JPH1164119A - Optical fiber thermal distorsion sensor and thermal distorsion measuring device - Google Patents
Optical fiber thermal distorsion sensor and thermal distorsion measuring deviceInfo
- Publication number
- JPH1164119A JPH1164119A JP9216815A JP21681597A JPH1164119A JP H1164119 A JPH1164119 A JP H1164119A JP 9216815 A JP9216815 A JP 9216815A JP 21681597 A JP21681597 A JP 21681597A JP H1164119 A JPH1164119 A JP H1164119A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- optical fiber
- light
- strain
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、光ファイバセン
サに関し、温度と歪みとを同時に計測することができる
ようにしたものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber sensor, which is capable of simultaneously measuring temperature and strain.
【0002】[0002]
【従来の技術】温度と歪みを同時に計測することができ
る光ファイバセンサとして、シングルモードファイバの
コアにグレーティング周期150〜400μmの長周期
グレーティングを形成したものをセンシング部とするセ
ンサがは発表されている(V.Bhatia et a
l.,Conference Proceedings
of OFS−11,paper Fr2−5,p70
2,1996)。2. Description of the Related Art As an optical fiber sensor capable of simultaneously measuring temperature and strain, a sensor using a single-mode fiber core formed with a long-period grating having a grating period of 150 to 400 μm as a sensing unit has been announced. (V. Bhatia et a
l. , Conference Proceedings
of OFS-11, paper Fr2-5, p70
2, 1996).
【0003】このセンサでは、長周期グレーティングの
周期とコア伝搬モードおよびクラッド伝搬モードの実効
屈折率とで定まるある波長の光が、コア伝搬モードから
クラッド伝搬モードに結合、変換され、その波長での損
失が生じるとともに、クラッド伝搬モードが多数存在す
ることから、その波長以外の多数の波長でも損失が生じ
ることになる。そして、これらの損失ピーク波長は、温
度依存性、歪み依存性を有しているので、これらの損失
ピーク波長の温度、歪による変化量を計測することで、
温度および歪を測定することができるものである。In this sensor, light of a certain wavelength determined by the period of the long-period grating and the effective refractive indexes of the core propagation mode and the cladding propagation mode is coupled and converted from the core propagation mode to the cladding propagation mode. Since a loss occurs and a large number of cladding propagation modes exist, a loss occurs at many wavelengths other than the wavelength. And since these loss peak wavelengths have temperature dependency and strain dependency, by measuring the change of these loss peak wavelengths by temperature and strain,
Temperature and strain can be measured.
【0004】しかしながら、このセンサでは、損失ピー
ク波長の温度依存性が小さく、温度変化に敏感でなく、
感度が低い欠点がある。また、損失ピーク波長の帯域が
広いため、その中心波長の測定精度が不十分で、温度歪
みの測定精度もよくない欠点もある。However, in this sensor, the temperature dependence of the loss peak wavelength is small, and the sensor is not sensitive to temperature changes.
There is a disadvantage of low sensitivity. Further, since the band of the loss peak wavelength is wide, there is a disadvantage that the measurement accuracy of the center wavelength is insufficient and the measurement accuracy of the temperature distortion is not good.
【0005】[0005]
【発明が解決しようとする課題】よって、本発明におけ
る課題は、測定精度、感度が良好であり、温度および歪
みを同時に計測できる光ファイバ温度歪みセンサを得る
ことにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical fiber temperature distortion sensor having good measurement accuracy and sensitivity and capable of simultaneously measuring temperature and strain.
【0006】[0006]
【課題を解決するための手段】かかる課題は、偏波面保
存光ファイバのコアに反射型グレーティングを1以上形
成したものをセンシング部とし、このセンシング部にお
いて直交する2の偏波モードの各反射光または透過光の
中心波長の温度および歪みによる変化量を計測してセン
シング部に作用する温度および歪みを測定することで解
決される。上記センシング部となる偏波面保存光ファイ
バのモード複屈折率を3×10-4以上とすることが望ま
しい。An object of the present invention is to provide a sensing part in which one or more reflective gratings are formed in the core of a polarization-maintaining optical fiber, and the reflected light of two orthogonal polarization modes in the sensing part. Alternatively, the problem is solved by measuring the amount of change in the center wavelength of the transmitted light due to temperature and strain and measuring the temperature and strain acting on the sensing unit. It is desirable that the mode birefringence of the polarization-maintaining single-mode fiber serving as the sensing unit be 3 × 10 −4 or more.
【0007】[0007]
【発明の実施の形態】以下、本発明を詳しく説明する。
図1は、本発明の光ファイバ温度歪みセンサのセンシン
グ部を模式的に示すもので、図中符号1はPANDA型
偏波面保存光ファイバである。このPANDA型偏波面
保存光ファイバ1は、中心のコア2と、このコア2から
やや離れてコア2を中心に挟んで相対向する位置に対称
的に設けられた1対の応力付与部3、3とこれらコア2
および応力付与部3、3を包囲するクラッド4とからな
るもので、そのモード複屈折率が3×10-4以上のもの
が好ましい。モード複屈折率がこの値未満であると、後
述する2つの反射光の中心波長の差が0.3nm以下と
なり、その差を光検出器において検知することが困難と
なる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
FIG. 1 schematically shows a sensing unit of an optical fiber temperature distortion sensor according to the present invention. In FIG. 1, reference numeral 1 denotes a PANDA type polarization maintaining optical fiber. The PANDA type polarization-maintaining single-mode fiber 1 has a center core 2 and a pair of stress applying portions 3 symmetrically provided at positions slightly apart from the core 2 and opposed to each other with the core 2 as a center. 3 and these cores 2
And the cladding 4 surrounding the stress applying portions 3 and 3, and preferably has a mode birefringence of 3 × 10 −4 or more. If the mode birefringence is less than this value, the difference between the center wavelengths of two reflected lights, which will be described later, will be 0.3 nm or less, and it will be difficult for the photodetector to detect the difference.
【0008】このPANDA型偏波面保存光ファイバ1
は、コア2のほぼ中央の長さが10〜20mm程度の部
分には反射型グレーティング5が形成されている。この
グレーティング5は、例えばコア2にエキシマレーザ光
などを照射し、ホトリフラクティブ効果によって光ファ
イバの長手方向に屈折率の一定周期の変動を形成したも
のであって、屈折率変動の周期、すなわちグレーティン
グ周期Λが0.1〜1.0μm程度のものである。この
コア2にグレーティング5が形成されたPANDA型偏
波面保存光ファイバ1がセンシング部6となる。This PANDA type polarization maintaining optical fiber 1
The reflective grating 5 is formed in a portion of the core 2 where the center length is about 10 to 20 mm. The grating 5 irradiates the core 2 with, for example, excimer laser light, and forms a constant-period change in the refractive index in the longitudinal direction of the optical fiber by the photorefractive effect. The period Λ is about 0.1 to 1.0 μm. The PANDA-type polarization maintaining optical fiber 1 in which the grating 5 is formed on the core 2 serves as the sensing unit 6.
【0009】そして、図2に示すように、センシング部
6の一端には測定光を導波するための導波ファイバ7の
一端が接続され、この導波ファイバ7の他端は光サーキ
ュレータ8に接続されている。光サーキュレータ8は、
導波ファイバ7によって、光源9および光検出器10に
それぞれ接続されて、この例の温度歪み測定装置となっ
ている。光源9には、無偏光の光を発光するものが使用
される。光源には狭い発光波長のLDは不適当であっ
て、望ましくはある程度波長範囲(後述する温度又は歪
み変化による波長変化をカバーできる波長範囲)の光
(以下広帯域の光という)を安定したパワーで発光する
光源、例えばLED(発光ダイオード)、ハロゲンラン
プ、ASE(Amplified spontaneous emission)光源な
どが用いられる。光検出器10には、波長分解能が0.
01nm程度の光スペクトルアナライザーなどが用いら
れる。導波ファイバ7には、一般のシングルモードファ
イバーなどが用いられる。As shown in FIG. 2, one end of a sensing section 6 is connected to one end of a waveguide fiber 7 for guiding measurement light, and the other end of the waveguide fiber 7 is connected to an optical circulator 8. It is connected. The optical circulator 8 is
The waveguide fiber 7 is connected to the light source 9 and the photodetector 10, respectively, to provide a temperature distortion measuring device of this example. A light source that emits unpolarized light is used as the light source 9. An LD having a narrow emission wavelength is not suitable for a light source, and it is desirable to use light of a certain wavelength range (wavelength range capable of covering a wavelength change due to temperature or strain change described later) (hereinafter referred to as broadband light) with a stable power. A light source that emits light, for example, an LED (light emitting diode), a halogen lamp, an ASE (Amplified spontaneous emission) light source, or the like is used. The photodetector 10 has a wavelength resolution of 0.
An optical spectrum analyzer of about 01 nm is used. As the waveguide fiber 7, a general single mode fiber or the like is used.
【0010】次に、このような構成のセンサの測定原理
について説明する。PANDA型偏波面保存光ファイバ
1では、コア2に導波される光のモードは、1対の応力
付与部3、3の中心点を結ぶ平面に沿って導波される偏
波モードLP01 X モード(以下、sモードとする。)
と、上記平面に直交する平面に沿って導波される偏波モ
ードLP01 y モード(以下、fモードとする。)とがあ
る。これら2つの偏波モード間にはその伝搬定数の差
(Δβ=βs−βf)が形成され、各偏波モードはこれ
に対応して、それぞれ別の実効屈折率Nf、Nsを持つ
ことになる。Next, the measurement principle of the sensor having such a configuration will be described. In the PANDA polarization-maintaining optical fiber 1, the mode of light guided to the core 2 is a polarization mode LP 01 X guided along a plane connecting the center points of the pair of stress applying parts 3, 3. Mode (hereinafter referred to as s mode)
And a polarization mode LP 01 y mode (hereinafter, referred to as f mode) guided along a plane orthogonal to the above plane. A difference in propagation constant (Δβ = βs−βf) is formed between these two polarization modes, and each polarization mode has a different effective refractive index Nf, Ns corresponding thereto. .
【0011】一般に、反射型グレーティングに入射され
た光は、λ=2NΛの条件を満たすときに反射される。
ここでλは反射光の中心波長、Nは実効屈折率、Λはグ
レーティング周期である。このため、PANDA型偏波
面保存光ファイバ1に形成された反射型グレーティング
5で反射される光(偏光)の中心波長は、2つの実効屈
折率NfとNsとに対応して2つ存在することになり、
これをλf、λsとする。図3は、センシング部6から
反射されたfモード及びsモードの反射光のスペクトル
の一例を示すもので、2つの尖鋭な反射ピークが明確に
分かれて表れており、短波長側のピークがλf、長波長
側のピークがλsとなる。Generally, light incident on a reflection type grating is reflected when the condition of λ = 2N を 満 た す is satisfied.
Here, λ is the center wavelength of the reflected light, N is the effective refractive index, and Λ is the grating period. Therefore, two center wavelengths of the light (polarized light) reflected by the reflection type grating 5 formed in the PANDA type polarization maintaining optical fiber 1 exist in correspondence with the two effective refractive indices Nf and Ns. become,
These are λf and λs. FIG. 3 shows an example of the spectrum of the f-mode and s-mode reflected light reflected from the sensing unit 6, where two sharp reflection peaks are clearly separated, and the short-wavelength side peak is λf , The peak on the long wavelength side becomes λs.
【0012】一般に、ガラスの屈折率は温度依存性を持
つ。また、伝搬定数はファイバの導波構造とコアおよび
クラッドの屈折率によって決まるので、実効屈折率N
f、Nsはそれぞれ異なる温度依存性を持ち、したがっ
て反射光の中心波長λf、λsもそれぞれ異なる温度依
存性を持つ。また、センシング部6の長手方向に歪みが
加えられると、これが伸縮してグレーティング周期Λが
変化する。また、光弾性効果により実効屈折率Nf、N
sも変化する。このため、反射光の中心波長λf、λs
は、それぞれ異なる歪み依存性を持つ。Generally, the refractive index of glass has temperature dependence. Further, since the propagation constant is determined by the waveguide structure of the fiber and the refractive indices of the core and the cladding, the effective refractive index N
f and Ns have different temperature dependences, and therefore, the center wavelengths λf and λs of the reflected light also have different temperature dependences. When strain is applied in the longitudinal direction of the sensing unit 6, the strain expands and contracts, and the grating period Λ changes. In addition, the effective refractive indices Nf, Nf
s also changes. For this reason, the center wavelengths λf, λs of the reflected light
Have different distortion dependencies.
【0013】この現象を利用して、センシング部6のグ
レーティング5から反射されるfモードおよびsモード
の光の中心波長λf、λsの変化を計測することによ
り、グレーティング5の持つ温度依存性、歪み依存性を
分離して、センシング部6に作用する温度、歪みを同時
に測定することが可能になる。By utilizing this phenomenon to measure the change in the center wavelengths λf and λs of the f-mode and s-mode light reflected from the grating 5 of the sensing unit 6, the temperature dependence and distortion of the grating 5 are measured. By separating the dependence, the temperature and strain acting on the sensing unit 6 can be measured simultaneously.
【0014】sモード及びfモードの各反射光の中心波
長λs、λfの温度に対する変化率、歪みに対する変化
率は、それぞれ∂λs/∂T、∂λs/∂ε、∂λf/
∂T、∂λf/∂εで表されるので、温度変化ΔT、歪
み変化Δεに対するsモードおよびfモードの反射波長
の変化Δλs、Δλfは、下記(1)式で表わされる。The rate of change of the center wavelengths λs and λf of the reflected light in the s-mode and f-mode with respect to temperature and the rate of change with respect to strain are ∂λs / ∂T, ∂λs / ∂ε, and ∂λf /
Since ∂T and ∂λf / ∂ε are expressed, the changes Δλs and Δλf of the reflection wavelengths of the s-mode and the f-mode with respect to the temperature change ΔT and the strain change Δε are expressed by the following equation (1).
【0015】[0015]
【数1】 (Equation 1)
【0016】そして、温度変化ΔT、歪み変化Δεは、
式(1)をΔT、Δεについて解いて、下記(2)式で
与えられる。The temperature change ΔT and the strain change Δε are
Equation (1) is solved for ΔT and Δε, and is given by the following equation (2).
【0017】[0017]
【数2】 (Equation 2)
【0018】上記(2)式において、∂λs/∂T、∂
λs/∂ε、∂λf/∂T、∂λf/∂εについては、
予めセンシング部6に既知の温度変化および歪み変化を
別々に与えて、その時に得られるλs、λfを測定し、
これから求めておくことができる。図4は、λs、λf
の温度依存性の一例を示すもので、Aがλsの、Bがλ
fの温度依存性を示す。図5は、λs、λfの歪み依存
性の具体例としての張力依存性の一例を示すもので、C
がλsの、Bがλfの張力依存性を示す。ここでの張力
Fは、ファイバ1の長手方向に作用する引っ張り力であ
る。In the above equation (2), ∂λs / ∂T, ∂
For λs / ∂ε, ∂λf / ∂T, and ∂λf / ∂ε,
A known temperature change and strain change are separately given to the sensing unit 6 in advance, and λs and λf obtained at that time are measured.
I can find it in the future. FIG. 4 shows λs, λf
Is an example of the temperature dependence of A, where A is λs and B is λs.
The temperature dependence of f is shown. FIG. 5 shows an example of the tension dependency as a specific example of the strain dependency of λs and λf.
Indicates the dependence of λs on the tension, and B indicates the dependence of λf on the tension. The tension F here is a pulling force acting in the longitudinal direction of the fiber 1.
【0019】図4、図5ではA〜Dは、ほぼ直線で表さ
れているので、その傾きから、上記の∂λs/∂T、∂
λs/∂F、∂λf/∂T、∂λf/∂Fが求められ張
力Fからガラスのヤング率を使って歪みεに変換する
と、∂λs/∂ε、∂λf/∂εが具体的な数値として
求められる。よって、(2)式より、ΔλsとΔλfが
実測で求まれば、ΔT、Δεが求められることになる。
したがって、ある基準の温度Toおよび歪みεoでの反
射中心波長λso、λfoが既知であれば、ΔλsとΔ
λfから上述のようにしてΔT、Δεを加えることによ
り、センシング部6に作用する温度、歪みを同時に求め
ることができる。(2)式による演算は、パーソナルコ
ンピュータなどを使用して簡単に実施できる。図4,図
5に示すA〜Dが直線で表される場合は、∂λs/∂
T、∂λs/∂F、∂λf/∂T、∂λf/∂Fはそれ
ぞれ基準温度T0または基準歪みt0における張力あるい
は温度に対する偏微分値を求めればよい。In FIGS. 4 and 5, A to D are represented by substantially straight lines, and from the inclination thereof, the above-mentioned ∂λs / ∂T, ∂
When λs / ∂F, ∂λf / ∂T, and ∂λf / ∂F are obtained and converted from the tension F into strain ε using the Young's modulus of the glass, ∂λs / ∂ε and ∂λf / ∂ε are concrete. Obtained as a numerical value. Therefore, if Δλs and Δλf are obtained by actual measurement from Expression (2), ΔT and Δε will be obtained.
Therefore, if the reflection center wavelengths λso and λfo at a certain reference temperature To and strain εo are known, Δλs and Δλs
By adding ΔT and Δε from λf as described above, the temperature and strain acting on the sensing unit 6 can be obtained simultaneously. The calculation based on the equation (2) can be easily performed using a personal computer or the like. When A to D shown in FIGS. 4 and 5 are represented by straight lines, {λs / ∂
For T, ∂λs / ∂F, ∂λf / ∂T, and ∂λf / ∂F, respectively, a tension at the reference temperature T0 or the reference strain t0 or a partial differential value with respect to the temperature may be obtained.
【0020】以下、図4および図5に示した例を利用し
て、具体的に数値を挙げて説明する。図4および図5の
直線A〜Dの傾きから、 ∂λs/∂T=0.0095nm/℃ ∂λf/∂T=0.0101nm/℃ ∂λs/∂F=0.01470nm/g ∂λf/∂F=0.01461nm/g となる。ファイバガラスのヤング率72.9GPaを使
って張力Fを歪みεに変換すると、 ∂λs/∂ε=0.001342nm/με ∂λf/∂ε=0.001334nm/με となる。これらの値を代入して計算すると、D=−8.
812×10-7(nm2 /με・℃)となる。Hereinafter, specific numerical values will be described with reference to the examples shown in FIGS. From the slopes of the straight lines A to D in FIGS. 4 and 5, ∂λs / ∂T = 0.0095 nm / ° C. ∂λf / ∂T = 0.010 nm / ° C. ∂λs / ∂F = 0.01470 nm / g ∂λf / ∂F = 0.01461 nm / g. When the tension F is converted into the strain ε using the fiber glass Young's modulus of 72.9 GPa, ∂λs / ∂ε = 0.001342 nm / με ∂λf / ∂ε = 0.001334 nm / με. When these values are substituted and calculated, D = −8.
812 × 10 −7 (nm 2 / με · ° C.).
【0021】いま、基準温度20℃、基準歪み0μεと
したとき、λf=1535.07nm、λs=153
5.551nmを基準値と設定する。センシング部6を
ある温度条件下におき、かつ歪みを与えたときに計測さ
れたλfが1537.518nm、λsは1537.0
61nmとすると、Δλf=1.967nm、Δλs=
1.990nmとなる。(2)式にこの値と上述の各数
値を代入して解くと、 ΔT=52.88℃、 Δε=1091με と言う解が求まり、センシング部6に作用した温度は7
2.88℃、歪みは1091μεであることがわかる。
この計測値は、別の歪みセンサと熱電対とにより測定し
た値とよく一致しており、その差が温度では0.2℃、
歪みでは10μεであった。このように、この光ファイ
バ温度歪みセンサは、温度と歪みを同時に精度よく、高
感度で測定することができる。Now, when the reference temperature is 20 ° C. and the reference strain is 0 με, λf = 1535.07 nm and λs = 153.
5.551 nm is set as a reference value. When the sensing unit 6 is placed under a certain temperature condition and a strain is applied, λf measured at 1537.518 nm and λs is 1537.0.
Assuming 61 nm, Δλf = 1.967 nm, Δλs =
1.990 nm. By substituting this value and each of the above values into the equation (2), a solution of ΔT = 52.88 ° C. and Δε = 1091 με is obtained, and the temperature acting on the sensing unit 6 is 7
It can be seen that the strain is 2.88 ° C. and the strain is 1091 με.
This measured value is in good agreement with the value measured by another strain sensor and a thermocouple, and the difference is 0.2 ° C. in temperature,
The strain was 10 με. As described above, the optical fiber temperature strain sensor can measure temperature and strain simultaneously with high accuracy and high sensitivity.
【0022】図6は、この発明の光ファイバ温度歪みセ
ンサの他の例を示すもので、この例のセンサは透過光を
測定する型のものである。すなわち、光源9からの測定
光は導波ファイバ7からセンシング部6の一端に入射さ
れ、センシング部6の他端からの透過光は光検出器10
に導波ファイバ7で送られるものである。図7に反射型
光ファイバグレーティングの透過スペクトルの一例を示
すが、この例のセンサでは、光検出器10で計測される
透過光のスペクトルのピークの形状が反転して谷状とな
る点が若干異るものの、各ピークの波長値は同一であ
り、測定原理も先 例のものと同一である。FIG. 6 shows another embodiment of the optical fiber temperature distortion sensor according to the present invention. The sensor of this embodiment is of a type for measuring transmitted light. That is, the measurement light from the light source 9 is incident on one end of the sensing unit 6 from the waveguide fiber 7, and the transmitted light from the other end of the sensing unit 6 is
Is transmitted by the waveguide fiber 7. FIG. 7 shows an example of a transmission spectrum of the reflection type optical fiber grating. In the sensor of this example, the point where the shape of the peak of the spectrum of the transmission light measured by the photodetector 10 is inverted and becomes a valley is slightly increased. Although different, the wavelength value of each peak is the same, and the measurement principle is the same as that of the previous example.
【0023】また、本発明の光ファイバ温度歪みセンサ
では、1本のPANDA型偏波面保存光ファイバ1にグ
レーティング5をその長手方向に沿って複数間隔をあけ
て形成したものをセンシング部6とすることも可能であ
る。ただし、この場合には各グレーティング5のグレー
ティング周期Λを互いに異らせ、1のグレーティング5
によって生じる2つの反射光の中心波長λf、λsが互
いに重ならず、かつ1組のλfとλsとの差以上の間隔
を空けるようにすることが必要となる。このような複数
のグレーティング5.5……をファイバ1の長手方向に
沿って設けたものでは、多数の異なる位置での温度およ
び歪を同時に計測できる。In the optical fiber temperature distortion sensor of the present invention, the sensing section 6 is formed by forming the gratings 5 on the single PANDA-type polarization maintaining optical fiber 1 at a plurality of intervals along the longitudinal direction thereof. It is also possible. However, in this case, the grating periods の of the respective gratings 5 are different from each other so that one grating 5
Therefore, it is necessary that the center wavelengths λf and λs of the two reflected lights generated by the above do not overlap with each other, and that an interval equal to or larger than the difference between a pair of λf and λs is required. By providing such a plurality of gratings 5.5 along the longitudinal direction of the fiber 1, it is possible to simultaneously measure the temperature and strain at many different positions.
【0024】また、上述の例では、偏波面保存光ファイ
バとしてPANDA型のものを使用したが、これに限ら
れことはなく、ボウタイ型、楕円クラッド型などの種々
のタイプの偏波面保存光ファイバが使用できることは言
うまでもない。In the above-mentioned example, the PANDA type optical fiber is used as the polarization maintaining optical fiber. However, the present invention is not limited to this, and various types of polarization maintaining optical fibers such as bow tie type and elliptical cladding type are used. Needless to say, can be used.
【0025】[0025]
【発明の効果】以上説明したように、本発明の光ファイ
バ温度歪みセンサにあっては、センシング部に作用する
温度、歪みを高精度、高感度で同時測定することができ
る。また、センシング部が10mm程度の小型であるの
で、例えば電気ケーブルなどの狭い空間などに装填して
おくことができ、かつ局所的な温度、歪みを測定でき
る。さらに、必要な機器が少なく、装置を安価とするこ
ともできるなどの効果を有する。As described above, the optical fiber temperature distortion sensor of the present invention can simultaneously measure the temperature and distortion acting on the sensing section with high accuracy and high sensitivity. In addition, since the sensing unit is small, such as about 10 mm, the sensing unit can be mounted in a narrow space such as an electric cable, and local temperature and distortion can be measured. Further, there are effects such that the number of necessary devices is small and the device can be inexpensive.
【図1】 本発明のセンサのセンシング部の構成の一例
を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a configuration of a sensing unit of a sensor according to the present invention.
【図2】 本発明のセンサの構成の一例を示す構成図で
ある。FIG. 2 is a configuration diagram illustrating an example of a configuration of a sensor according to the present invention.
【図3】 本発明における反射型グレーティングから反
射される反射光のスペクトルの例を示すスペクトラムで
ある。FIG. 3 is a spectrum showing an example of a spectrum of reflected light reflected from a reflection grating according to the present invention.
【図4】 本発明におけるλf、λsの温度依存性の例
を示すグラフである。FIG. 4 is a graph showing an example of the temperature dependence of λf and λs in the present invention.
【図5】 本発明におけるλf、λsの張力依存性の例
を示すグラフである。FIG. 5 is a graph showing an example of the dependence of λf and λs on tension in the present invention.
【図6】 本発明のセンサの構成の他の例を示す構成図
である。FIG. 6 is a configuration diagram showing another example of the configuration of the sensor of the present invention.
【図7】 反射型グレーティングから反射される反射光
のスペクトルの例を示すスペクトラムである。FIG. 7 is a spectrum illustrating an example of a spectrum of reflected light reflected from a reflection grating.
1…PANDA型偏波面保存光ファイバ、2…コア、5
…反射型グレーティング、6…センシング部、9…光
源、10…光検出器1: PANDA type polarization maintaining optical fiber, 2: core, 5
... Reflection type grating, 6 ... Sensing part, 9 ... Light source, 10 ... Photodetector
フロントページの続き (72)発明者 姫野 邦治 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉工場内 (72)発明者 須崎 慎三 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉工場内 (72)発明者 中居 道弘 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉工場内Continuing from the front page (72) Inventor Kuniharu Himeno 1440, Mukurosaki, Sakura City, Chiba Prefecture Inside Fujikura Sakura Plant Co., Ltd. Person Michihiro Nakai 1440 Rokuzaki, Sakura City, Chiba Prefecture Inside Fujikura Sakura Plant
Claims (3)
レーティングを形成してなるセンシング部を有し、 このセンシング部において、直交する2つの偏波モード
の各反射光もしくは透過光の中心波長の温度および歪み
による変化量を計測して、センシング部に作用する温度
および歪みを同時測定するようにした光ファイバ温度歪
みセンサ。1. A sensing part comprising a reflection grating formed on a core of a polarization-maintaining optical fiber, wherein the sensing part has a center wavelength of each of reflected light or transmitted light of two orthogonal polarization modes. An optical fiber temperature distortion sensor that measures a change amount due to temperature and strain and simultaneously measures temperature and strain acting on a sensing unit.
サにおいて、 センシング部に形成されている反射型グレーディング
が、複数個偏波面保存光ファイバの長手方向に形成され
ている光ファイバ温度歪みセンサ。2. The optical fiber temperature distortion sensor according to claim 1, wherein a plurality of reflection type grading formed in the sensing portion are formed in a longitudinal direction of the polarization maintaining optical fiber.
歪みセンサと、この光ファイバ温度歪みセンサに測定光
を送る光源と、上記光ファイバ温度歪みセンサからの反
射光もしくは透過光を受光し、その反射光もしくは透過
光の中心波長の変化量を検出する光検出器を有し、 上記センシング部において、直交する2の偏波モードの
各反射光もしくは透過光の中心波長の温度および歪みに
よる変化量を計測して、センシング部に作用する温度お
よび歪みを同時測定するようにした温度歪み測定装置。3. An optical fiber temperature distortion sensor according to claim 1 or 2, a light source for transmitting measurement light to the optical fiber temperature distortion sensor, and receiving reflected light or transmitted light from the optical fiber temperature distortion sensor. A light detector for detecting a change amount of a center wavelength of the reflected light or the transmitted light; and a change in a center wavelength of the reflected light or the transmitted light of each of the two orthogonal polarization modes due to temperature and distortion in the sensing unit. A temperature distortion measuring device that measures an amount and simultaneously measures temperature and distortion acting on a sensing unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21681597A JP3819119B2 (en) | 1997-08-11 | 1997-08-11 | Optical fiber temperature strain sensor and temperature strain measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21681597A JP3819119B2 (en) | 1997-08-11 | 1997-08-11 | Optical fiber temperature strain sensor and temperature strain measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1164119A true JPH1164119A (en) | 1999-03-05 |
JP3819119B2 JP3819119B2 (en) | 2006-09-06 |
Family
ID=16694331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21681597A Expired - Lifetime JP3819119B2 (en) | 1997-08-11 | 1997-08-11 | Optical fiber temperature strain sensor and temperature strain measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3819119B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100429504B1 (en) * | 2002-02-08 | 2004-05-03 | 삼성전자주식회사 | Sensor using polarization maintaining fiber grating |
KR100470911B1 (en) * | 2002-06-05 | 2005-02-21 | 주식회사 아이세스 | FBG sensor system |
EP1640692A1 (en) * | 2004-09-22 | 2006-03-29 | Faculté Polytechnique de Mons | Method for evaluating the influence of temperature and strain on the spectrum reflected by fibre bragg grating. |
WO2006032116A1 (en) * | 2004-09-22 | 2006-03-30 | Faculte Polytechnique De Mons | Method for evaluating the influence of temperature and strain on the spectrum reflected by fibre bragg grating |
JP2006267100A (en) * | 2005-03-22 | 2006-10-05 | General Electric Co <Ge> | Fiber optic sensing device and method of making and operating the same |
KR100660088B1 (en) * | 1999-12-28 | 2006-12-20 | 주식회사 케이티 | Optical fiber compensator for the simultaneous compensation of polarization mode dispersion and chromatic dispersion |
KR100661255B1 (en) * | 1998-09-02 | 2006-12-27 | 피텔 유.에스.에이. 코포레이션 | Article comprising a dispersion compensating grating with low polarization mode dispersion |
WO2007149230A2 (en) | 2006-06-16 | 2007-12-27 | Luna Innovations Incorporated | Distributed strain and temperature discrimination in polarization maintaining fiber |
JP2008224413A (en) * | 2007-03-13 | 2008-09-25 | Denso Corp | Printed board manufacturing device and printed board manufacturing method |
WO2009107838A1 (en) * | 2008-02-29 | 2009-09-03 | 株式会社フジクラ | Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain measuring method using the device |
WO2009107839A1 (en) * | 2008-02-29 | 2009-09-03 | 株式会社フジクラ | Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain simultaneous measuring method using the device |
JP2010127705A (en) * | 2008-11-26 | 2010-06-10 | Furukawa Electric Co Ltd:The | Fiber optic sensor |
JP2017501398A (en) * | 2013-08-23 | 2017-01-12 | フォセ テクノロジー インテルナシオナル ベー ヴェ | Single mode fiber Bragg grating pressure sensor |
US10451500B2 (en) | 2014-12-22 | 2019-10-22 | Sikorsky Aircraft Corporation | Fiber optic weight sensor optimization for landing gear |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012023219A1 (en) | 2010-08-18 | 2013-10-28 | 株式会社フジクラ | Polarization maintaining fiber and optical fiber sensor using the same |
US8641274B2 (en) | 2010-08-18 | 2014-02-04 | Fujikura Ltd. | Polarization-maintaining fiber and optical fiber sensor using same |
CN103392136B (en) * | 2010-12-02 | 2018-02-02 | Ofs飞泰尔公司 | DFB optical-fiber lasers bend sensor and optical heterodyne microphone |
-
1997
- 1997-08-11 JP JP21681597A patent/JP3819119B2/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100661255B1 (en) * | 1998-09-02 | 2006-12-27 | 피텔 유.에스.에이. 코포레이션 | Article comprising a dispersion compensating grating with low polarization mode dispersion |
KR100660088B1 (en) * | 1999-12-28 | 2006-12-20 | 주식회사 케이티 | Optical fiber compensator for the simultaneous compensation of polarization mode dispersion and chromatic dispersion |
KR100429504B1 (en) * | 2002-02-08 | 2004-05-03 | 삼성전자주식회사 | Sensor using polarization maintaining fiber grating |
KR100470911B1 (en) * | 2002-06-05 | 2005-02-21 | 주식회사 아이세스 | FBG sensor system |
EP1640692A1 (en) * | 2004-09-22 | 2006-03-29 | Faculté Polytechnique de Mons | Method for evaluating the influence of temperature and strain on the spectrum reflected by fibre bragg grating. |
WO2006032116A1 (en) * | 2004-09-22 | 2006-03-30 | Faculte Polytechnique De Mons | Method for evaluating the influence of temperature and strain on the spectrum reflected by fibre bragg grating |
JP2006267100A (en) * | 2005-03-22 | 2006-10-05 | General Electric Co <Ge> | Fiber optic sensing device and method of making and operating the same |
EP2035792A4 (en) * | 2006-06-16 | 2013-05-15 | Luna Innovations Inc | Distributed strain and temperature discrimination in polarization maintaining fiber |
WO2007149230A2 (en) | 2006-06-16 | 2007-12-27 | Luna Innovations Incorporated | Distributed strain and temperature discrimination in polarization maintaining fiber |
EP2035792A2 (en) * | 2006-06-16 | 2009-03-18 | Luna Innovations Incorporated | Distributed strain and temperature discrimination in polarization maintaining fiber |
JP2008224413A (en) * | 2007-03-13 | 2008-09-25 | Denso Corp | Printed board manufacturing device and printed board manufacturing method |
WO2009107838A1 (en) * | 2008-02-29 | 2009-09-03 | 株式会社フジクラ | Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain measuring method using the device |
JP4474494B2 (en) * | 2008-02-29 | 2010-06-02 | 株式会社フジクラ | Optical frequency domain reflection measurement type physical quantity measurement device and temperature and strain measurement method using the same |
US7889332B2 (en) | 2008-02-29 | 2011-02-15 | Fujikura Ltd. | Physical quantity measuring apparatus utilizing optical frequency domain reflectometry, and method for simultaneous measurement of temperature and strain using the apparatus |
US7973914B2 (en) | 2008-02-29 | 2011-07-05 | Fujikura Ltd. | Physical quantity measuring apparatus utilizing optical frequency domain reflectometry and method for temperature and strain measurement using the apparatus |
JPWO2009107838A1 (en) * | 2008-02-29 | 2011-07-07 | 株式会社フジクラ | Optical frequency domain reflection measurement type physical quantity measurement device and temperature and strain measurement method using the same |
WO2009107839A1 (en) * | 2008-02-29 | 2009-09-03 | 株式会社フジクラ | Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain simultaneous measuring method using the device |
JP2010127705A (en) * | 2008-11-26 | 2010-06-10 | Furukawa Electric Co Ltd:The | Fiber optic sensor |
JP2017501398A (en) * | 2013-08-23 | 2017-01-12 | フォセ テクノロジー インテルナシオナル ベー ヴェ | Single mode fiber Bragg grating pressure sensor |
US10451500B2 (en) | 2014-12-22 | 2019-10-22 | Sikorsky Aircraft Corporation | Fiber optic weight sensor optimization for landing gear |
Also Published As
Publication number | Publication date |
---|---|
JP3819119B2 (en) | 2006-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3819119B2 (en) | Optical fiber temperature strain sensor and temperature strain measuring device | |
Wang et al. | Review of optical fiber bending/curvature sensor | |
US9329089B2 (en) | Optical device utilizing fiber bragg grating and narrowband light with non-bragg wavelength | |
Silva et al. | Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure | |
Rao | Fiber Bragg grating sensors: principles and applications | |
Kang et al. | Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator | |
Kumar et al. | Studies on a few-mode fiber-optic strain sensor based on LP01-LP 02 mode interference | |
US8797540B2 (en) | Slow-light fiber Bragg grating sensor | |
JPS6351243B2 (en) | ||
US9267854B2 (en) | Strain and temperature discrimination using fiber bragg gratings in a cross-wire configuration | |
JP2001510556A (en) | Optical fiber grating lateral strain sensor system | |
JP5150445B2 (en) | Optical fiber sensor device, temperature and strain measurement method, and optical fiber sensor | |
CN103175628A (en) | Optical fiber temperature sensor | |
Abbas et al. | Temperature sensing by hybrid interferometer based on Vernier like effect | |
US6603559B2 (en) | Silicon-on-insulator optical waveguide Michelson interferometer sensor for temperature monitoring | |
Fu | Refractive index sensing based on the reflectivity of the backward cladding-core mode coupling in a concatenated fiber Bragg grating and a long period grating | |
Zhang et al. | Core–cladding mode recoupling based fiber optic refractive index sensor | |
US11977254B2 (en) | Composed multicore optical fiber device | |
Zhao et al. | Investigation on single-mode-multimode-single-mode fiber structure | |
JPH0219730A (en) | Optical fiber temperature sensor | |
Su et al. | Fiber Bragg-grating incorporated microbend sensor for simultaneous mechanical parameter and temperature measurement | |
Ribeiro et al. | An intrinsic graded-index multimode optical fibre strain-gauge | |
Shlyagin et al. | Fiber optic sensor activities at Mexican research center CICESE | |
Cao et al. | Wide measurement range vector curvature sensor based on single stress applying fiber | |
Wu et al. | Simultaneous measurement of displacement and temperature with a single singlemode-multimode-singlemode (SMS) fiber structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060614 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |