[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1164275A - Oxidation-reduction potential measuring device - Google Patents

Oxidation-reduction potential measuring device

Info

Publication number
JPH1164275A
JPH1164275A JP9252568A JP25256897A JPH1164275A JP H1164275 A JPH1164275 A JP H1164275A JP 9252568 A JP9252568 A JP 9252568A JP 25256897 A JP25256897 A JP 25256897A JP H1164275 A JPH1164275 A JP H1164275A
Authority
JP
Japan
Prior art keywords
electrode
potential
oxidation
reduction potential
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9252568A
Other languages
Japanese (ja)
Inventor
Mitsunori Suzumoto
光則 鈴本
Yoshitaka Otomo
慶孝 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIKARI BERUKOMU KK
Original Assignee
HIKARI BERUKOMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIKARI BERUKOMU KK filed Critical HIKARI BERUKOMU KK
Priority to JP9252568A priority Critical patent/JPH1164275A/en
Publication of JPH1164275A publication Critical patent/JPH1164275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten measuring time by modeling an electric circuit of an electrode reaction and providing additional circuits for speeding up reaction rates in an aqueous solution of an electrode potential. SOLUTION: The combined potential output between a working electrode 3 and a reference electrode 2 is directly connected to a liquid crystal display circuit 23 and a liquid crystal 24 via a differential amplifier 22. A compensating circuit 26 with a manual switch to impress a reduction potential among a bias potential adjusting circuit 25 to offset a bias potential equivalent to the standard single-electrode potential of the reference electrode 2, the working electrode 3, and the reference electrode 2 is provided. In the case of using a microcomputer, this device is constituted of a CPU 30 to sample input signals from an A/D converting circuit 29, a liquid crystal 24, an automatic start switch 32, a start/stop switch 33, etc. The automatic start switch 32 is a switch for sampling signals induced in the initial stage of the immersion of the reference electrode 2 and the working electrode 3 into a sample liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、飲料水、工業用
水、薬液、ヒトや動物の体液や果物、野菜等の自然、人
工環境下における全ゆる水や水溶液を対象としてその酸
化還元電位を簡易に測定する装置に関する。PHメータ
による水素イオン濃度の情報に加えて飲料水、工業用水
の安全性の判定基準として、また薬液の定性分析や食
品、土壌、生体等固有の酸化還元力を計る指標となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simplifying the oxidation-reduction potential of all water and aqueous solutions in drinking water, industrial water, chemicals, body fluids of humans and animals, fruits, vegetables, etc. in natural and artificial environments. Related to a device for measuring. In addition to the information on the hydrogen ion concentration obtained by the PH meter, it serves as a criterion for judging the safety of drinking water and industrial water, and also serves as an index for qualitative analysis of chemicals and for measuring the oxidation-reduction power inherent to food, soil, living organisms and the like.

【0002】[0002]

【従来の技術】飲料や工業用に適する水を得る目的で河
川の水を酸化処理する過程において水の酸化還元電位の
測定を行うが、その測定方法は基準液を内蔵した標準水
素電極と白金電極を対電極とする酸化還元電位測定器を
用いるものである。また薬液の試験等に於いてもこの種
の測定器が用いられる。すなわち従来の酸化還元電位測
定器は主として工業設備用や実験室用であって、これを
取り扱うには専門的知識を必要とする精密測定器とし
て、取り扱いの簡便性や低価格を問われることは余り無
かったと言える。一方近年の地球規模の大気や河川の汚
染が進み一般家庭に於ける安全な飲料水の確保に対する
関心が高まり、水質評価の基準として汚染物質の残存濃
度やPH値を適正値に保つことの意義が充分に認識され
るようになっている。飲料水の酸化還元電位について
は、プラスの高電位を示すものは人体に不適とされ、い
わゆる還元水が飲料水として普及するようになった。ま
た食品の酸化還元電位による評価(例えば平成6年特許
願第298842)や人体の健康管理の指標として体液
の酸化還元電位の検知の有効性(例えば平成8年特許願
第320662)についての知見や提案は既に実用化の
段階にある。これらの分野に用いられる酸化還元電位測
定器は主として前述の如く基準液を内蔵した標準水素電
極と白金電極を対電極とする酸化還元電位測定器であ
る。液体使用の不便さを避けるために一部には標準水素
電極に置き換えて金属電極を用いた装置が使われている
が、酸化還元電位測定の精度の不安定性によって充分に
普及するに至っていない。
2. Description of the Related Art The oxidation-reduction potential of water is measured in the process of oxidizing river water for the purpose of obtaining water suitable for drinking or industrial use. The measurement method is based on a standard hydrogen electrode containing a reference solution and a platinum electrode. An oxidation-reduction potential measuring device using an electrode as a counter electrode is used. This type of measuring device is also used in tests of chemical solutions and the like. That is, the conventional oxidation-reduction potential measuring instruments are mainly for industrial facilities and laboratories, and as handling precision instruments that require specialized knowledge, simplicity of handling and low cost are not required. It can be said that there was not much. On the other hand, with the recent global pollution of the atmosphere and rivers, interest in securing safe drinking water in general households has increased, and the significance of maintaining the residual concentration of contaminants and PH at appropriate levels as standards for water quality evaluation. Are fully recognized. With respect to the oxidation-reduction potential of drinking water, those exhibiting a positive high potential are unsuitable for the human body, and so-called reduced water has become popular as drinking water. In addition, knowledge on the evaluation based on the oxidation-reduction potential of food (for example, Patent Application No. 298842 in 1994) and the effectiveness of detecting the oxidation-reduction potential of body fluids as an index for human health management (for example, Japanese Patent Application No. 320662). The proposal is already in the stage of commercialization. An oxidation-reduction potential measuring instrument used in these fields is an oxidation-reduction potential measuring instrument mainly using a standard hydrogen electrode and a platinum electrode as counter electrodes as described above. In order to avoid the inconvenience of using a liquid, a device using a metal electrode instead of a standard hydrogen electrode has been used in part, but it has not yet come into widespread use due to the instability of the accuracy of oxidation-reduction potential measurement.

【0003】[0003]

【発明が解決しようとする課題】家庭の飲料水や風呂
水、洗濯水等の生活用水の酸化還元電位を手軽に測定す
るには壊れやすいガラス管や封入の難しい液体を用いた
従来の酸化還元電位測定器では不適当である。この難点
を避けるために異種の金属電極対を用いた酸化還元電位
測定器が一部に使われている。しかし金属電極対を用い
た酸化還元電位測定器の問題点は金属電極の電極電位の
不安定性と反応速度の遅いことがあげられる。電極電位
の不安定性は電極として使用される金属と被測定水溶液
との反応の不安定性に拠るものである。すなわち図1、
1−a,1−bに従って金属電極対を用いた酸化還元電
位測定器の原理を示すと、被測定水溶液1に浸漬した参
照電極金属2と作用電極金属3との間に発生する起電力
Et4は参照電極側に発生する標準電極電位Emo5と
作用電極側に発生する被測定水溶液の酸化還元電位Er
ed6の和となり、この起電力は両電極に接続したリー
ド線7、8によって電圧計9に導かれる。なおEred
は水溶液の電位を基準としてここでは向きがマイナスの
場合である。10、11は両電極の水溶液1との接触面
である。12は水溶液の電気抵抗である。ここで参照電
極の標準電極電位Emoを既知とすれば検知される起電
力EtとEmoの差が求める被測定水溶液の酸化還元電
位Eredとなる。すなわち Ered=Et−Emo ・・・ (1)
In order to easily measure the oxidation-reduction potential of domestic water such as drinking water, bath water, washing water, etc., a conventional redox method using a fragile glass tube or a liquid that is difficult to enclose is used. It is not suitable for a potential measuring instrument. To avoid this difficulty, an oxidation-reduction potential measuring instrument using a different kind of metal electrode pair is used in part. However, the problems of the oxidation-reduction potential measuring device using the metal electrode pair include the instability of the electrode potential of the metal electrode and the low reaction rate. The instability of the electrode potential is due to the instability of the reaction between the metal used as the electrode and the aqueous solution to be measured. That is, FIG.
The principle of an oxidation-reduction potential measuring device using a metal electrode pair according to 1-a and 1-b is as follows. An electromotive force Et4 generated between a reference electrode metal 2 and a working electrode metal 3 immersed in an aqueous solution 1 to be measured. Is the standard electrode potential Emo5 generated on the reference electrode side and the oxidation-reduction potential Er of the aqueous solution to be measured generated on the working electrode side.
The electromotive force is led to the voltmeter 9 by the lead wires 7 and 8 connected to both electrodes. Ered
Is the case where the direction is negative with respect to the potential of the aqueous solution. Reference numerals 10 and 11 denote contact surfaces of both electrodes with the aqueous solution 1. 12 is the electric resistance of the aqueous solution. Here, if the standard electrode potential Emo of the reference electrode is known, the difference between the detected electromotive force Et and Emo becomes the oxidation-reduction potential Ered of the aqueous solution to be measured. That is, Ered = Et−Emo (1)

【0004】ところが実際には定数であるべき参照電極
電位Emoは水溶液のPH値や金属イオン濃度によって
変化する。また参照電極側には標準電極電位以外に水溶
液の酸化還元電位Eredの成分も印加され、誤差の原
因となる。イオン解離を必要条件とする参照電極の金属
材料2は水溶液の性質によっては金属表面に酸化化合物
や水酸化化合物が生成し電極電位が変化する。図2はこ
れらの誤差要因を電気的等価回路モデルで示したもので
ある。作用電極3に誘起される酸化還元電位は参照電極
側と同様に白金表面に形成される酸化化合物や水酸化化
合物皮膜の影響を受けるが、これを容量性の二重層Cp
13の帯電電位として表わすことが可能である。すなわ
ち、測定に際して電極を水溶液に浸してから安定した平
衡電位を示すまでは表面皮膜容量の形成、消滅に相当す
る時間を要する。ここで、Rp14、Rred15はC
p、Eredに付帯する直列抵抗である。Cm16、R
m17は参照電極側の容量およびそれに付帯する直列抵
抗である。作用電極の標準単極電位をEpo18、参照
電極の標準単極電位をEmo5で表し、それぞれの抵抗
成分をRpo19、Rmo20とする。電位Eim21
は参照電極の金属イオンの溶解濃度で定まるネルンスト
電位である。本発明者らの観測によれば一例として静止
状態でマイナス100ミリボルトの還元電位を示す水溶
液においては電極の浸漬時から電位平衡時まで約10秒
から80秒の時間がかかっている。この時間は電極の表
面積や水溶液の導電率等によって影響を受けるが、主と
して浸漬前に白金表面に形成されている水酸化化合物皮
膜の消滅に要する時間と考えられる。一方酸化還元電位
が低い水溶液に浸漬後に酸化還元電位の高い水溶液に浸
漬したときの電位平衡までの時間は数秒から10秒以内
である。すなわち、測定前後の水溶液の酸化還元電位の
値によって安定な測定値を得るに要する時間が変化す
る。このように正確な酸化還元電位を得るのに分単位の
時間を要する場合が見受けられることは簡便な酸化還元
電位測定器の特性として満足なものとは云えない。本発
明は金属電極のみで構成された酸化還元電位測定装置の
欠点を克服し測定精度の向上と測定時間の短縮化を計る
ことを意図するものである。
However, in practice, the reference electrode potential Emo, which should be a constant, changes depending on the PH value of the aqueous solution and the metal ion concentration. In addition to the standard electrode potential, a component of the oxidation-reduction potential Ered of the aqueous solution is also applied to the reference electrode side, causing an error. In the metal material 2 of the reference electrode which requires ion dissociation as a necessary condition, an oxidized compound or a hydroxide compound is generated on the metal surface depending on the properties of the aqueous solution, and the electrode potential changes. FIG. 2 shows these error factors in an electrical equivalent circuit model. The oxidation-reduction potential induced at the working electrode 3 is affected by an oxide compound or a hydroxide compound film formed on the platinum surface similarly to the reference electrode side.
Thirteen charge potentials. That is, in the measurement, it takes a time corresponding to the formation and disappearance of the surface film capacitance from immersing the electrode in the aqueous solution to showing a stable equilibrium potential. Here, Rp14 and Rred15 are C
It is a series resistance attached to p and Ered. Cm16, R
m17 is a capacitance on the reference electrode side and a series resistance attached thereto. The standard monopolar potential of the working electrode is represented by Epo18, the standard monopolar potential of the reference electrode is represented by Emo5, and their resistance components are represented by Rpo19 and Rmo20. Potential Eim21
Is the Nernst potential determined by the dissolved concentration of metal ions in the reference electrode. According to the observations of the present inventors, as an example, in an aqueous solution showing a reduction potential of −100 mV in a stationary state, it takes about 10 to 80 seconds from the time of immersion of the electrode to the time of the potential equilibrium. This time is affected by the surface area of the electrode, the conductivity of the aqueous solution, and the like, but is considered to be the time required for the disappearance of the hydroxide compound film formed on the platinum surface before immersion. On the other hand, the time until potential equilibrium when immersed in an aqueous solution having a high oxidation-reduction potential after immersion in an aqueous solution having a low oxidation-reduction potential is within several seconds to 10 seconds. That is, the time required to obtain a stable measurement value varies depending on the value of the oxidation-reduction potential of the aqueous solution before and after the measurement. Such a case where it takes time in minutes to obtain an accurate oxidation-reduction potential cannot be said to be satisfactory as a characteristic of a simple oxidation-reduction potential measuring instrument. The present invention intends to overcome the drawbacks of the oxidation-reduction potential measurement device composed of only metal electrodes, to improve the measurement accuracy, and to shorten the measurement time.

【0005】[0005]

【課題を解決するための手段】本発明の原理を図3にお
いて説明する。図3−aは図2の回路モデルを簡易化
し、溶液に浸漬中の金属電極間の電位と金属表面の荷電
状態を示す等価回路である。初期値から定常値までの出
力電圧に関する時間応答特性は図2の回路モデルを直接
に用いれば求められる。 但し図2の回路に於いて白金
電極の標準電極電位Epoを零とするか、直列抵抗Rp
oを大きいものとしてこれ等を無視する。また電極反応
の物理モデルとの対応が必ずしも明確とは言えないが電
極容量Cp,Cmの直列抵抗成分Rp,RmはRred
に対して無視出来るほど小さいと仮定することが計算の
煩雑さを避け、実際の現象を理解する上で便利である。
ここでは水溶液の酸化還元電位Eredは図2と異なり
プラス電位としている。また、参照電極電位もプラス電
位としている。図3−bはプラス電位からマイナス電位
に水溶液の酸化還元電位Eredが急変したときの回路
内の電荷の状態すなわち作用電極表面の酸化状態を示し
たもので、この場合には電極表面内の閉回路で表面電荷
の拡散が行われるので電位の安定値を得るのに長時間か
かることを意昧している。
The principle of the present invention will be described with reference to FIG. FIG. 3A is an equivalent circuit which simplifies the circuit model of FIG. 2 and shows the potential between the metal electrodes immersed in the solution and the charged state of the metal surface. The time response characteristic of the output voltage from the initial value to the steady value can be obtained by directly using the circuit model of FIG. However, in the circuit of FIG. 2, the standard electrode potential Epo of the platinum electrode is set to zero or the series resistance Rp
These are ignored assuming that o is large. Although the correspondence with the physical model of the electrode reaction is not always clear, the series resistance components Rp and Rm of the electrode capacitances Cp and Cm are Rred.
It is convenient to assume that it is negligibly small for avoiding computational complexity and understanding the actual phenomenon.
Here, the oxidation-reduction potential Ered of the aqueous solution is a positive potential unlike FIG. The reference electrode potential is also set to a plus potential. FIG. 3B shows the state of electric charge in the circuit when the oxidation-reduction potential Ered of the aqueous solution suddenly changes from the positive potential to the negative potential, that is, the oxidation state of the working electrode surface. It means that it takes a long time to obtain a stable value of the potential because the surface charge is diffused in the circuit.

【0006】図3−cは、図3−bの回路に作用電極側
を陰極とする電位Emを直列に印加したもので本発明の
基本を成す回路構成図である。ここで Et + Em ≧ 0 ・・・(2) とすることによって回路に作用電極をカソードとする電
流が流れ、電極表面の還元を加速する。なお、Et、E
mの符号はいずれも参照電極を基準として表している。
式(2)のEtは被測定水溶液の酸化還元電位Ered
と参照電極の標準単極電位Emoの和を表し、測定対象
によって正負いずれにも変化するので、Etが零または
負の値を示すときに正の電圧を印加すればよい。しか
し、対象水溶液の酸化還元電位の負側の測定範囲を限定
すれば、次式(3)で与えられる一定電位Emを印加す
ることで全ての被測定水溶液に対して式(2)を満足す
る。 Em =(Ered−)−Emo ・・・(3) 但し(Ered−)は酸化還元電位の負側の測定下限電
位である。 図3−cの回路による測定時間の短縮効果を示したの
が、図4の酸化還元電位/時間特性である。図中のEr
ed(A)は通常の測定による酸化還元電位の時間応答
特性であり、Ered(B)は式(3)に基く電位Em
を印加したときの特性である。通常の測定では初期値の
プラス400ミリボルトから被測定水溶液の酸化還元電
位Ered2のマイナス200ミリボルトに達するまで
の時間が約80秒要しているのに対して本発明の電位印
加方式によれば、10秒以下の時間に短縮している。印
加電位Emの値および印加時間はそれぞれ800ミリボ
ルトおよび3秒である。ここでは印加のタイミングを金
属電極の被測定水溶液への浸漬と同時としたが浸漬後に
間歇的に印加しても同様の効果が得られる。
FIG. 3C is a circuit diagram showing the basic configuration of the present invention, in which a potential Em having the working electrode side as a cathode is applied in series to the circuit of FIG. 3B. Here, by setting Et + Em ≧ 0 (2), a current using the working electrode as a cathode flows in the circuit, and the reduction of the electrode surface is accelerated. In addition, Et, E
The sign of m is all based on the reference electrode.
Et in equation (2) is the redox potential Ered of the aqueous solution to be measured.
And the standard single-electrode potential Emo of the reference electrode, which changes to positive or negative depending on the measurement object. When Et indicates zero or a negative value, a positive voltage may be applied. However, if the measurement range on the negative side of the oxidation-reduction potential of the target aqueous solution is limited, applying the constant potential Em given by the following expression (3) satisfies the expression (2) for all the measured aqueous solutions. . Em = (Ered −) − Emo (3) where (Ered−) is the lower measurement limit potential on the negative side of the oxidation-reduction potential. The redox potential / time characteristic of FIG. 4 shows the effect of shortening the measurement time by the circuit of FIG. 3-c. Er in the figure
ed (A) is a time response characteristic of the oxidation-reduction potential measured by ordinary measurement, and Ered (B) is a potential Em based on the equation (3).
Is a characteristic when. According to the potential application method of the present invention, it takes about 80 seconds to reach the oxidation-reduction potential Ered2 of the aqueous solution to be measured -200 mV from the initial value of +400 mV in the ordinary measurement to the minus 200 mV. The time is reduced to 10 seconds or less. The value of the applied potential Em and the application time are 800 millivolts and 3 seconds, respectively. Here, the timing of the application is the same as the immersion of the metal electrode in the aqueous solution to be measured, but the same effect can be obtained even if the application is performed intermittently after the immersion.

【0007】作用電極に印加される負の電圧はかならず
しも外部回路から得る必要はなく、被測定水溶液に浸漬
した他の金属電極、特に負の標準単極電位を有する金属
電極を作用電極に接続することによって作用電極を還元
することが出来る。例えば図3−aに於いてEmoが負
であってEredより大なるとき、回路を短絡すること
によって参照電極をアノードとし作用電極をカソードと
することが出来る。しかし一般に腐食に強いとされる金
属は正ないし小さな負の標準単極電位を有し、腐食に弱
い金属は大きな負の標準単極電位を有する。耐腐食性の
見地から参照電極に負の標準単極電位を有する金属電極
を用いることば望ましくないのでアノード電極として他
の交換可能な負の標準単極電位を有する金属電極を用い
ることが推奨される。
The negative voltage applied to the working electrode does not always need to be obtained from an external circuit, and other metal electrodes immersed in the aqueous solution to be measured, particularly a metal electrode having a negative standard unipolar potential, are connected to the working electrode. Thus, the working electrode can be reduced. For example, when Emo is negative and larger than Ered in FIG. 3A, the reference electrode can be used as the anode and the working electrode can be used as the cathode by short-circuiting the circuit. However, metals that are generally considered to be resistant to corrosion have a positive or small negative standard unipolar potential, and metals that are vulnerable to corrosion have a large negative standard unipolar potential. It is not recommended to use a metal electrode having a negative standard monopolar potential for the reference electrode from the viewpoint of corrosion resistance, so it is recommended to use another replaceable metal electrode having a negative standard monopolar potential as the anode electrode. .

【0008】本発明の目的とする酸化還元電位測定の基
本的な操作として、金属電極が被測定水溶液に浸漬中も
しくは浸漬直後に回路に所用の電圧を印加するためのス
イッチング機能を設けることが必要とされるが、これを
手動で行うだけでなく自動化することが望ましい。スイ
ッチング動作のトリガ入力として回路電源のオンオフ信
号、リセット信号が挙げられる。しかし被測定水溶液の
酸化還元電一位は場所により、また時間によって変わる
ことがあるので経時的な観測電位の変動に対応して随時
電圧を印加する操作を自動化する。自動化のトリガ入力
として一定時間々隔の外部入力信号または観測電位の急
激な変動値自身を用いることが出来る。観測電位の急激
な変動は電極の浸漬前後または浸漬中の電極を揺動する
ことによっても発生するので電位変動の微分値がある値
以上を設定してこれを検知し、トリガ入力とする。
As a basic operation of the measurement of the oxidation-reduction potential as an object of the present invention, it is necessary to provide a switching function for applying a required voltage to the circuit during or immediately after the metal electrode is immersed in the aqueous solution to be measured. However, it is desirable not only to do this manually but also to automate it. The trigger input of the switching operation includes an on / off signal of a circuit power supply and a reset signal. However, the redox potential of the aqueous solution to be measured may vary depending on the location and time, so that the operation of applying the voltage as needed in response to the fluctuation of the observed potential over time is automated. As a trigger input for automation, it is possible to use an external input signal or a sudden fluctuation value of the observed potential at intervals of a predetermined time. Since a sudden change in the observed potential is also generated by oscillating the electrode before or after immersion or during immersion, a differential value of the potential change is set to a certain value or more, this is detected, and a trigger input is made.

【0009】[0009]

【発明の実施の形態】図5に本発明の回路から成るシス
テム構成の実施例を示す。図5−aは作用、参照両電極
間の合成電位出力を差動アンプ22通して直接に液晶表
示回路23、液晶24に接続する酸化還元電位測定装置
である。参照電極の標準単極電位に相当するバイアス電
位をオフセットするバイアス電位調整回路25と作用、
参照両電極間に還元電位を印加する手動スイッチを具備
した補償回路26が設けられている。27はシャーシ内
蔵の直流電源、28は本体シャーシである。図5−bは
マイクロコンピュータを用いたものでアナログ/デジタ
ル変換回路29からの入力信号のサンプリング、演算処
理を行う中央処理装置30と液晶表示部24直流電源2
7、電源オン/オフスイッチ31、自動スタートスイッ
チ32、スタート/ストップスイッチ33で構成され
る。自動スタートスイッチ32は電極2、3の試料液1
への浸漬初期に誘起される信号を自動サンプリングする
ためのスイッチである。酸化還元電位の測定目的には複
数の試料の比較値を採取する場合と単一試料の経時変化
値を長時間観測する場合があり、前者はデータの採取時
間を短くする必要性が高いのに対して、後者は低いと考
えられる。この二つの測定モードに対応してスイッチ3
2、33を適宜選択する。
FIG. 5 shows an embodiment of a system configuration comprising the circuit of the present invention. FIG. 5A shows an oxidation-reduction potential measuring device in which the combined potential output between the operation and reference electrodes is directly connected to the liquid crystal display circuit 23 and the liquid crystal 24 through the differential amplifier 22. A bias potential adjusting circuit 25 for offsetting a bias potential corresponding to a standard monopolar potential of a reference electrode,
A compensation circuit 26 having a manual switch for applying a reduction potential between the reference electrodes is provided. 27 is a DC power supply built in the chassis, and 28 is a main body chassis. FIG. 5B shows a central processing unit 30 for sampling and calculating an input signal from an analog / digital conversion circuit 29 and a DC power supply 2 for a liquid crystal display 24 using a microcomputer.
7, a power on / off switch 31, an automatic start switch 32, and a start / stop switch 33. The automatic start switch 32 is connected to the sample liquid 1 of the electrodes 2 and 3.
This is a switch for automatically sampling a signal induced in the early stage of immersion in the device. The purpose of measuring the oxidation-reduction potential is to collect comparative values of multiple samples or to observe the change over time of a single sample over a long period of time.The former requires a shorter data collection time. In contrast, the latter is considered low. Switch 3 corresponding to these two measurement modes
2, 33 are appropriately selected.

【0010】[0010]

【実施例】本発明に係わる実施例を図6について述べ
る。参照電極2は亜鉛、チタン、銅、錫、銀またはそれ
らの合金を主材料とする板で、円筒状のプラスチック筐
体34に同心状に取り付けられている。作用電極3は白
金メッキされたチタン棒を材料とし筐体34の端部中央
に取り付けられ電極2とは一定の間隙を保ち試料液との
浸漬時を除いて充分な電気的絶縁性を有するようになっ
ている。両電極は筐体内をリード線4、5を経てリード
ケーブル35、ケーブルコネクタ36により本体シャー
シ28に接続している。液晶表示部24は正負999ミ
リボルトの範囲で3桁表示する。自動スタートスイッチ
32は電極2、3の試料液1への浸漬初期に誘起される
信号を自動サンプリングしスタートの検知と還元電圧の
印加を行い検出した酸化還元電位の安定化を待って電位
値をホールドする。スタート/ストップスイッチ33は
観測スタートとサンプリングデータの保持の操作を手動
で行うためのスイッチである。 電極筐体スペーサ34
−2、及び電極筐体フック34−3は筐体34と容器3
7の着脱を容易にするためである。
FIG. 6 shows an embodiment according to the present invention. The reference electrode 2 is a plate whose main material is zinc, titanium, copper, tin, silver or an alloy thereof, and is attached concentrically to a cylindrical plastic housing 34. The working electrode 3 is made of a platinum-plated titanium rod and is attached to the center of the end of the housing 34 so as to maintain a constant gap from the electrode 2 and have sufficient electrical insulation except when immersed in a sample solution. It has become. Both electrodes are connected to the main body chassis 28 in the housing via lead wires 4 and 5 and a lead cable 35 and a cable connector 36. The liquid crystal display 24 displays three digits in the range of positive and negative 999 millivolts. The automatic start switch 32 automatically samples a signal induced in the initial stage of immersion of the electrodes 2 and 3 in the sample solution 1, detects start, applies a reduction voltage, and waits for the detected oxidation-reduction potential to stabilize. Hold. The start / stop switch 33 is a switch for manually performing an operation of starting observation and holding sampling data. Electrode housing spacer 34
-2 and the electrode housing hook 34-3 are the housing 34 and the container 3
This is for facilitating attachment and detachment of 7.

【0011】図8は本発明に係わる作用参照電極以外の
金属電極2−2を付加し、作用電極に対して随時還元電
圧を印加することを意図した補償電極の配置構造例を示
したものである。例えば補償電極金属2−2を錫とする
と、作用電極である白金電極3を電極2−2と短絡する
ことによって前述の(2)式を満たす限り作用電極に還
元電流を流すことが出来る。また補償電極金属2−2を
白金とすれば、白金電極3と電極2−2の間に僅かの電
圧を外部から印加することによって(2)式の条件に拘
わらず還元作用を生ずることが出来る。
FIG. 8 shows an example of an arrangement structure of a compensating electrode for adding a metal electrode 2-2 other than the working reference electrode according to the present invention and applying a reduction voltage to the working electrode as needed. is there. For example, when the compensating electrode metal 2-2 is tin, a reduction current can be supplied to the working electrode by short-circuiting the platinum electrode 3 serving as the working electrode with the electrode 2-2 as long as the above-mentioned expression (2) is satisfied. Further, if the compensating electrode metal 2-2 is made of platinum, a reducing action can be generated by applying a small voltage from the outside between the platinum electrode 3 and the electrode 2-2 regardless of the condition of the equation (2). .

【発明の効果】上述内容および図面にて説明した如く本
発明の目的は小形軽量で取り扱いが簡単な固体金属から
なり、従来問題とされた測定精度の向上と測定時間の短
縮を計った酸化還元電位測定装置を提供することにあ
る。すなわち、電極反応の電気回路モデル化によって、
電極電位の水溶液中における反応速度を早めるための付
加回路を考案し、測定時間を従来の装置に比較して半分
乃至10分の1に短縮した。また被測定液の酸化還元電
位の変動や誤差要因を明確にすることにより、誤差の少
ない金属材料と金属材料固有のパラメータの選定を行う
ことが出来た。本発明によって、大型施設や試験研究設
備用に限らず一般家庭に常備したり、個人の携帯用とし
て軽量で取り扱いが簡単な、安価にして信頼性の高い酸
化還元電位測定装置が得られ、各種の飲料水や生活用
水、土壌、食物、生体の体液等の身近かな物質の酸化還
元力を随時計測し、健康生活に資することができる。
As described above and with reference to the accompanying drawings, an object of the present invention is to provide a small and lightweight solid metal which is easy to handle, and which has been used to improve measurement accuracy and reduce measurement time. It is to provide a potential measuring device. In other words, by modeling the electric circuit of the electrode reaction,
An additional circuit has been devised to increase the reaction rate of the electrode potential in an aqueous solution, and the measurement time has been reduced by half to one-tenth compared to the conventional apparatus. Also, by clarifying the fluctuation of the oxidation-reduction potential of the liquid to be measured and the error factors, it was possible to select a metal material having a small error and a parameter unique to the metal material. According to the present invention, it is possible to obtain an inexpensive and highly reliable oxidation-reduction potential measuring device that is not only used for large-scale facilities and test and research facilities but is always available in ordinary households, and is lightweight and easy to handle for personal use. By measuring the oxidation-reduction power of familiar substances such as drinking water, living water, soil, food, and body fluids of living organisms at any time, it is possible to contribute to a healthy life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1−aは異種金属を用いた酸化還元電位測定
装置の構成図である。図1−bはそれの基本的な電気的
等価回路である。
FIG. 1A is a configuration diagram of an oxidation-reduction potential measuring device using a different kind of metal. FIG. 1B is a basic electrical equivalent circuit thereof.

【図2】本発明の原理に係わる水溶液中に於ける全ゆる
異種金属の電極反応と酸化還元電位を表す電気的等価回
路モデルを表す。
FIG. 2 shows an electrical equivalent circuit model representing the electrode reaction and oxidation-reduction potential of all different metals in an aqueous solution according to the principle of the present invention.

【図3】図3−aは図2の回路モデルの電極反応の初期
における時間応答を与える等価回路図である。図3−b
は還元電流を示す等価回路図である。図3−cは本発明
に係わる補償回路の基本構成図である。
FIG. 3A is an equivalent circuit diagram that gives a time response at an initial stage of an electrode reaction of the circuit model of FIG. 2; Fig. 3-b
FIG. 3 is an equivalent circuit diagram showing a reduction current. FIG. 3C is a basic configuration diagram of the compensation circuit according to the present invention.

【図4】本発明になる酸化還元電位測定装置の測定電位
の時間応答特性を、従来装置のものと対比したものであ
る。
FIG. 4 shows a time response characteristic of a measured potential of the oxidation-reduction potential measuring apparatus according to the present invention, as compared with that of a conventional apparatus.

【図5】図5−aは本発明の一実施例の電気回路ブロッ
ク図である。図5−bは同じく本発明に係わる自動化及
び自動演算機能を内蔵する回路の基本構成図である。
FIG. 5A is an electric circuit block diagram of one embodiment of the present invention. FIG. 5B is a basic configuration diagram of a circuit having a built-in automation and automatic calculation function according to the present invention.

【図6】本発明の電極部筐体、回路、液晶表示部、制御
スイッチ部、本体筐体部の測定状態における外観図であ
る。
FIG. 6 is an external view of a measurement state of an electrode unit housing, a circuit, a liquid crystal display unit, a control switch unit, and a main body housing unit of the present invention.

【図7】本発明に係わる補償電極の基本回路構成図であ
る。
FIG. 7 is a basic circuit configuration diagram of a compensation electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1 被測定水溶液 2 参照電極 2−2補償電極 3 作用電極 4 電極間電位 5 参照電極電位 6 作用電極電位 7 参照電極側リード線 8 作用電極側リード線 9 電圧計 10 参照電極接触面 11 作用電極接触面 12 水溶液の抵抗 13 作用電極仮想容量 14 作用電極仮想容量の直列抵抗 15 作用電極電位の直列抵抗 16 参照電極仮想容量 17 参照電極仮想容量の直列抵抗 18 作用電極の標準単極電位 19 作用電極の標準単極電位の直列抵抗 20 参照電極の標準単極電位 21 参照電極の金属イオンのネルンスト電位 22 差動アンプ 23 液晶駆動回路 24 液晶 25 参照電極の単極電位オフセット調整回路。 26 還元電位補償回路 27 直流電源 28 筐体 29 アナログ/デジタル変換回路 30 CPU装置 31 電源オン/オフスイッチ 32 自動スタートスイッチ 33 スタートストップスイッチ 34 電極筐体 34−2 電極筐体スペーサ 34−3 電極筐体フック 35 接続ケーブル 36 ケーブルコネクタ 37 スイッチボックス DESCRIPTION OF SYMBOLS 1 Aqueous solution to be measured 2 Reference electrode 2-2 Compensation electrode 3 Working electrode 4 Interelectrode potential 5 Reference electrode potential 6 Working electrode potential 7 Reference electrode side lead wire 8 Working electrode side lead wire 9 Voltmeter 10 Reference electrode contact surface 11 Working electrode Contact surface 12 Resistance of aqueous solution 13 Working electrode virtual capacitance 14 Series resistance of working electrode virtual capacitance 15 Series resistance of working electrode potential 16 Reference electrode virtual capacitance 17 Series resistance of reference electrode virtual capacitance 18 Standard single electrode potential of working electrode 19 Working electrode 20 Standard monopolar potential of reference electrode 20 Standard monopolar potential of reference electrode 21 Nernst potential of metal ion of reference electrode 22 Differential amplifier 23 Liquid crystal drive circuit 24 Liquid crystal 25 Single electrode potential offset adjustment circuit of reference electrode. 26 Reduction Potential Compensation Circuit 27 DC Power Supply 28 Case 29 Analog / Digital Conversion Circuit 30 CPU Device 31 Power On / Off Switch 32 Automatic Start Switch 33 Start / Stop Switch 34 Electrode Case 34-2 Electrode Case Spacer 34-3 Electrode Case Body hook 35 Connection cable 36 Cable connector 37 Switch box

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】白金または白金メッキを施した金属を作用
電極とし、白金よりイオン化傾向の大きい金属またはこ
れらの合金から成る金属を参照電極とし、被測定水溶液
に浸漬した作用電極と参照電極間に誘起する電位をEt
とすると、次式を満足する電位EmをEtに対して縦続
に作用電極を陰極として、随時、または断続的に印加す
ることを特徴とする酸化還元電位測定装置。 Et + Em ≧ 0
1. A working electrode comprising platinum or a metal plated with platinum as a working electrode, a metal having a higher ionization tendency than platinum or a metal comprising an alloy thereof as a reference electrode, and a working electrode immersed in an aqueous solution to be measured and the reference electrode. Et induced potential
An oxidation-reduction potential measuring apparatus characterized in that a potential Em that satisfies the following equation is applied at any time or intermittently to Et in a cascade with the working electrode as a cathode. Et + Em ≧ 0
【請求項2】白金または白金メッキを施した金属を作用
電極とし、白金よりイオン化傾向の大きい金属またはこ
れらの合金から成る金属を参照電極とし、被測定水溶液
もしくは任意の水溶液に於いて作用電極に対して随時、
または断続的に負の電流を供給する他の金属電極を具備
することを特徴とする酸化還元電位測定装置。
2. Platinum or a metal plated with platinum is used as a working electrode, and a metal having a higher ionization tendency than platinum or a metal made of an alloy thereof is used as a reference electrode. At any time,
Alternatively, an oxidation-reduction potential measuring device comprising another metal electrode for supplying a negative current intermittently.
【請求項3】請求項1、2、に於ける経時的スイッチン
グ動作を電源投入時、電極浸漬時、観測値リセット時ま
たは被測定水溶液の酸化還元電位の変動時を始点とし
て、電気的、機械的に自動化したことを特徴とする酸化
還元電位測定装置。
3. The method according to claim 1, wherein the time-dependent switching operation is started when power is turned on, when electrodes are immersed, when observed values are reset, or when the oxidation-reduction potential of the aqueous solution to be measured fluctuates. An oxidation-reduction potential measuring apparatus characterized by being automatically automated.
JP9252568A 1997-08-14 1997-08-14 Oxidation-reduction potential measuring device Pending JPH1164275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9252568A JPH1164275A (en) 1997-08-14 1997-08-14 Oxidation-reduction potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9252568A JPH1164275A (en) 1997-08-14 1997-08-14 Oxidation-reduction potential measuring device

Publications (1)

Publication Number Publication Date
JPH1164275A true JPH1164275A (en) 1999-03-05

Family

ID=17239195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9252568A Pending JPH1164275A (en) 1997-08-14 1997-08-14 Oxidation-reduction potential measuring device

Country Status (1)

Country Link
JP (1) JPH1164275A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331454A (en) * 2004-05-21 2005-12-02 Tanita Corp Oxidation reduction electrometer
JP2008180727A (en) * 2001-01-12 2008-08-07 Nalco Co Low cost, on-line corrosion monitor and high-performance corrosion probe
US8097136B2 (en) 2004-02-19 2012-01-17 Niigata Tlo Corporation Hydrogen gas sensor
JP2015114302A (en) * 2013-12-16 2015-06-22 住友金属鉱山株式会社 Fitting structure of oxidation reduction electrometer in reaction tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180727A (en) * 2001-01-12 2008-08-07 Nalco Co Low cost, on-line corrosion monitor and high-performance corrosion probe
US8097136B2 (en) 2004-02-19 2012-01-17 Niigata Tlo Corporation Hydrogen gas sensor
JP2005331454A (en) * 2004-05-21 2005-12-02 Tanita Corp Oxidation reduction electrometer
US7597789B2 (en) 2004-05-21 2009-10-06 Tanita Corporation Oxidation-reduction potentiometer
JP4530203B2 (en) * 2004-05-21 2010-08-25 株式会社タニタ Redox potentiometer
JP2015114302A (en) * 2013-12-16 2015-06-22 住友金属鉱山株式会社 Fitting structure of oxidation reduction electrometer in reaction tank

Similar Documents

Publication Publication Date Title
US6653842B2 (en) Galvanic probes as pH and oxidation reduction potential sensors, control devices employing such probes, and related methods
US3454485A (en) Oxygen sensor with scavenger means
US4830713A (en) Regeneration method and device
US2531747A (en) Metal identifier
US20050252790A1 (en) Electrochemical sensor system and sensing method
EP2980576A1 (en) Electrochemical sensor system and sensing method
US3922205A (en) Portable polarographic analyzer and quick polarographic determinations
JPH03188371A (en) Method and apparatus for dynamic analysis of precious metal
JPS6117949A (en) Solid ph sensor
JP2005529326A (en) Total organic carbon analyzer
JPH1164275A (en) Oxidation-reduction potential measuring device
US4952300A (en) Multiparameter analytical electrode structure and method of measurement
EP0626577B1 (en) Method of monitoring metal ion content in plating baths
US4798655A (en) Multiparameter analytical electrode structure and method of measurement
KR20040009344A (en) Residual Chlorine Sensor On Electrochemistry And Measurement Equipment Use Thereof
JP2001174436A (en) Method and apparatus for measuring ion concentration
CN219830933U (en) Electrochemical composite sensor
US3528778A (en) Method for the determination of acid concentrations
Sevilla III et al. The electrician's multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry
US4262252A (en) Measuring electrode for sulfuric acid concentration
EP0942280A1 (en) Automatic measuring device for the concentration of a developing agent
KR200308415Y1 (en) Portable salinometer
JPH06138068A (en) Concentration meter for electrolyte solution
Wang Anodic stripping voltammetry: an instrumental analysis experiment
Head Jr et al. An inexpensive coulometer for titrations with externally generated reagents