[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1179719A - Reversible adsorbing and desorbing method of nitrogen gas by controlling potential of electrode - Google Patents

Reversible adsorbing and desorbing method of nitrogen gas by controlling potential of electrode

Info

Publication number
JPH1179719A
JPH1179719A JP9252908A JP25290897A JPH1179719A JP H1179719 A JPH1179719 A JP H1179719A JP 9252908 A JP9252908 A JP 9252908A JP 25290897 A JP25290897 A JP 25290897A JP H1179719 A JPH1179719 A JP H1179719A
Authority
JP
Japan
Prior art keywords
nitrogen gas
ruthenium complex
adsorbing
potential
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9252908A
Other languages
Japanese (ja)
Other versions
JP3243477B2 (en
Inventor
Toshikazu Takahashi
利和 高橋
Kazuhisa Hiratani
和久 平谷
Kazuyuki Kasuga
和行 春日
Takayoshi Adachi
貴義 足立
Makoto Uchino
誠 内野
Taizo Ichida
泰三 市田
Riichi Nakatsuji
利一 中辻
Ayumi Okamoto
歩 岡本
Ichiro Nakayama
一郎 仲山
Nobuyoshi Ito
延義 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Taiyo Toyo Sanso Co Ltd
Nippon Sanso Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Japan Oxygen Co Ltd
Taiyo Toyo Sanso Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Japan Oxygen Co Ltd, Taiyo Toyo Sanso Co Ltd, Nippon Sanso Corp filed Critical Agency of Industrial Science and Technology
Priority to JP25290897A priority Critical patent/JP3243477B2/en
Publication of JPH1179719A publication Critical patent/JPH1179719A/en
Application granted granted Critical
Publication of JP3243477B2 publication Critical patent/JP3243477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable repetition of reversible adsorption and desorption of nitrogen at a normal temp. and under normal pressure by bringing a pair of electrodes into contact with soln. of a ruthenium complex which can absorb and emit molecular nitrogen and controlling the electrode potential. SOLUTION: A ruthenium complex is expressed by formula I (wherein R is H, hydrocarbon group, fluorinated hydrocarbon group; X, Y are ligands) or formula II (wherein R is a hydrocarbon group; R' is H, hydrocarbon group; X, Y are ligands). The voltage to be applied is controlled to the potential which can reduce the complex to bivalent or lower valence when nitrogen is to be adsorbed to the ruthenium complex. On the other hand, the voltage is controlled to the potential which can oxidize the complex to tervalent or higher valence when nitrogen is to be desorbed. The reaction soln. to adsorb and desorb nitrogen gas is prepared by dissolving the complex in water, alcohol or a mixture liquid of water and alcohol. In this case, an electrolyte comprising a pair of cation and anion is added to the soln. As the working electrodes, porous carbon electrodes or the like are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、常温、常圧付近に
おける窒素ガスの吸収と、放出を、ルテニウム錯体を作
用物質として含む溶液を用いて、溶液に接触させた一対
の電極に対する印加電圧の操作によって自由に制御し、
なおかつこれを可逆的に、繰り返し行うための方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring the absorption and release of nitrogen gas at normal temperature and normal pressure by using a solution containing a ruthenium complex as an active substance by applying a voltage to a pair of electrodes brought into contact with the solution. Control freely by operation,
It also relates to a method for reversibly and repeatedly performing this.

【0002】[0002]

【従来の技術】言うまでもなく、回収することなく気体
を一方的に放散する反応は数多く知られている。また、
その逆に気体の収着を専ら行う材料(例えば活性炭やシ
リカゲル、鉄粉等)もよく利用されているが、いずれも
再利用するには多くの手間とエネルギーを要する。気体
の吸収、放出を可逆的に行う一般的な方法として、熱に
よる制御に基づく方法がある。しかしながら、この方法
は利用温度が限られているし、必ず低温熱源を用いる必
要がある。比較的小さな温度変化で気体を可逆的に吸脱
着する方法として、水素吸蔵合金を用いる方法がある。
また酸素を熱を用いて可逆的に吸脱着する方法がある。
2,3,2-テトラアミン骨格を持つtrans−ジクロロ三
級テトラアミン錯体は水溶液中で三塩化チタンと反応さ
せることで水中の溶存窒素ガスを固定化できることが示
されている(T.Takahashi,K.Hirat
ani,K.Kimura,Chem.Lett.,1
993,1761)。また、本発明者らによって、上記
の錯体の配位窒素上に炭化水素置換基を導入したルテニ
ウム錯体が、窒素ガス吸収能力をもつことも先に見いだ
されている(特願平7−262147)。
2. Description of the Related Art It goes without saying that many reactions for unilaterally releasing gas without recovery are known. Also,
Conversely, materials that exclusively perform gas sorption (eg, activated carbon, silica gel, iron powder, etc.) are often used, but reusing any of them requires a lot of labor and energy. As a general method for reversibly absorbing and releasing gas, there is a method based on heat control. However, this method has a limited use temperature and requires the use of a low-temperature heat source. As a method for reversibly adsorbing and desorbing gas with a relatively small temperature change, there is a method using a hydrogen storage alloy.
There is also a method of reversibly adsorbing and desorbing oxygen using heat.
It has been shown that a trans-dichlorotertiary tetraamine complex having a 2,3,2-tetraamine skeleton can immobilize dissolved nitrogen gas in water by reacting with titanium trichloride in an aqueous solution (T. Takahashi, K. et al. Hirat
ani, K .; Kimura, Chem. Lett. , 1
993, 1761). In addition, the present inventors have previously found that a ruthenium complex having a hydrocarbon substituent introduced on the coordinating nitrogen of the above complex has a nitrogen gas absorbing ability (Japanese Patent Application No. 7-262147). .

【0003】気体の可逆的吸脱着反応は、気体吸蔵や、
分離、精製、検出の目的のほか、アクチュエーターへの
利用など、幅広い応用が可能である。しかしながら、従
来の技術においては、熱を利用した技術がほとんどで、
必ず高温、低温のふたつの熱源を必要とするものであっ
た。また作用物質として、水素のような可燃性ガスや、
酸素のような助燃性ガスが使われていた。
[0003] The reversible adsorption / desorption reaction of gas involves gas occlusion,
A wide variety of applications are possible, including separation, purification, and detection, as well as actuator applications. However, most of the conventional technologies use heat.
It always required two heat sources, high and low. In addition, flammable gas such as hydrogen,
A combustible gas such as oxygen was used.

【0004】[0004]

【発明が解決しようとする課題】本発明は、気体の可逆
的吸脱着方法において、(1)常温、常圧において、熱
を用いずに気体の吸脱着を制御すること、(2)気体吸
脱着制御を電位操作のみによって行うこと、(3)気体
吸脱着を可逆的に、かつ繰り返し行えること、(4)こ
れを実現するための作用物質として窒素ガスを用いるこ
とを特徴とする方法を提供することをその課題とする。
SUMMARY OF THE INVENTION The present invention relates to a method for reversibly adsorbing and desorbing a gas, comprising: (1) controlling the adsorption and desorption of gas at ordinary temperature and pressure without using heat; A method characterized in that desorption control is performed only by a potential operation, (3) gas adsorption / desorption can be performed reversibly and repeatedly, and (4) nitrogen gas is used as an active substance for realizing this. Is the task.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記課題を
解決すべく鋭意研究を重ねた結果、本発明を完成するに
至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, have completed the present invention.

【0006】即ち、本発明によれば、分子状窒素を吸収
放出することの可能なルテニウム錯体を溶かした溶液に
一対の電極を接触させるとともに該電極電位を操作する
ことによって、窒素ガスを可逆的に吸脱着する方法が提
供される。
That is, according to the present invention, a pair of electrodes are brought into contact with a solution in which a ruthenium complex capable of absorbing and releasing molecular nitrogen is dissolved, and the potential of the electrodes is manipulated, whereby nitrogen gas is reversibly formed. A method is provided for adsorbing and desorbing to and from a surface.

【0007】[0007]

【発明の実施の形態】本発明においては、分子状窒素を
吸放出するルテニウム錯体を溶解した溶液を用い、その
溶液に一対の電極を介して、その溶液中のルテニウム錯
体に電圧を印加する。この場合、窒素をルテニウム錯体
に吸着させる電位は、そのルテニウム錯体を2価以下に
還元できる電位であり、一方、窒素をルテニウム錯体か
ら脱着させる電位は、ルテニウム錯体を三価以上に酸化
できる電位である。電解還元・酸化によって窒素ガスを
吸脱着するルテニウム錯体の例としては、例えば以下の
ようなものが挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a solution in which a ruthenium complex that absorbs and releases molecular nitrogen is dissolved is used, and a voltage is applied to the ruthenium complex in the solution via a pair of electrodes. In this case, the potential at which nitrogen is adsorbed on the ruthenium complex is a potential at which the ruthenium complex can be reduced to divalent or lower, while the potential at which nitrogen is desorbed from the ruthenium complex is a potential at which the ruthenium complex can be oxidized to trivalent or higher. is there. Examples of ruthenium complexes that adsorb and desorb nitrogen gas by electrolytic reduction and oxidation include, for example, the following.

