 2015-10-15 | 株式会社大林組 | cement composition |
JP2015180604A (en) * | 2015-07-15 | 2015-10-15 | 株式会社大林組 | Production method of admixture and production method of cement composition |
Also Published As
Publication number | Publication date |
---|---|
JP3608911B2 (en) | 2005-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4997484A (en) | Hydraulic cement and composition employing the same | |
JPH1179822A (en) | Hydraulic composition and mortar or concrete using the same | |
JP6137850B2 (en) | Hydraulic composition | |
JPH11221821A (en) | Manufacture of concrete | |
JPH0680456A (en) | Fluid hydraulic composition | |
JP2003277111A (en) | Hardening accelerator and cement composition | |
JPH0952744A (en) | Mortar and concrete composition | |
JPH01298050A (en) | Flash setting agent for cement | |
JPH10265249A (en) | Cement admixture and cement composition using the same | |
JPH11116306A (en) | Cement admixture and cement composition containing the same | |
JP4538108B2 (en) | High performance water reducing agent composition and cement composition | |
JP4679707B2 (en) | High-strength cement admixture and cement composition using the same | |
JP4745259B2 (en) | Cement composition | |
CA1275425C (en) | Set accelerating and early-strength enhancing admixtures for concrete compositions | |
JP3991242B2 (en) | High strength shotcrete | |
KR100406218B1 (en) | cement blend compound furtherance to do the chief ingredient for slag powder | |
JPH01242445A (en) | Hydraulic cement composition | |
JPH10291844A (en) | Cement admixture and cement composition using the same | |
Naik et al. | Utilization of powdered gypsum-wallboard in concrete | |
JP2020093940A (en) | Cement admixture, and concrete using the same | |
JPH11130499A (en) | Cement composition for spraying material and spraying method | |
JPH0526744B2 (en) | ||
JP4514670B2 (en) | High water reduction rate and high strength cement composition | |
JP4877883B2 (en) | High-strength cement admixture and cement composition using the same | |
JP2018162171A (en) | Durability improver for concrete, and concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041012 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041012 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |