[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1172390A - Measuring apparatus for temperature distribution in turbine blade - Google Patents

Measuring apparatus for temperature distribution in turbine blade

Info

Publication number
JPH1172390A
JPH1172390A JP9234475A JP23447597A JPH1172390A JP H1172390 A JPH1172390 A JP H1172390A JP 9234475 A JP9234475 A JP 9234475A JP 23447597 A JP23447597 A JP 23447597A JP H1172390 A JPH1172390 A JP H1172390A
Authority
JP
Japan
Prior art keywords
turbine blade
temperature distribution
optical fibers
temperature
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9234475A
Other languages
Japanese (ja)
Inventor
Kosuke Ebina
康祐 海老名
Takuro Nakajima
卓郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9234475A priority Critical patent/JPH1172390A/en
Publication of JPH1172390A publication Critical patent/JPH1172390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring apparatus, for a temperature distribution, whose structure is simple and by which temperatures in many points can be measured simultaneously. SOLUTION: A plurality of optical fibers 1 are arranged side by side in a row. The respective optical fibers 1 are faced with a turbine blade in such a way that the arrangement direction of the optical fibers 1 becomes the radial direction of the turbine blade. The radiant light of the turbine blade which is fetched by the respective optical fibers 1 is received so as to be converted into a temperature, and a temperature distribution in the radial direction of the turbine blade is found. Temperatures in many points (the temperature distribution) can be measured simultaneously by a simple constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タービン翼の放射
光から温度を測定する装置に係り、特に、構造が簡単
で、多点を同時に測定できるタービン翼の温度分布測定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring temperature from radiation light of a turbine blade, and more particularly to a turbine blade temperature distribution measuring apparatus having a simple structure and capable of measuring multiple points simultaneously.

【0002】[0002]

【従来の技術】ガスタービンは、軸の周囲を回転する多
数のブレードからなるタービン翼を有する。タービン翼
は、運転中に高温になるので、ガスタービンの制御要素
としてタービン翼の温度を用いることが望ましい。例え
ば、タービン翼に臨ませて放射光を取り込む光学系を設
け、この放射光を受光する受光器を設けて、放射光強度
から温度を測定することができる。このような放射温度
センサは、受光器が所定の波長領域に強い受光感度特性
を持っており、測定対象は温度に応じて放射光の波長が
変化し、上記波長領域の放射光量が変化するので、受光
器の受光光量が変化し、それに比例して受光器の出力信
号が変化する。従って、この出力信号から測定対象の温
度が測定できる。
2. Description of the Related Art Gas turbines have turbine blades consisting of a number of blades that rotate about an axis. Since turbine blades become hot during operation, it is desirable to use the temperature of the turbine blades as a control element of the gas turbine. For example, it is possible to provide an optical system for taking in the radiated light facing the turbine blade, provide a light receiver for receiving the radiated light, and measure the temperature from the radiated light intensity. In such a radiation temperature sensor, the light receiver has a strong light receiving sensitivity characteristic in a predetermined wavelength region, and the measurement object changes the wavelength of the radiated light according to the temperature, and the amount of radiation in the above wavelength region changes. , The amount of light received by the light receiver changes, and the output signal of the light receiver changes in proportion thereto. Therefore, the temperature of the measurement target can be measured from this output signal.

【0003】[0003]

【発明が解決しようとする課題】しかし、タービン翼の
温度はブレード上の場所によって同じではない。従来技
術では、光学系がタービン翼に臨ませて設けられている
ので、タービン翼が回転すると、タービン翼の同一径部
分からの放射光が順次、取り込まれることになる。この
ため、径の異なる部分での温度を測定することができな
い。
However, the temperature of the turbine blade is not the same at every location on the blade. In the related art, since the optical system is provided so as to face the turbine blade, when the turbine blade rotates, radiation light from the same diameter portion of the turbine blade is sequentially taken in. For this reason, it is not possible to measure the temperature at portions having different diameters.

【0004】測定部分を変更するには、光学系の設置位
置を変更させねばならず、その都度、ガスタービンを停
止しなければならないので、不便である。また、光学系
を移動させるような機構を設けるのは、構造が複雑にな
り好ましくない。さらに、異なる位置での測定温度を比
較したい場合、光学系の位置を変更又は移動させて測定
した温度は、同時の温度ではないために、厳密な比較が
できない。
In order to change the measurement portion, the installation position of the optical system must be changed, and each time the gas turbine must be stopped, it is inconvenient. Providing a mechanism for moving the optical system is not preferable because the structure becomes complicated. Further, when it is desired to compare the measured temperatures at different positions, the temperatures measured by changing or moving the position of the optical system are not simultaneous temperatures, and therefore cannot be exactly compared.

【0005】そこで、本発明の目的は、上記課題を解決
し、構造が簡単で、多点を同時に測定できるタービン翼
の温度分布測定装置を提供することにある。
It is an object of the present invention to solve the above-mentioned problems and to provide a turbine blade temperature distribution measuring apparatus having a simple structure and capable of simultaneously measuring multiple points.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、複数の光ファイバと、各光ファイバが取り
込むタービン翼の放射光をそれぞれ受光して温度に変換
する温度分布測定部とを備え、上記光ファイバはタービ
ン翼の径方向に一列に配置されタービン翼に臨むもので
ある。
In order to achieve the above object, the present invention comprises a plurality of optical fibers, and a temperature distribution measuring unit for receiving radiation light of a turbine blade taken by each optical fiber and converting the radiation light into a temperature. And the optical fibers are arranged in a row in the radial direction of the turbine blade and face the turbine blade.

【0007】上記各光ファイバの間隔を密に形成し、こ
れらの光ファイバとタービン翼との間に、各光ファイバ
の像をタービン翼上に拡大して写像するレンズ系を設け
てもよい。
[0007] A lens system may be provided between the optical fibers and the turbine blade so that the distances between the optical fibers are densely formed and the image of each optical fiber is enlarged and mapped on the turbine blade.

【0008】上記光ファイバを一括収容するフェルール
を円筒状に形成し、このフェルールの直径に沿わせて光
ファイバを配置してもよい。
The ferrule accommodating the optical fibers may be formed in a cylindrical shape, and the optical fibers may be arranged along the diameter of the ferrule.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて詳述する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0010】図1に示されるように、本発明の一実施形
態としての温度分布測定装置は、複数の光ファイバ1を
間隔を密にして一列に並べて配置した光ファイバ束2
と、各光ファイバ1の端面の像をタービン翼上に拡大し
て写像するレンズ系3と、各光ファイバ1が取り込むタ
ービン翼の放射光をそれぞれ受光して温度に変換し、温
度分布を求める温度分布測定部4とからなる。光ファイ
バ束2は、光ファイバ1の並び方向がタービン翼の径方
向になるよう、かつ各光ファイバ1がタービン翼に臨む
ように配置され、タービンケースに固定される。
As shown in FIG. 1, a temperature distribution measuring apparatus according to an embodiment of the present invention comprises an optical fiber bundle 2 in which a plurality of optical fibers 1 are arranged in a line at close intervals.
And a lens system 3 for enlarging and mapping the image of the end face of each optical fiber 1 onto the turbine blade, and receiving the radiated light of the turbine blade taken in by each optical fiber 1 and converting it to a temperature to obtain a temperature distribution. And a temperature distribution measuring section 4. The optical fiber bundle 2 is arranged so that the arrangement direction of the optical fibers 1 is in the radial direction of the turbine blade, and each optical fiber 1 faces the turbine blade, and is fixed to the turbine case.

【0011】ガスタービンのタービン翼は多数のブレー
ドを円周方向に配置してなるが、この図には、1枚のブ
レード5のみ示してある。図の下方がタービン翼の中心
側に当たり、図の上方がタービン翼の外周側に当たる。
矢印Rはタービン翼の回転方向を示す。このブレード5
上に示された各光ファイバ1の端面の写像6は径方向に
並んでいる。この実施形態では、レンズ系3は1枚の凸
レンズで構成されているので、写像6は倒立像となる。
従って、各光ファイバ1にタービン翼の中心側から順に
a,b,c,dの符号を付けると、これらの光ファイバ
a,b,c,dの端面に対応するブレード5上の写像6
は、タービン翼の外周側から順に領域A,B,C,Dを
形成するようになっている。言い換えると、領域A,
B,C,Dの写像が各光ファイバa,b,c,dの端面
ということになる。即ち、領域A,B,C,Dがそれぞ
れの光ファイバ1の感知領域である。
The turbine blade of the gas turbine has a large number of blades arranged in a circumferential direction. In this figure, only one blade 5 is shown. The lower part of the figure corresponds to the center side of the turbine blade, and the upper part of the figure corresponds to the outer peripheral side of the turbine blade.
Arrow R indicates the direction of rotation of the turbine blade. This blade 5
The mapping 6 of the end face of each optical fiber 1 shown above is arranged in the radial direction. In this embodiment, since the lens system 3 is composed of one convex lens, the mapping 6 is an inverted image.
Therefore, if the reference numerals a, b, c, and d are given to the respective optical fibers 1 in order from the center side of the turbine blade, the mapping 6 on the blade 5 corresponding to the end faces of these optical fibers a, b, c, and d
Are designed to form regions A, B, C, and D in order from the outer peripheral side of the turbine blade. In other words, area A,
The mapping of B, C, and D is the end face of each of the optical fibers a, b, c, and d. That is, the areas A, B, C, and D are the sensing areas of the respective optical fibers 1.

【0012】温度分布測定部4には、各光ファイバ1を
結合する端子7が設けられており、各端子7は領域の符
号に対応させて端子a,b,c,dとする。温度分布測
定部4内には、図示しないが、光ファイバ1からの光を
受光する受光素子と、その受光出力信号から温度値を求
める温度変換器とが設けられている。受光素子及び温度
変換器は、それぞれの端子7毎に設けてもよいし、1台
を光学的又は電気的に切り替えて使用するようにしても
よい。温度分布測定部4は、領域A,B,C,Dの温度
分布を出力することができる。領域A,B,C,Dがタ
ービン翼の径方向に並んでいるので、径方向の温度分布
を求めることができる。
The temperature distribution measuring section 4 is provided with terminals 7 for coupling the optical fibers 1, and the terminals 7 are referred to as terminals a, b, c and d corresponding to the signs of the regions. Although not shown, the temperature distribution measuring unit 4 includes a light receiving element that receives light from the optical fiber 1 and a temperature converter that obtains a temperature value from a light receiving output signal. The light receiving element and the temperature converter may be provided for each terminal 7, or one may be used by switching optically or electrically. The temperature distribution measurement unit 4 can output the temperature distribution of the areas A, B, C, and D. Since the regions A, B, C, and D are arranged in the radial direction of the turbine blade, the temperature distribution in the radial direction can be obtained.

【0013】図2は、タービン翼を径方向から見た図で
あり、図の左右はタービン翼の軸方向になる。矢印Rは
タービン翼の回転方向を示す。光ファイバ束2は、ブレ
ード5が通る空間Sを軸方向に外した位置に設置されて
いる。これにより、光ファイバ束2をブレード5に干渉
させることなく、しかもブレード5の面にほぼ直角の方
向からブレード5に臨ませることができる。
FIG. 2 is a view of the turbine blade viewed from the radial direction. The left and right sides of the figure are in the axial direction of the turbine blade. Arrow R indicates the direction of rotation of the turbine blade. The optical fiber bundle 2 is installed at a position where the space S through which the blade 5 passes is removed in the axial direction. Thus, the optical fiber bundle 2 can be made to face the blade 5 from a direction substantially perpendicular to the surface of the blade 5 without causing interference with the blade 5.

【0014】次に、動作を説明する。Next, the operation will be described.

【0015】タービン翼は、運転中に高温になると放射
光を発生する。この放射光は、レンズ系3を通って光フ
ァイバ1に入射し、温度分布測定部4内の受光素子まで
導かれる。温度分布測定部4内の受光素子は赤外領域に
強い受光感度特性を持っているため、放射光のうち赤外
領域を受光し、受光光量に比例した受光出力信号を出力
することになる。放射光の強度とピーク波長は、温度に
応じて変化する。放射光の強度とピーク波長の変化に伴
い赤外領域の放射光量が変化するので、受光素子の受光
光量が変化し、受光出力信号が変化する。温度変換器
は、この受光出力信号から温度値を求める。
[0015] The turbine blades emit radiation when they become hot during operation. This emitted light enters the optical fiber 1 through the lens system 3 and is guided to the light receiving element in the temperature distribution measuring unit 4. Since the light receiving element in the temperature distribution measuring section 4 has strong light receiving sensitivity characteristics in the infrared region, it receives the infrared region of the emitted light and outputs a light receiving output signal proportional to the amount of received light. The intensity and peak wavelength of the emitted light change with temperature. Since the amount of radiated light in the infrared region changes with the change in the intensity and peak wavelength of the radiated light, the amount of light received by the light receiving element changes, and the received light output signal changes. The temperature converter obtains a temperature value from the received light output signal.

【0016】ここで、光ファイバ1の並び方向がタービ
ン翼の径方向であるため、光ファイバa,b,c,dか
ら得られる温度は、タービン翼の外周側から順に並ぶ領
域A,B,C,Dの温度である。即ち、温度分布測定部
4は、径方向に領域A,B,C,Dと並ぶ離散的な温度
分布を出力することになる。
Here, since the direction in which the optical fibers 1 are arranged is the radial direction of the turbine blade, the temperatures obtained from the optical fibers a, b, c, and d indicate the regions A, B, and Temperatures of C and D. That is, the temperature distribution measuring unit 4 outputs a discrete temperature distribution arranged in the radial direction along the regions A, B, C, and D.

【0017】同時に、タービン翼が矢印Rの回転方向に
回転するので、領域A,B,C,Dは、その反対方向に
移動することになる。従って、温度分布測定部4が出力
する領域A,B,C,Dの温度分布を時間的に掃引した
ものは、それぞれの径におけるタービン翼の周方向の連
続的な温度分布を表すことになる。これにより、2次元
の温度分布が得られることになる。
At the same time, since the turbine blade rotates in the rotation direction indicated by the arrow R, the regions A, B, C, and D move in the opposite directions. Therefore, the time distribution of the temperature distribution in the regions A, B, C, and D output by the temperature distribution measuring unit 4 represents a continuous temperature distribution in the circumferential direction of the turbine blade at each diameter. . As a result, a two-dimensional temperature distribution is obtained.

【0018】このようにして、各光ファイバa,b,
c,dに対応する各領域A,B,C,Dの温度が並行し
て測定される。即ち、多点を同時に測定することができ
る。また、レンズ系3を用いて拡大写像を形成するよう
にしたので、光ファイバ束2をコンパクトに構成しつ
つ、ブレード5上では広い範囲を測定することができ
る。しかも、レンズ系3は、光ファイバ1の本数に関係
なく1個でよく、構成が簡素である。なお、このレンズ
系3は、例えば、筒状の筐体により光ファイバ束2と一
体化され、タービンケースに固定される。
Thus, each of the optical fibers a, b,
The temperatures of the regions A, B, C, and D corresponding to c and d are measured in parallel. That is, multiple points can be measured simultaneously. Further, since an enlarged image is formed using the lens system 3, a wide range can be measured on the blade 5 while the optical fiber bundle 2 is configured compact. Moreover, the number of the lens system 3 may be one irrespective of the number of the optical fibers 1, and the configuration is simple. The lens system 3 is integrated with the optical fiber bundle 2 by, for example, a cylindrical housing and fixed to a turbine case.

【0019】なお、以上の実施形態では、光ファイバを
4本使用したが、必要に応じて何本でもよいことは勿論
である。また、ガスタービンのタービン翼温度を測定し
たが、過給器等の回転機構の温度分布測定に広く応用す
ることができる。
Although four optical fibers are used in the above embodiment, it is needless to say that any number of optical fibers may be used. In addition, although the temperature of the turbine blades of the gas turbine is measured, it can be widely applied to the measurement of the temperature distribution of a rotating mechanism such as a supercharger.

【0020】次に、光ファイバ束の他の形態を説明す
る。
Next, another embodiment of the optical fiber bundle will be described.

【0021】図3に示されるように、光ファイバ束は、
光ファイバ1を一括収容するフェルール31を円筒状に
形成し、このフェルール31の直径Dに沿わせて光ファ
イバ1を配置したものである。これにより引き回し、取
り付け等が容易になる。
As shown in FIG. 3, the optical fiber bundle is
The ferrule 31 for collectively housing the optical fibers 1 is formed in a cylindrical shape, and the optical fibers 1 are arranged along the diameter D of the ferrule 31. This facilitates routing and mounting.

【0022】[0022]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0023】(1)回転する対象物の多点の温度を同時
に測定できる。
(1) The temperatures at multiple points of a rotating object can be measured simultaneously.

【0024】(2)移動機構が不要なので構造が簡単で
ある。
(2) The structure is simple because no moving mechanism is required.

【0025】(3)2次元の温度分布が得られる。(3) A two-dimensional temperature distribution is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す温度分布測定装置の
構成図である。
FIG. 1 is a configuration diagram of a temperature distribution measuring device according to an embodiment of the present invention.

【図2】本発明の温度分布測定装置の光ファイバの配置
を示す平面図である。
FIG. 2 is a plan view showing an arrangement of optical fibers of the temperature distribution measuring device of the present invention.

【図3】本発明の他の実施形態を示す光ファイバ束の斜
視図である。
FIG. 3 is a perspective view of an optical fiber bundle showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光ファイバ 3 レンズ系 4 温度分布測定部 5 ブレード 6 光ファイバの端面の写像 Reference Signs List 1 optical fiber 3 lens system 4 temperature distribution measuring unit 5 blade 6 mapping of end face of optical fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の光ファイバと、各光ファイバが取
り込むタービン翼の放射光をそれぞれ受光して温度に変
換する温度分布測定部とを備え、上記光ファイバは、タ
ービン翼の径方向に一列に配置されタービン翼に臨んで
いることを特徴とするタービン翼の温度分布測定装置。
A plurality of optical fibers; and a temperature distribution measuring section for receiving radiation light of the turbine blade taken by each optical fiber and converting the radiation light into a temperature, wherein the optical fibers are arranged in a row in a radial direction of the turbine blade. A turbine blade temperature distribution measuring device, which is disposed at a position facing a turbine blade.
【請求項2】 上記各光ファイバの間隔を密に形成し、
これらの光ファイバとタービン翼との間に、各光ファイ
バの像をタービン翼上に拡大して写像するレンズ系を設
けたことを特徴とする請求項1記載のタービン翼の温度
分布測定装置。
2. The method according to claim 1, wherein the optical fibers are closely spaced.
2. The turbine blade temperature distribution measuring device according to claim 1, wherein a lens system for enlarging and mapping an image of each optical fiber onto the turbine blade is provided between the optical fiber and the turbine blade.
【請求項3】 上記光ファイバを一括収容するフェルー
ルを円筒状に形成し、このフェルールの直径に沿わせて
光ファイバを配置したことを特徴とする請求項1又は2
記載のタービン翼の温度分布測定装置。
3. The ferrule for accommodating the optical fibers collectively is formed in a cylindrical shape, and the optical fibers are arranged along the diameter of the ferrule.
A temperature distribution measuring device for a turbine blade as described in the above.
JP9234475A 1997-08-29 1997-08-29 Measuring apparatus for temperature distribution in turbine blade Pending JPH1172390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9234475A JPH1172390A (en) 1997-08-29 1997-08-29 Measuring apparatus for temperature distribution in turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9234475A JPH1172390A (en) 1997-08-29 1997-08-29 Measuring apparatus for temperature distribution in turbine blade

Publications (1)

Publication Number Publication Date
JPH1172390A true JPH1172390A (en) 1999-03-16

Family

ID=16971606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9234475A Pending JPH1172390A (en) 1997-08-29 1997-08-29 Measuring apparatus for temperature distribution in turbine blade

Country Status (1)

Country Link
JP (1) JPH1172390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515671A (en) * 2008-03-20 2011-05-19 シーメンス アクチエンゲゼルシヤフト Optical measuring device and turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515671A (en) * 2008-03-20 2011-05-19 シーメンス アクチエンゲゼルシヤフト Optical measuring device and turbine

Similar Documents

Publication Publication Date Title
US4459022A (en) Fiber optic angular sensor
US4770536A (en) Reflective photometry instrument
US4962311A (en) Device for determining the direction of incident laser radiation
US5862285A (en) Multichannel optical fiber bundle with ordered structure in its sensitive probe tip
KR20100125434A (en) Photo-detector and method of measuring light
JPH0285719A (en) Optical detector
US5914777A (en) Apparatus for and method of measuring a distribution of luminous intensity of light source
US6804001B1 (en) Device for measuring spatial distribution of the spectral emission of an object
JP2557171B2 (en) Displacement detection device
JPH1172390A (en) Measuring apparatus for temperature distribution in turbine blade
GB2178869A (en) Optical switch having rotatable reflector
US6177986B1 (en) Method of testing a lens having variable field angles
JPS61231422A (en) Radiation thermometer
JP2781269B2 (en) Optical fiber sensor
JP3790630B2 (en) Spectrophotometer and spectral wavelength calibration method
US6437857B1 (en) Variable field angle and test pattern spatial frequency system for testing a lens
US5686723A (en) Light sensing detector assembly with integral fiber optic light transmission elements
JP2737419B2 (en) Surface temperature distribution measuring device for curved objects
EP0358818B1 (en) Reflective photometry instrument
JPS6342432A (en) Multichannel radiation thermometer
JPH10104084A (en) Multicolor thermometer
JPH08159878A (en) Illuminating and light receiving apparatus
JPS61290329A (en) Head for infrared thermometer
JPH0524029Y2 (en)
JPS629229A (en) Laser power meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613