【化1】 (式中、Rは水素、炭化水素基またはフッ化炭化水素基
を示し、X及びYは配位子を示す)
Embedded image (Wherein, R represents hydrogen, a hydrocarbon group or a fluorinated hydrocarbon group, and X and Y represent ligands)

【化2】 (式中、Rは炭化水素基、R’は水素または炭化水素基
を示し、X及びYは配位子を示す)
Embedded image (Wherein R represents a hydrocarbon group, R ′ represents hydrogen or a hydrocarbon group, and X and Y represent ligands)

【0008】前記炭化水素基には、脂肪族炭化水素基及
び芳香族炭化水素基が包含される。脂肪族炭化水素基に
は鎖状及び環状のアルキル基が包含される。鎖状アルキ
ル基としては、炭素数1〜12、好ましくは2〜4のア
ルキル基が挙げられる。環状アルキル基としては、シク
ロヘキシルが挙げられる。芳香族基には、フェニル、ト
リル、ナフチル等のアリール基や、ベンジル、フェネチ
ル、ナフチルメチル等のアリールアルキル基が挙げられ
る。前記フッ化炭化水素基としては、前記した各種の炭
化水素基のフッ素化物が示され、特に好ましくは、2,
2,2−トリフルオロエチル基等が挙げられる。前記配
位子としては、塩素、水酸基、水または酸素等のルテニ
ウムに錯化可能な各種の配位子が挙げられる。
[0008] The hydrocarbon group includes an aliphatic hydrocarbon group and an aromatic hydrocarbon group. Aliphatic hydrocarbon groups include linear and cyclic alkyl groups. Examples of the chain alkyl group include an alkyl group having 1 to 12, preferably 2 to 4 carbon atoms. Examples of the cyclic alkyl group include cyclohexyl. Examples of the aromatic group include an aryl group such as phenyl, tolyl, and naphthyl, and an arylalkyl group such as benzyl, phenethyl, and naphthylmethyl. Examples of the fluorinated hydrocarbon group include fluorinated compounds of the various hydrocarbon groups described above.
A 2,2-trifluoroethyl group and the like. Examples of the ligand include various ligands that can be complexed with ruthenium such as chlorine, a hydroxyl group, water, or oxygen.

【0009】本発明による窒素ガスを吸脱着する反応溶
液を調製するには、前記(1)や(2)のルテニウム錯
体を、窒素ガスの吸脱着速度を上げるために、水、アル
コールまたは水とアルコールの混合溶液に溶解させる。
この場合、ルテニウム錯体を含む溶液中には、一対の陽
イオンと陰イオンからなる電解質を添加するのが好まし
い。この電解質において、その陽イオンとしては、水素
イオン、リチウムイオン、ナトリウムイオン、カリウム
イオン、ベリリウムイオン、マグネシウムイオン、カル
シウムイオン、アンモニウムイオン、四級アンモニウム
等が挙げられる。一方、陰イオンとしては、フッ素物イ
オン、塩化物イオン、臭化物イオン、ヨウ化物イオン、
水酸化物イオン、炭酸イオン、炭酸水素イオン、ホウ酸
イオン、ホウ酸水素イオン、ホウ酸二水素イオン、リン
酸イオン、リン酸水素イオン、リン酸二水素イオン、硫
酸イオン、硫酸水素イオン、酢酸イオン、トリフルオロ
酢酸イオン、メタンスルフォン酸イオン、トリフルオロ
メタンスルフォン酸イオン、トルエンスルフォン酸イオ
ン等アルキルおよびアリールスルフォン酸イオン等が挙
げられる。ルテニウム錯体を水に溶解させる場合、好ま
しくは溶液のpHを一定に保つために緩衛剤溶液が用い
られ、更に好ましくはpHは7以上で12前後が最も好
ましく使用される。この場合の溶液としては、リン酸イ
オンやリン酸水素イオンを含む慣用のものが使用され
る。
In order to prepare the reaction solution for adsorbing and desorbing nitrogen gas according to the present invention, the ruthenium complex of the above (1) or (2) is mixed with water, alcohol or water in order to increase the rate of adsorption and desorption of nitrogen gas. Dissolve in a mixed solution of alcohol.
In this case, it is preferable to add an electrolyte composed of a pair of cations and anions to the solution containing the ruthenium complex. In this electrolyte, examples of the cation include a hydrogen ion, a lithium ion, a sodium ion, a potassium ion, a beryllium ion, a magnesium ion, a calcium ion, an ammonium ion, and a quaternary ammonium. On the other hand, as the anion, fluoride ion, chloride ion, bromide ion, iodide ion,
Hydroxide ion, carbonate ion, hydrogen carbonate ion, borate ion, hydrogen borate ion, dihydrogen borate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, sulfate ion, hydrogen sulfate ion, acetic acid Ion, trifluoroacetate ion, methanesulfonate ion, trifluoromethanesulfonate ion, and alkyl and aryl sulfonate ions such as toluenesulfonate ion. When dissolving the ruthenium complex in water, a moderator solution is preferably used to keep the pH of the solution constant, and the pH is more preferably 7 or more and around 12 is most preferably used. As the solution in this case, a conventional solution containing a phosphate ion or a hydrogen phosphate ion is used.

【0010】この反応溶液を用いて窒素の吸脱着を行う
には、その溶液に一対の電極を接触させて電解還元・酸
化する。このための作用電極としては、白金、金、銀、
銅や水銀等の金属、またはカーボン電極等が使用され
る。好ましくは表面積が大きく電位窓の大きな多孔性カ
ーボン電極(BAS社製)が用いられる。更に電極の電
位を一定にコントロールするための参照電極を使用する
ことが望ましく、参照電極としては、水素電極、カロメ
ル電極、Ag/AgCl電極等が用いられる。対電極に
は、白金、金、銀、銅、水銀等の金属、またはカーボン
電極等が使用されるが、錯体が対電極上で酸化・還元さ
れないように、膜や塩橋、多孔質ガラス等で反応溶液か
ら隔離しておくことが望ましい。
To perform adsorption and desorption of nitrogen using the reaction solution, a pair of electrodes are brought into contact with the solution to perform electrolytic reduction and oxidation. Working electrodes for this purpose are platinum, gold, silver,
A metal such as copper or mercury, or a carbon electrode is used. Preferably, a porous carbon electrode (manufactured by BAS) having a large surface area and a large potential window is used. Further, it is desirable to use a reference electrode for controlling the potential of the electrode to be constant. As the reference electrode, a hydrogen electrode, a calomel electrode, an Ag / AgCl electrode, or the like is used. Metals such as platinum, gold, silver, copper, and mercury, or carbon electrodes are used for the counter electrode. Films, salt bridges, porous glass, etc. are used to prevent oxidation and reduction of the complex on the counter electrode. It is desirable to keep the reaction solution away from the reaction solution.

【0011】還元の電位は、ルテニウム錯体(1)や
(2)の中心金属であるルテニウムが、二価以下に還元
される電位であり、二価/三価の半波電位よりも更に2
00mV以上低いことが望ましい。しかし、あまり低い
電位で還元しようとすると、溶媒が還元される恐れがあ
るので、具体的には、例えば溶媒がpH12の水溶液で
−1000〜−1200mV(vs Ag/AgCl)
程度であることが好ましい。この還元電位の印加によ
り、溶液による窒素の吸収が行われる。
The potential of the reduction is a potential at which ruthenium, which is the central metal of the ruthenium complexes (1) and (2), is reduced to divalent or lower, and is more two potentials than the divalent / trivalent half-wave potential.
It is desirable that the voltage is lower than 00 mV. However, if an attempt is made to reduce at an extremely low potential, the solvent may be reduced. Specifically, for example, the solvent is -1000 to -1200 mV (vs Ag / AgCl) in an aqueous solution having a pH of 12.
It is preferred that it is about. By applying the reduction potential, the solution absorbs nitrogen.

【0012】酸化の電位は、ルテニウム錯体(1)や
(2)の中心金属であるルテニウムが、三価以上、好ま
しくは五価以上に酸化される電位であり、窒素錯体の窒
素脱離電位よりも更に、200mV以上高いことが望ま
しい。しかし、あまり高い電位で酸化しようとすると、
溶媒が酸化される恐れがあるので、具体的には、例えば
溶媒がpH12の水溶液で500〜600mV(vs
Ag/AgCl)程度であることが好ましい。この酸化
電位の印加により、溶液からの窒素の放出が行われる。
The oxidation potential is a potential at which ruthenium, which is the central metal of ruthenium complexes (1) and (2), is oxidized to trivalent or higher, preferably pentavalent or higher, and is higher than the nitrogen desorption potential of the nitrogen complex. Further, it is desirable that the voltage is higher by 200 mV or more. However, if you try to oxidize at too high a potential,
Since the solvent may be oxidized, specifically, for example, the solvent is 500 to 600 mV (vs.
(Ag / AgCl). By applying this oxidation potential, nitrogen is released from the solution.

【0013】[0013]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0014】実施例1 トランス−[Ru(III)(OH)(2,5,9,12
−テトラメチル−2,5,9,12−テトラアザトリデ
カン)(OH2)](CF3SO3248.2mgをリン
酸バッファー(pH12)120mlに溶かし窒素ガス
吸脱着溶液を調製した。なお、前記ルテニウム錯体は、
高橋利和ら、日本化学会第67春季年会予稿集1p59
(1994)や、高橋利和、博士論文「ルテニウム(II)
ポリアミン錯体による分子状窒素の捕捉と窒素錯体の単
離」(1993)等に記載されている。
Example 1 Trans- [Ru (III) (OH) (2,5,9,12
-Tetramethyl-2,5,9,12-tetraazatridecane) (OH 2 )] (CF 3 SO 3 ) 2 48.2 mg was dissolved in phosphate buffer (pH 12) 120 ml to prepare a nitrogen gas adsorption / desorption solution. . Incidentally, the ruthenium complex,
Toshikazu Takahashi et al., Proceedings of the 67th Annual Meeting of the Chemical Society of Japan 1p59
(1994), Toshikazu Takahashi, doctoral dissertation "Ruthenium (II)
Scavenging of Molecular Nitrogen by Polyamine Complex and Isolation of Nitrogen Complex "(1993).

【0015】この溶液を恒温水循環ジャケット付きの容
器に入れ、多孔性カーボン電極(BAS社製)、Ag/
AgCl参照電極(BAS社製)、スターラーチップを
入れてガラス擦の合わせの蓋をし、蓋の穴に、飽和KC
lの塩橋、多孔性カーボン電極の配線、参照電極用の配
線、測温抵抗体のガラスチューブを通して、エポキシ系
の接着剤で固めた。また、蓋に付いたガラス管に継ぎ手
を付け、窒素ガス吸脱着セルを作製した。塩橋の他端
は、フェロシアン化カリウム水溶液に浸し、この溶液に
は対電極として白金線電極が差し込んである。
The solution was placed in a container equipped with a constant temperature water circulation jacket, and a porous carbon electrode (manufactured by BAS) and Ag /
An AgCl reference electrode (manufactured by BAS) and a stirrer chip were put in, and the lid was rubbed together with glass.
1 through a salt bridge, a wiring for a porous carbon electrode, a wiring for a reference electrode, and a glass tube of a resistance temperature detector, and solidified with an epoxy adhesive. In addition, a joint was attached to the glass tube attached to the lid, and a nitrogen gas adsorption / desorption cell was produced. The other end of the salt bridge is immersed in an aqueous solution of potassium ferrocyanide, into which a platinum wire electrode is inserted as a counter electrode.

【0016】このセルを、圧力計と圧力コントロール用
のガスタイトシリンジ、それらをつないで気密のとれる
配管、シリンジを電気信号によって上下することができ
る装置、圧力が一定になるように圧力計からの入力によ
ってシリンジをコントロールするコンピュウターとその
ソフトよりなり、シリンジを自動で動かして系内をコン
ピュウターに入力した設定圧力にコントロールすること
ができる気体吸脱着量自動測定装置につなぎ、電気化学
的還元酸化による気体吸脱着量自動測定装置を完成し
た。(図1)
This cell is connected to a pressure gauge and a gas tight syringe for pressure control, a pipe that connects them, a pipe that can be hermetically sealed, a device that can move the syringe up and down by an electric signal, and a pressure gauge from the pressure gauge to keep the pressure constant. It consists of a computer that controls the syringe by input and its software, and is connected to an automatic gas adsorption / desorption measuring device that can automatically control the inside of the system to the set pressure input to the computer by operating the syringe automatically, and perform electrochemical reduction. An automatic measuring device for gas adsorption and desorption by oxidation was completed. (Fig. 1)

【0017】この図1に示す気体吸脱着量自動測定装置
を、飽和水分を含む窒素ガスで満たしておき、25℃に
調整した恒温室に入れ、窒素ガス吸脱着セルのジャケッ
トに25℃の恒温水を循環させ、装置内の圧力を760
mmHgになるようにコントロールをはじめた。装置や
系内の温度が一定になり、シリンジが一定になるまで、
約1時間ほどかかった。
The gas adsorption / desorption automatic measuring apparatus shown in FIG. 1 is filled with nitrogen gas containing saturated moisture, placed in a thermostatic chamber adjusted to 25 ° C., and placed in a nitrogen gas adsorption / desorption cell jacket at 25 ° C. Circulate the water and increase the pressure inside the device to 760
Control was started to be mmHg. Until the temperature inside the device and system becomes constant and the syringe becomes constant,
It took about one hour.

【0018】窒素ガス吸脱着セルの作用電極である多孔
性カーボン電極に−1100mV(vs Ag/AgC
l)の電圧をかけ273分間還元した。41.0〜0.
89mAの電流で54クーロンの電気が流れ、窒素ガス
吸脱着溶液は、錯体量の約94%の1.6mlの窒素ガ
スを吸収した。(図2)
-1100 mV (vs. Ag / AgC) was applied to the porous carbon electrode serving as the working electrode of the nitrogen gas adsorption / desorption cell.
The voltage of 1) was applied for reduction for 273 minutes. 41.0-0.
At a current of 89 mA, 54 coulombs of electricity flowed, and the nitrogen gas adsorption / desorption solution absorbed 1.6 ml of nitrogen gas, which was about 94% of the amount of the complex. (Fig. 2)

【0019】次ぎに、窒素ガス吸脱着セルの作用電極で
ある多孔性カーボン電極に500mV(vs Ag/A
gCl)の電圧をかけ170分間酸化をした。95〜1
1mAの電流で112クーロンの電気が流れて、窒素ガ
ス吸脱着溶液は、吸収した窒素ガスをほぼ全量放出し
た。(図2)
Next, the porous carbon electrode, which is the working electrode of the nitrogen gas adsorption / desorption cell, was charged with 500 mV (vs. Ag / A).
gCl) and oxidized for 170 minutes. 95-1
At a current of 1 mA, 112 coulombs of electricity flowed, and the nitrogen gas adsorption / desorption solution released almost all of the absorbed nitrogen gas. (Fig. 2)

【0020】ふたたび、窒素ガス吸脱着セルの作用電極
である多孔性カーボン電極に−1100mV(vs A
g/AgCl)の電圧をかけ273分間還元した。5
2.0〜0.62mAの電流で48クーロンの電気が流
れ、窒素ガス吸脱着溶液は、錯体量の約88%の1.5
mlの窒素ガスを吸収した。(図2)
Again, the porous carbon electrode, which is the working electrode of the nitrogen gas adsorption / desorption cell, was applied at -1100 mV (vs. A
g / AgCl) and reduced for 273 minutes. 5
At a current of 2.0 to 0.62 mA, 48 coulombs of electricity flow, and the nitrogen gas adsorption / desorption solution contains 1.5% of about 88% of the complex amount.
ml of nitrogen gas was absorbed. (Fig. 2)

【0021】次ぎに、窒素ガス吸脱着セルの作用電極で
ある多孔性カーボン電極に500mV(vs Ag/A
gCl)の電圧をかけ170分間酸化をした。97〜1
0mAの電流で107クーロンの電気が流れて、窒素ガ
ス吸脱着溶液は、吸収した窒素ガスをほぼ全量放出し
た。(図2)
Next, the porous carbon electrode, which is the working electrode of the nitrogen gas adsorption / desorption cell, was charged with 500 mV (vs. Ag / A
gCl) and oxidized for 170 minutes. 97-1
At a current of 0 mA, 107 coulombs of electricity flowed, and the nitrogen gas adsorption / desorption solution released almost all the absorbed nitrogen gas. (Fig. 2)

【図面の簡単な説明】[Brief description of the drawings]

【図1】気体吸脱着量自動測定装置の構造説明図を示
す。
FIG. 1 is a structural explanatory view of a gas adsorption / desorption amount automatic measuring device.

【図2】窒素ガスの吸収体積の経時変化を示す。FIG. 2 shows a change over time in a nitrogen gas absorption volume.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 利和 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 平谷 和久 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 春日 和行 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 足立 貴義 大阪府大阪市西区靱本町二丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 内野 誠 大阪府大阪市西区靱本町二丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 市田 泰三 大阪府大阪市西区靱本町二丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 中辻 利一 東京都港区西新橋一丁目16番7号 日本酸 素株式会社内 (72)発明者 岡本 歩 東京都港区西新橋一丁目16番7号 日本酸 素株式会社内 (72)発明者 仲山 一郎 東京都港区西新橋一丁目16番7号 日本酸 素株式会社内 (72)発明者 伊東 延義 東京都港区西新橋一丁目16番7号 日本酸 素株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshikazu Takahashi 1-1-1, Higashi, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Kazuhisa Hiratani 1-1-1, Higashi, Tsukuba, Ibaraki Pref. Within the Institute of Engineering Technology (72) Inventor Kazuyuki Kazuga 1-1-1, Higashi, Tsukuba City, Ibaraki Prefecture Within the Institute of Materials Science and Technology, Institute of Industrial Science and Technology (72) Inventor Takayoshi Adachi 2-4-1, Utsuhoncho, Nishi-ku, Osaka-shi, Osaka Inside Taiyo Toyo Oxygen Co., Ltd. (72) Inventor Makoto Uchino 2-4-1-11 Utsuhoncho, Nishi-ku, Osaka, Osaka Prefecture Inside Taiyo Toyo Oxygen Co., Ltd. (72) Taizo Ichida, Utsubocho, Nishi-ku, Osaka, Osaka Chome 4-11 Inside Taiyo Toyo Oxygen Co., Ltd. (72) Inventor Riichi Nakatsuji 1-16-7 Nishishinbashi, Minato-ku, Tokyo (72) Inventor Ayumu Okamoto 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Inside Nippon Oxide Co., Ltd. (72) Inventor Ichiro Nakayama 1-16-17 Nishi-Shimbashi, Minato-ku, Tokyo Inside Nippon Oxide Co., Ltd. (72) Inventor Nobuyoshi Ito 1-16-7 Nishishinbashi, Minato-ku, Tokyo Inside Nippon Oxide Corporation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 分子状窒素を吸収放出することの可能な
ルテニウム錯体を溶かした溶液に一対の電極を接触させ
るとともに、該電極電位を制御することによって窒素ガ
スを吸脱着する方法。
1. A method for bringing a pair of electrodes into contact with a solution in which a ruthenium complex capable of absorbing and releasing molecular nitrogen is dissolved, and adsorbing and desorbing nitrogen gas by controlling the electrode potential.
【請求項2】 ルテニウム錯体が下記一般式(1)で表
されるルテニウム錯体であることを特徴とする請求項1
の窒素ガス吸脱着方法。 【化1】 (式中、Rは水素、炭化水素基またはフッ化炭化水素基
を示し、X及びYは配位子を示す)
2. The ruthenium complex according to claim 1, wherein the ruthenium complex is a ruthenium complex represented by the following general formula (1).
Nitrogen gas adsorption and desorption method. Embedded image (Wherein, R represents hydrogen, a hydrocarbon group or a fluorinated hydrocarbon group, and X and Y represent ligands)
【請求項3】 ルテニウム錯体が下記一般式(2)で表
されるルテニウム錯体であることを特徴とする請求項1
の窒素ガス吸脱着方法。 【化2】 (式中、Rは炭化水素基を示し、R’は水素または炭化
水素基を示し、X及びYは配位子を示す)
3. The ruthenium complex according to claim 1, wherein the ruthenium complex is a ruthenium complex represented by the following general formula (2).
Nitrogen gas adsorption and desorption method. Embedded image (Wherein, R represents a hydrocarbon group, R ′ represents hydrogen or a hydrocarbon group, and X and Y represent ligands)
【請求項4】 溶媒が、水、アルコールまたは水とアル
コールの混合物であることを特徴とする請求項2または
3の窒素ガス吸脱着方法。
4. The method according to claim 2, wherein the solvent is water, alcohol or a mixture of water and alcohol.
【請求項5】 溶媒が、水、アルコールまたは水とアル
コールの混合物に、電解質を溶かしたものであることを
特徴とする請求項2または3の窒素ガス吸脱着方法。
5. The method for adsorbing and desorbing nitrogen gas according to claim 2, wherein the solvent is a solution obtained by dissolving an electrolyte in water, alcohol or a mixture of water and alcohol.
【請求項6】 電解質が、陽イオンと陰イオンとからな
ることを特徴とする請求項5の窒素ガス吸脱着方法。
6. The method for adsorbing and desorbing nitrogen gas according to claim 5, wherein the electrolyte comprises a cation and an anion.
【請求項7】 電解質が、pHを一定にする緩衝剤とし
て働きうる組み合わせであることを特徴とする請求項6
の窒素ガス吸脱着方法。
7. The combination according to claim 6, wherein the electrolyte is a combination capable of acting as a buffer for keeping the pH constant.
Nitrogen gas adsorption and desorption method.
【請求項8】 緩衝剤溶液が、アルカリ性であることを
特徴とする請求項7の窒素ガス吸脱着方法。
8. The method for adsorbing and desorbing nitrogen gas according to claim 7, wherein the buffer solution is alkaline.
【請求項9】 緩衝剤溶液のpHが、10以上であるこ
とを特徴とする請求項8の窒素ガス吸脱着方法。
9. The method for adsorbing and desorbing nitrogen gas according to claim 8, wherein the pH of the buffer solution is 10 or more.
【請求項10】 窒素を吸着させる電位が、ルテニウム
錯体を二価以下に還元できる電位であることを特徴とす
る請求項1〜10いずれかの窒素ガス吸脱着方法。
10. The method for adsorbing and desorbing nitrogen gas according to claim 1, wherein the potential for adsorbing nitrogen is a potential capable of reducing a ruthenium complex to divalent or lower.
【請求項11】 窒素を脱着させる電位が、ルテニウム
錯体を三価以上に酸化できる電位であることを特徴とす
る請求項1〜10のいずれかの窒素ガス吸脱着方法。
11. The method for adsorbing and desorbing nitrogen gas according to claim 1, wherein the potential for desorbing nitrogen is a potential capable of oxidizing a ruthenium complex to three or more valences.
JP25290897A 1997-09-02 1997-09-02 Reversible adsorption and desorption of nitrogen gas by controlling electrode potential Expired - Lifetime JP3243477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25290897A JP3243477B2 (en) 1997-09-02 1997-09-02 Reversible adsorption and desorption of nitrogen gas by controlling electrode potential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25290897A JP3243477B2 (en) 1997-09-02 1997-09-02 Reversible adsorption and desorption of nitrogen gas by controlling electrode potential

Publications (2)

Publication Number Publication Date
JPH1179719A true JPH1179719A (en) 1999-03-23
JP3243477B2 JP3243477B2 (en) 2002-01-07

Family

ID=17243849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25290897A Expired - Lifetime JP3243477B2 (en) 1997-09-02 1997-09-02 Reversible adsorption and desorption of nitrogen gas by controlling electrode potential

Country Status (1)

Country Link
JP (1) JP3243477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703210B2 (en) 2000-11-02 2004-03-09 Satake Corporation Method and device for determining concentration of dioxins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703210B2 (en) 2000-11-02 2004-03-09 Satake Corporation Method and device for determining concentration of dioxins

Also Published As

Publication number Publication date
JP3243477B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
Osteryoung et al. Behavior of the Iodide-Iodine Couple at Platinum Electrodes.
Wawzonek et al. Polarographic Studies in Acetonitrile: I. Behavior of Inorganic Salts
Braun et al. Thermodynamic aspects of redox reactions on electrodes coated with thin, ion exchanging polymer films
Thewalt et al. Structures of the cations of Werner's green and red. mu.-amido-. mu.-peroxobis [bis (ethylenediamine) cobalt (III)] salts
Zhang et al. Kinetics of Phenol and Aniline Adsorption and Desorption on an Organo‐Clay
JP3243477B2 (en) Reversible adsorption and desorption of nitrogen gas by controlling electrode potential
Laitinen The Potential of the Ytterbic—Ytterbous Ion Electrode
Green-Pedersen et al. Separation of cesium from high ionic strength solutions using a cobalt hexacyanoferrate-modified graphite electrode
Anson et al. Effect of Adsorption and Electrode Oxidation on the Oxidation of Oxalic Acid at Platinum Electrodes.
Chlistunoff et al. Electrode reactions at extremely negative potentials: Part I. The kinetids of the Eu (II)/Eu (Hg) electrode reaction in DMF and DMF+ water mixtures
Benari et al. Electrochemical characteristics of the iron (III)/iron (II) system in dimethylsulphoxide solutions
Cukrowski et al. The neutral oxygen donor in complexes of lead and cadmium: a differential pulse polarographic, potentiometric and calorimetric study
Laitinen et al. Polarographic Study of Tris-(ethylenediamine)-cobalt (III) Ion
Tanaka et al. The Formation Constants of Metal Acetate Complexes. I. Polarographic Determination of the Formation Constants of Acetatonickel (II) Complexes
Kowalski et al. Adsorption of Cadmium (II) and Zinc (II) on Mercury Induced by Azide Anions
EP0741796B1 (en) Sensor device
HASANY et al. Retention of Hg (II) by solid mercury sulfide from acidic solution
Shao et al. Ion transfer facilitated by the neutral carrier N, N,-dicyclohexyl-N′, N′-diisobutyl-cis-cyclohexane-1, 2-dicarboxamide across the water/1, 2-dichloroethane interface
Ilani Ion discrimination by “millipore” filters saturated with organic solvents II. The significance of the hydrophobic medium
JP2995881B2 (en) How to recover lithium
Vanhees et al. Standard reduction potential of the indium-indium (III) electrode
Bogeski et al. Experiments towards understanding binding potential of hydroxilated CoQ's lipophilic forms to earth-alkaline cations
Fernández-Prini et al. The Behavior of the Silver—Silver Iodide Electrode in the Presence of Tetraalkylammonium Ions
Watson Surface interactions of mercury on gold foil electrodes in electrodeposition and stripping, and, An investigation of free thiolate ions from metal-thiolate chalcogenides
Tanaka et al. Electron coupled proton transport mediated by [Fe4S4 (SC6H4-pn-C8H17) 4] 2-in liquid membrane.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term