JPH1163812A - Manufacture and device for low-purity oxygen - Google Patents
Manufacture and device for low-purity oxygenInfo
- Publication number
- JPH1163812A JPH1163812A JP9218764A JP21876497A JPH1163812A JP H1163812 A JPH1163812 A JP H1163812A JP 9218764 A JP9218764 A JP 9218764A JP 21876497 A JP21876497 A JP 21876497A JP H1163812 A JPH1163812 A JP H1163812A
- Authority
- JP
- Japan
- Prior art keywords
- low
- nitrogen
- pressure column
- oxygen
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04593—The air gas consuming unit is also fed by an air stream
- F25J3/04606—Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/54—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、低純度酸素の製造
方法及び装置に関し、詳しくは、圧縮,精製,冷却した
原料空気を複式蒸留塔に導入して比較的高圧下で蒸留分
離することにより、主として低純度酸素(99%O2以
下)を製品として回収する低純度酸素の製造方法及び装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing low-purity oxygen, and more particularly, to a method in which compressed, purified, and cooled raw material air is introduced into a double distillation column and subjected to distillation and separation under a relatively high pressure. The present invention relates to a method and an apparatus for producing low-purity oxygen mainly for recovering low-purity oxygen (99% O 2 or less) as a product.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】低純度
酸素は、近年、石炭ガス化複合発電設備や重質残渣ガス
化発電設備において利用されるようになり、今後、更に
需要が見込まれている。これらの設備においては、大量
の酸素を消費することから、特に酸素の製造コストを低
減することが望まれている。2. Description of the Related Art In recent years, low-purity oxygen has been used in integrated coal gasification combined cycle power generation equipment and heavy residue gasification power generation equipment, and further demand is expected in the future. I have. Since these facilities consume a large amount of oxygen, it is desired to reduce the production cost of oxygen in particular.
【0003】これらの発電設備において、低純度酸素の
製造コストを低減するため、低純度酸素を製造する空気
液化分離装置に導入する原料空気の一部として、発電設
備の圧縮空気を供給する方法が提案されている。発電設
備から供給される圧縮空気は、一般的な空気液化分離装
置に用いられる原料空気と比較して圧力が高いので、こ
の比較的高い圧力を有効に利用する必要がある。In order to reduce the production cost of low-purity oxygen in these power generation facilities, there is a method of supplying compressed air of the power generation facility as a part of raw air introduced into an air liquefaction / separation apparatus for producing low-purity oxygen. Proposed. Since the pressure of the compressed air supplied from the power generation equipment is higher than that of the raw material air used in a general air liquefaction / separation apparatus, it is necessary to effectively use this relatively high pressure.
【0004】高い圧力を有効利用する方法の一つとし
て、従来の空気液化分離装置よりも高い圧力で蒸留分離
を行い、得られる製品をより高圧で回収することによ
り、従来行われていた製品の再圧縮をすることなく、空
気液化分離装置から回収される圧力で製品の低純度酸素
ガスを直接消費設備に送給する方法がある。[0004] As one method of effectively utilizing a high pressure, distillation separation is performed at a higher pressure than in a conventional air liquefaction separator, and the resulting product is recovered at a higher pressure. There is a method in which low-purity oxygen gas of a product is directly sent to a consuming facility at a pressure recovered from an air liquefaction / separation device without recompression.
【0005】高圧下で蒸留する方法(高圧蒸留)は、低
圧下で液化精留する方法(低圧蒸留)に比較して酸素に
対する窒素の比揮発度の値が小さくなるため、酸素と窒
素との分離効果が低下する。これを補うため、還流比
(下降液(還流液)と上昇ガスとの比)を増加させる必
要があり、複式蒸留塔の低圧塔上部への還流液量を、低
圧蒸留に比べて多くしなければならない。In the method of distillation under high pressure (high pressure distillation), the value of the relative volatility of nitrogen to oxygen is smaller than that in the method of liquefaction and rectification under low pressure (low pressure distillation). The separation effect decreases. In order to compensate for this, it is necessary to increase the reflux ratio (the ratio between the descending liquid (reflux liquid) and the ascending gas), and the amount of reflux liquid at the top of the low-pressure column of the double distillation column must be larger than that in low-pressure distillation. Must.
【0006】一方、低純度酸素を回収するプロセスで
は、アルゴンと酸素とを厳密に分離する必要がないの
で、高純度酸素を回収する場合に比較して、アルゴンと
酸素との分離部である低圧塔下部における下降液量及び
上昇ガス量を低減することができる。On the other hand, in the process of recovering low-purity oxygen, it is not necessary to strictly separate argon and oxygen. The descending liquid amount and the rising gas amount in the lower part of the tower can be reduced.
【0007】このため、米国特許第3210951号明
細書には、原料空気の一部と低圧塔底部の液化酸素とを
熱交換させ、該液化酸素を気化させて低圧塔の上昇ガス
を生成するとともに、高圧塔頂部の窒素ガスと低圧塔の
中部を流下する下降液とを熱交換させ、該下降液を気化
させることにより窒素ガスを液化し、この液化窒素を高
圧塔及び低圧塔の還流液として用いるプロセスが記載さ
れている。[0007] For this purpose, US Pat. No. 3,210,951 discloses that a part of the raw air is heat-exchanged with liquefied oxygen at the bottom of the low-pressure column, and the liquefied oxygen is vaporized to generate a rising gas in the low-pressure column. Heat exchange between the nitrogen gas at the top of the high-pressure column and the descending liquid flowing down the middle of the low-pressure column, and liquefying the nitrogen gas by vaporizing the descending liquid, and using this liquefied nitrogen as the reflux liquid of the high-pressure tower and the low-pressure tower The process used is described.
【0008】このプロセスは、低圧塔下部の上昇ガスと
下降液とを減少させることができるとともに、高圧塔頂
部の窒素ガスを、より低温の低圧塔中部を流下する下降
液で液化させるから、高圧塔の操作圧力を従来よりも低
く設定でき、原料空気圧縮機の動力が減少し、低コスト
で低純度酸素を製造することができる。しかし、原料空
気の一部を低圧塔底部の液化酸素との熱交換に用いるの
で、高圧塔を上昇するガスが減少し、主凝縮器で液化さ
れる液化窒素の量も減少するので、低圧塔上部への還流
液化窒素が不足し、製品酸素の回収率が低下する。In this process, the rising gas and the descending liquid at the lower part of the low pressure column can be reduced, and the nitrogen gas at the top of the high pressure column is liquefied with the descending liquid flowing down the lower part of the lower pressure column. The operating pressure of the column can be set lower than before, the power of the feed air compressor is reduced, and low-purity oxygen can be produced at low cost. However, since part of the feed air is used for heat exchange with liquefied oxygen at the bottom of the low-pressure column, the amount of gas rising in the high-pressure column decreases, and the amount of liquefied nitrogen liquefied in the main condenser also decreases. Insufficient reflux liquefied nitrogen to the top, reducing product oxygen recovery.
【0009】また、米国特許第5080703号明細書
には、還流液を増加する方法として、低圧塔頂部から抜
出した低圧窒素の一部を、循環サイクルを形成する循環
圧縮機で圧縮した後、高圧塔底部の酸素富化液化空気と
熱交換させて液化し、生成した液化窒素を低圧塔頂部に
導入して還流液とするプロセスが記載されている。In US Pat. No. 5,080,703, as a method of increasing the reflux liquid, a part of the low-pressure nitrogen extracted from the top of the low-pressure column is compressed by a circulating compressor forming a circulation cycle, and then the high-pressure nitrogen is compressed. A process is described in which liquefaction is performed by heat exchange with oxygen-enriched liquefied air at the bottom of the column, and liquefied nitrogen produced is introduced at the top of the low-pressure column to form a reflux liquid.
【0010】このプロセスは、低圧の窒素を圧縮して循
環するための圧縮動力が必要になるとともに、原料空気
の殆どを高圧塔に導入し、高圧塔の上昇ガスの全てを低
圧塔底部の液化酸素と熱交換させ、該液化酸素を気化さ
せることにより上昇ガスを液化して低圧塔頂部に導入す
るので、低圧塔下部における上昇ガス及び下降液の量を
減少させることができない。したがって、低純度酸素を
回収するプロセスでありながら、高圧塔での処理量が比
較的多くなり、生産コストがかかってしまうという問題
がある。This process requires compression power for compressing and circulating low-pressure nitrogen, introduces most of the feed air into the high-pressure column, and liquefies all of the ascending gas in the high-pressure column at the bottom of the low-pressure column. Since the ascending gas is liquefied by exchanging heat with oxygen to vaporize the liquefied oxygen and introduced into the top of the low-pressure column, the amounts of the ascending gas and descending liquid at the lower portion of the low-pressure column cannot be reduced. Therefore, there is a problem in that the processing amount in the high-pressure column is relatively large and the production cost is high even though the process is a process for recovering low-purity oxygen.
【0011】そこで本発明は、比較的高圧で蒸留を行う
ことにより低純度酸素を高圧で回収するにあたり、低圧
塔下部における上昇ガス量と下降液量とを減少させて高
圧塔での処理量を減少させ、かつ、高圧蒸留に必要な還
流液を増量して製品を高収率で回収することができ、生
産コストを低減できる低純度酸素の製造方法及び装置を
提供することを目的としている。In the present invention, therefore, in recovering low-purity oxygen at a high pressure by performing distillation at a relatively high pressure, the amount of ascending gas and the amount of descending liquid at the lower part of the low-pressure column are reduced to reduce the throughput in the high-pressure column. An object of the present invention is to provide a method and an apparatus for producing low-purity oxygen, which can reduce the amount of reflux liquid necessary for high-pressure distillation and recover the product in a high yield, thereby reducing the production cost.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するた
め、本発明の低純度酸素の製造方法は、原料空気を高圧
塔及び低圧塔を有する複式蒸留設備で低温蒸留すること
により、少なくとも低純度酸素を製品として分離回収す
る低純度酸素の製造方法において、原料空気を圧縮する
工程と、圧縮された原料空気を予冷する工程と、予冷し
た原料空気から水分や二酸化炭酸等の不純物を除去して
精製する工程と、精製した原料空気を低温蒸留で得られ
た流体との熱交換により冷却する工程と、冷却された原
料空気を前記高圧塔に導入して低温蒸留することにより
窒素富化流体と酸素富化流体とに分離する工程と、該高
圧塔で分離された窒素富化流体と酸素富化流体とを低圧
塔に導入して窒素と酸素とに分離する工程と、前記高圧
塔で分離された窒素富化流体の一部を抜出して原料空気
との熱交換により加熱する工程と、加熱された窒素富化
流体を昇圧する工程と、昇圧された窒素富化流体を低温
蒸留で得られた流体との熱交換により冷却する工程と、
冷却された窒素富化流体を断熱膨張させる工程と、断熱
膨張させた窒素富化流体を前記低圧塔の中部を流下する
下降液との熱交換により液化する工程と、液化した窒素
富化流体を前記低圧塔の還流液として供給する工程と、
前記低圧塔で分離した酸素及び窒素を抜出して原料空気
との熱交換により昇温して酸素ガス及び窒素ガスとして
回収する工程とを含むことを特徴としている。Means for Solving the Problems To achieve the above object, the method for producing low-purity oxygen of the present invention comprises at least low-purity oxygen by subjecting raw air to low-temperature distillation in a double distillation facility having a high-pressure column and a low-pressure column. In a method for producing low-purity oxygen in which oxygen is separated and recovered as a product, a step of compressing raw air, a step of pre-cooling the compressed raw air, and removing impurities such as moisture and carbon dioxide from the pre-cooled raw air. A step of purifying, a step of cooling the purified raw air by heat exchange with a fluid obtained by low-temperature distillation, and a nitrogen-enriched fluid by introducing the cooled raw air into the high-pressure column and performing low-temperature distillation. A step of separating the nitrogen-enriched fluid and the oxygen-enriched fluid separated in the high-pressure column into a low-pressure column to separate them into nitrogen and oxygen, Nitrogen A step of extracting a part of the pressurized fluid and heating it by heat exchange with the raw air, a step of pressurizing the heated nitrogen-enriched fluid, and a step of subjecting the pressurized nitrogen-enriched fluid to a fluid obtained by cryogenic distillation. Cooling by heat exchange;
Adiabatic expanding the cooled nitrogen-enriched fluid, liquefying the adiabatic expanded nitrogen-enriched fluid by heat exchange with a descending liquid flowing down the center of the low-pressure column, and liquefying the liquefied nitrogen-enriched fluid. Supplying as a reflux liquid of the low pressure column,
Extracting the oxygen and nitrogen separated in the low-pressure column, raising the temperature by heat exchange with raw material air, and recovering as oxygen gas and nitrogen gas.
【0013】さらに、本発明の低純度酸素の製造方法
は、前記回収した窒素ガスの少なくとも一部を昇圧する
工程と、昇圧された窒素ガスを低温蒸留で得られた流体
との熱交換により冷却する工程と、冷却された窒素ガス
を前記低圧塔の中部を流下する下降液との熱交換により
液化する工程と、液化した液化窒素を低圧塔の還流液と
して導入する工程とを含むことを特徴とし、加えて、前
記窒素富化流体の昇圧の少なくとも一部を、該窒素富化
流体の断熱膨張による仕事を利用して行うこと、前記原
料空気の少なくとも一部が、発電設備の空気圧縮機から
供給される圧縮空気であることを特徴としている。Further, in the method for producing low-purity oxygen of the present invention, the pressure of at least a part of the recovered nitrogen gas is increased, and the increased pressure of the nitrogen gas is cooled by heat exchange with a fluid obtained by low-temperature distillation. And liquefying the cooled nitrogen gas by heat exchange with a descending liquid flowing down the middle of the low-pressure column, and introducing the liquefied liquefied nitrogen as a reflux liquid of the low-pressure column. In addition, at least a part of the pressurization of the nitrogen-enriched fluid is performed by using work by adiabatic expansion of the nitrogen-enriched fluid, and at least a part of the raw material air is supplied to an air compressor of a power generation facility. It is characterized by being compressed air supplied from the company.
【0014】また、本発明の低純度酸素の製造装置は、
原料空気を低温蒸留することにより、少なくとも低純度
酸素を製品として分離回収する低純度酸素の製造装置に
おいて、原料空気を圧縮する原料空気圧縮機と、圧縮さ
れた原料空気を予冷する予冷設備と、予冷した原料空気
から水分や二酸化炭素等の不純物を除去して精製する精
製設備と、精製した原料空気を低温蒸留で得られた流体
と熱交換させる主熱交換器と、主熱交換器で冷却された
原料空気を低温蒸留して窒素と酸素に分離する高圧塔,
主凝縮器及び低圧塔からなる複式蒸留塔と、前記高圧塔
の上部から抜出されて前記主熱交換器で昇温した窒素ガ
スを昇圧する第一昇圧機と、第一昇圧機で昇圧されて前
記主熱交換器で冷却された窒素ガスを断熱膨張させる膨
張タービンと、膨張タービンで断熱膨張した窒素ガスを
前記低圧塔の中部を流下する下降液と熱交換させて液化
する凝縮蒸発器と、凝縮蒸発器で液化した液化窒素を前
記低圧塔上部に還流液として供給する経路と、前記低圧
塔で分離生成した窒素及び酸素を前記主熱交換器で温度
回復させて回収する窒素ガス回収経路及び酸素ガス回収
経路とを備えていることを特徴としている。Further, the apparatus for producing low-purity oxygen of the present invention comprises:
In a low-purity oxygen production apparatus that separates and recovers at least low-purity oxygen as a product by low-temperature distillation of the raw air, a raw air compressor that compresses the raw air, and a pre-cooling facility that pre-cools the compressed raw air, Purification equipment for purifying by removing impurities such as moisture and carbon dioxide from pre-cooled raw air, a main heat exchanger for exchanging the purified raw air with fluid obtained by low-temperature distillation, and cooling with the main heat exchanger High-pressure column that separates the separated feed air into nitrogen and oxygen by cryogenic distillation,
A double distillation column comprising a main condenser and a low-pressure column, a first booster that is withdrawn from the upper part of the high-pressure column and pressurizes the nitrogen gas that has been heated in the main heat exchanger, and is pressurized by the first pressurizer. An expansion turbine that adiabatically expands the nitrogen gas cooled by the main heat exchanger, and a condensing evaporator that liquefies the nitrogen gas adiabatically expanded by the expansion turbine with a descending liquid flowing down the middle of the low-pressure column. A path for supplying liquefied nitrogen liquefied by the condensing evaporator to the upper part of the low-pressure column as a reflux liquid, and a nitrogen gas recovery path for recovering the nitrogen and oxygen separated and generated in the low-pressure column by recovering the temperature in the main heat exchanger. And an oxygen gas recovery path.
【0015】さらに、本発明の低純度酸素の製造装置
は、前記凝縮蒸発器を、前記高圧塔底部から抜出されて
低圧塔に導入される酸素富化液化空気の導入位置より少
なくとも1理論段下に配設したこと、前記窒素ガス回収
経路に回収した窒素ガスの一部を昇圧する第二昇圧機
と、第二昇圧機で昇圧された窒素ガスを前記主熱交換器
を介して冷却した後、前記凝縮蒸発器に導入する経路と
を備えていること、前記原料空気圧縮機の原料空気導出
経路に、発電設備からの圧縮空気を導く圧縮空気導入経
路が接続されていること、前記高圧塔及び低圧塔の少な
くともいずれか一方が、充填式蒸留塔であることを特徴
としている。Further, in the apparatus for producing low-purity oxygen of the present invention, the condensing evaporator is connected to the low-pressure column at least one theoretical stage from the introduction position of the oxygen-enriched liquefied air extracted from the bottom of the high-pressure column and introduced into the low-pressure column. It was arranged below, and a second booster that boosts a part of the nitrogen gas recovered in the nitrogen gas recovery path, and cooled the nitrogen gas pressurized by the second booster via the main heat exchanger And a path for introducing compressed air from the power generation equipment to a source air outlet path of the source air compressor. At least one of the column and the low-pressure column is a packed distillation column.
【0016】[0016]
【発明の実施の形態】図1は、本発明の低純度酸素の製
造装置の一形態例を示す系統図である。この低純度酸素
製造装置Sは、主要な構成として、原料空気を圧縮する
原料空気圧縮機1と、圧縮後の原料空気を予冷する予冷
設備2と、予冷後の原料空気中に含まれている水分や二
酸化炭素等の不純物を除去して精製する精製設備3と、
精製した原料空気を低温蒸留で得られた流体で冷却する
主熱交換器4と、冷却された原料空気を窒素と酸素とに
分離する高圧塔5,主凝縮器6,低圧塔7からなる複式
蒸留塔8と、前記低圧塔7に導入する還流液を冷却する
過冷器9,10と、前記高圧塔5から導出して昇温した
後の窒素ガスを昇圧する第一昇圧機11と、昇圧された
窒素ガスを断熱膨張させる膨張タービン12と、断熱膨
張した窒素ガスを前記低圧塔7の中部を流下する下降液
と熱交換して液化する凝縮蒸発器13と、発電設備Gの
圧縮空気の一部を前記原料空気圧縮機1の原料空気導出
経路21に導入する圧縮空気導入経路22とを備えてい
る。FIG. 1 is a system diagram showing an example of an apparatus for producing low-purity oxygen according to the present invention. The low-purity oxygen production apparatus S includes, as main components, a raw air compressor 1 for compressing raw air, a precooling facility 2 for precooling raw air after compression, and a raw air after precooling. A purification facility 3 for purifying by removing impurities such as moisture and carbon dioxide;
A dual type comprising a main heat exchanger 4 for cooling purified raw material air with a fluid obtained by low-temperature distillation, a high-pressure column 5, a main condenser 6, and a low-pressure column 7 for separating the cooled raw material air into nitrogen and oxygen. A distillation column 8, a supercooler 9, 10 for cooling the reflux liquid introduced into the low-pressure column 7, a first booster 11 for raising the temperature of the nitrogen gas after the temperature is raised from the high-pressure column 5, and An expansion turbine 12 for adiabatically expanding the pressurized nitrogen gas, a condensing evaporator 13 for heat-exchanging the adiabatic expanded nitrogen gas with a descending liquid flowing down the center of the low-pressure column 7 to liquefy, and compressed air of the power generation equipment G And a compressed air introduction path 22 for introducing a part of the compressed air into a raw air outlet path 21 of the raw air compressor 1.
【0017】次に、このように構成された低純度酸素製
造装置Sに、前記原料空気圧縮機1と前記発電設備Gと
から略等量の原料空気を供給し、製品としての低純度酸
素を、その大部分をガス状で、一部を液状で製造するプ
ロセスに基づいて、本発明方法を説明する。Next, a substantially equal amount of raw air is supplied from the raw air compressor 1 and the power generation equipment G to the low-purity oxygen producing apparatus S configured as described above, and low-purity oxygen as a product is produced. The method of the present invention will be described on the basis of a process in which most of the process is gaseous and some of the process is liquid.
【0018】原料空気圧縮機1で12.533kgf/
cm2absに圧縮された51000Nm3/hの原料
空気と、同じ圧力で発電設備Gから圧縮空気導入経路2
2を介して導入される51500Nm3/hの圧縮空気
は、原料空気導出経路21で合流し、102500Nm
3/hの原料空気となって予冷設備2に導入される。予
冷設備2で所要の温度に冷却された原料空気は、精製設
備3で含有する水分や二酸化炭素等の不純物が吸着除去
されて精製された後、経路23を通って主熱交換器4に
導入され、複式蒸留塔8から導出される低温流体と熱交
換して略露点温度に冷却され、経路24から高圧塔5の
下部に導入される。12.533 kgf /
51000 Nm 3 / h of raw air compressed to 2 cm 2 abs and compressed air introduction path 2 from power generation equipment G at the same pressure
51500 Nm 3 / h compressed air introduced through the feed line 2 joins the raw air outlet path 21 and
3 / h of raw material air is introduced into the pre-cooling equipment 2. The raw material air cooled to a required temperature in the pre-cooling facility 2 is purified by adsorbing and removing impurities such as water and carbon dioxide contained in the refining facility 3, and then introduced into the main heat exchanger 4 through the passage 23. Then, the heat is exchanged with the low-temperature fluid derived from the double distillation column 8 to be cooled to substantially the dew point temperature, and then introduced into the lower part of the high-pressure column 5 through the path 24.
【0019】高圧塔5に導入された原料空気は、塔内を
上昇し、塔内を流下する下降液と気液接触することによ
り、塔上部の窒素ガスと塔底部の酸素富化液化空気とに
分離される。塔底部の経路25から抜出された7200
Nm3/hの酸素富化液化空気は、過冷器9で低温窒素
と熱交換して過冷状態に冷却され、経路26を通って弁
26aで3.7kgf/cm2absに減圧され、低圧
塔中部7bに還流液として導入される。The raw material air introduced into the high-pressure column 5 rises in the column and makes gas-liquid contact with a descending liquid flowing down in the column, so that nitrogen gas at the top of the column and oxygen-enriched liquefied air at the bottom of the column are brought into contact. Is separated into 7200 extracted from channel 25 at the bottom of the tower
The Nm 3 / h oxygen-enriched liquefied air is cooled to a supercooled state by exchanging heat with the low-temperature nitrogen in the subcooler 9, depressurized to 3.7 kgf / cm 2 abs by the valve 26 a through the passage 26, It is introduced as a reflux into the middle part 7b of the low pressure column.
【0020】一方、高圧塔5の上部に分離された窒素ガ
スの大部分は、経路27から主凝縮器6に導かれ、低圧
塔7の塔底の液化酸素と熱交換し、該液化酸素を気化し
て低圧塔7の上昇ガスを生成するとともに、自身は液化
して経路28に導出し、大部分は還流液として高圧塔5
の頂部に戻される。経路28から分岐して経路29に抜
出された残りの液化窒素7200Nm3/hは、過冷器
10で低温窒素と熱交換して過冷状態に冷却され、経路
30を通って弁30aで3.7kgf/cm2absに
減圧され、低圧塔7の頂部に還流液として導入される。On the other hand, most of the nitrogen gas separated at the upper part of the high-pressure column 5 is led to the main condenser 6 from the path 27 and exchanges heat with liquefied oxygen at the bottom of the low-pressure column 7 to convert the liquefied oxygen. The gas is vaporized to generate ascending gas in the low-pressure column 7, liquefied and led out to the passage 28, and most of the gas is circulated as a reflux liquid.
Returned to the top. The remaining liquefied nitrogen 7200 Nm 3 / h branched from the path 28 and extracted to the path 29 is exchanged with low-temperature nitrogen in the subcooler 10 and cooled to a supercooled state. The pressure is reduced to 3.7 kgf / cm 2 abs and introduced into the top of the low-pressure column 7 as a reflux liquid.
【0021】低圧塔7では、還流液と上昇ガスとが気液
接触して更に蒸留が行われ、塔頂部からは窒素が、塔下
部からは酸素が抜出される。低圧塔7の頂部から窒素ガ
ス回収経路を構成する経路31に抜出された窒素ガス8
0000Nm3/hは、過冷器10で前記高圧塔5上部
からの還流液化窒素を、さらに経路32を通って過冷器
9で高圧塔5底部からの酸素富化液化空気を順次冷却す
ることにより温度を高め、さらに経路33を通り、主熱
交換器4で前記原料空気を冷却することにより昇温し、
圧力3.5kgf/cm2abs,温度12℃で経路3
4から製品窒素ガスGNとして導出される。In the low-pressure column 7, the reflux liquid and the ascending gas are brought into gas-liquid contact for further distillation, and nitrogen is extracted from the top of the column and oxygen is extracted from the bottom of the column. The nitrogen gas 8 extracted from the top of the low-pressure column 7 to a path 31 constituting a nitrogen gas recovery path
0000 Nm 3 / h is to sequentially cool the refluxed liquefied nitrogen from the upper part of the high-pressure column 5 by the subcooler 10 and the oxygen-enriched liquefied air from the bottom of the high-pressure column 5 by the subcooler 9 through the passage 32. The temperature is raised by further cooling the raw material air in the main heat exchanger 4 through the path 33,
Path 3 at a pressure of 3.5 kgf / cm 2 abs and a temperature of 12 ° C
4 is derived as product nitrogen gas GN.
【0022】一方、低圧塔7の下部に分離した酸素の
内、21550Nm3/hの酸素ガスは、酸素ガス回収
経路を構成する経路35に抜出され、主熱交換器4で原
料空気を冷却することにより昇温し、圧力3.6kgf
/cm2abs,温度12℃で経路36から純度95%
の製品酸素ガスGOとして導出される。また同時に、8
00Nm3/hの液化酸素が経路37から製品液化酸素
LOとして導出される。On the other hand, of the oxygen separated at the lower part of the low-pressure column 7, 21550 Nm 3 / h of oxygen gas is extracted to a path 35 constituting an oxygen gas recovery path, and the raw air is cooled by the main heat exchanger 4. And the pressure is increased to 3.6 kgf
/ Cm 2 abs, 95% purity from path 36 at 12 ° C
Of the product oxygen gas GO. At the same time, 8
Liquefied oxygen of 00 Nm 3 / h is led out of the passage 37 as product liquefied oxygen LO.
【0023】前記高圧塔5の頂部に分離された窒素ガス
の一部33000Nm3/hは、経路27から分岐して
経路40に抜出され、主熱交換器4で原料空気を冷却す
ることにより12℃に昇温し、経路41から第一昇圧機
11に導入され、13.3kgf/cm2absに昇圧
される。昇圧された窒素ガスは、経路42を通り冷却器
11aで冷却され、さらに経路43を通って主熱交換器
4で低温流体と熱交換して中間温度に冷却された後、経
路44から膨張タービン12に導入される。A portion of 33,000 Nm 3 / h of the nitrogen gas separated at the top of the high-pressure column 5 branches off from the path 27 and is withdrawn to the path 40, and is cooled by the main heat exchanger 4 to cool the raw air. The temperature is increased to 12 ° C., introduced into the first booster 11 through the path 41, and increased to 13.3 kgf / cm 2 abs. The pressurized nitrogen gas is cooled by the cooler 11a through the passage 42 and further cooled by the main heat exchanger 4 with the low-temperature fluid through the passage 43 to an intermediate temperature. 12 is introduced.
【0024】膨張タービン12に導入された昇圧窒素ガ
スは、断熱膨張により降温・降圧されてプロセスに必要
な寒冷を発生し、経路45を通って低圧塔中部7bに設
けられた凝縮蒸発器13に導かれ、低圧塔7内を流下す
る下降液を気化させるとともに、自身は液化して液化窒
素となり経路46を通り、過冷器10で過冷状態に冷却
され、経路47を通り、弁47aで3.7kgf/cm
2absに減圧されて前記高圧塔5からの還流液化窒素
の経路30に合流し、低圧塔7の頂部に導入される。な
お、前記膨張タービン12を導出する膨張窒素ガスの圧
力は、凝縮蒸発器13における下降液の沸点温度と、該
膨張窒素ガスの液化温度との温度差が所定の温度になる
ように設定される。The pressurized nitrogen gas introduced into the expansion turbine 12 is cooled down and cooled by adiabatic expansion to generate refrigeration necessary for the process, and passes through a path 45 to a condensing evaporator 13 provided in the low pressure column middle part 7b. While being guided and vaporizing the descending liquid flowing down in the low-pressure column 7, the liquid itself liquefies and becomes liquefied nitrogen, passes through the path 46, is cooled to a supercooled state by the supercooler 10, passes through the path 47, and passes through the valve 47a. 3.7kgf / cm
The pressure is reduced to 2 abs and merges with the reflux liquefied nitrogen path 30 from the high pressure column 5, and is introduced to the top of the low pressure column 7. The pressure of the expanded nitrogen gas flowing out of the expansion turbine 12 is set so that the temperature difference between the boiling point temperature of the descending liquid in the condensing evaporator 13 and the liquefaction temperature of the expanded nitrogen gas becomes a predetermined temperature. .
【0025】本形態例に示すように、高圧塔5上部の窒
素ガスを導出して昇圧・膨張させ、膨張後の窒素ガスと
低圧塔7内を流下する下降液とを凝縮蒸発器13で熱交
換させ、下降液を気化するとともに膨張窒素ガスを液化
して低圧塔頂部に還流液として導入するから、主凝縮器
6における負荷が軽減し、該主凝縮器6で気化して上昇
する低圧塔下部7aにおける上昇ガス量を減少すること
ができるとともに、低圧塔7を流下する下降液を凝縮蒸
発器13で気化した分、低圧塔下部7aにおける下降液
量も低減することができ、低純度酸素プロセスに対応し
て消費動力を低減することができる。また、製品がさら
に高圧で使用される場合には、従来よりも高い圧力から
圧縮するため、圧縮比が小さくて済み、製品を圧縮する
ための圧縮動力費が軽減できる。As shown in the present embodiment, the nitrogen gas in the upper part of the high-pressure column 5 is led out, pressurized and expanded, and the expanded nitrogen gas and the descending liquid flowing down in the low-pressure column 7 are heated by the condensation evaporator 13. It is exchanged, the descending liquid is vaporized, and the expanded nitrogen gas is liquefied and introduced as a reflux liquid at the top of the low-pressure column. Therefore, the load on the main condenser 6 is reduced, and the low-pressure column which vaporizes and rises in the main condenser 6 The amount of rising gas in the lower part 7a can be reduced, and the amount of descending liquid in the lower part 7a of the low-pressure tower can be reduced by the amount of the descending liquid flowing down the low-pressure tower 7 vaporized by the condensing evaporator 13. Power consumption can be reduced corresponding to the process. Further, when the product is used at a higher pressure, the product is compressed from a higher pressure than before, so that the compression ratio can be reduced, and the cost of compressing power for compressing the product can be reduced.
【0026】また、凝縮蒸発器13で低圧塔7内の下降
液を気化して上昇ガスを生成し、低圧塔中部7b及び低
圧塔上部7cの上昇ガスを増加することができるととも
に、凝縮蒸発器13内で液化した液化窒素を、高圧塔5
からの液化窒素に加えて低圧塔頂部に導入することによ
り、低圧塔上部7cの下降液も増量できるから、高圧蒸
留であっても窒素と酸素との分離効果を低下させること
なく、収率良く製品を得ることができ、生産コストを低
減することができる。The condensing evaporator 13 vaporizes the descending liquid in the low-pressure column 7 to generate a rising gas, thereby increasing the rising gas in the low-pressure column middle portion 7b and the low-pressure column upper portion 7c. The liquefied nitrogen liquefied in the high pressure column 5
By introducing to the top of the low-pressure column in addition to the liquefied nitrogen from the above, the descending liquid in the upper portion 7c of the low-pressure column can also be increased, so that even in the high-pressure distillation, the effect of separating nitrogen and oxygen is reduced, and the yield is high. Products can be obtained, and production costs can be reduced.
【0027】そして、第一昇圧機11と膨張タービン1
2とを、図示を省略した軸により連結し、膨張タービン
12での昇圧窒素ガスの膨張による仕事を、第一昇圧機
11の窒素の昇圧動力に利用することにより動力消費を
低減することができる。The first booster 11 and the expansion turbine 1
2 is connected by a shaft (not shown), and the power consumption can be reduced by utilizing the work by the expansion of the pressurized nitrogen gas in the expansion turbine 12 as the pressurizing power of the nitrogen in the first pressurizer 11. .
【0028】さらに、本形態例のように、原料空気の一
部として発電設備Gから高圧の圧縮空気が供給される場
合は、原料空気の圧縮動力費が低減できるとともに、圧
縮空気の持つ高圧力を有効に利用して高圧蒸留を行い、
製品を高圧で取出して直接使用先に供給することができ
るから、製品送出用の圧縮手段が不要となり、設備費や
圧縮動力費を低減できる。また、発電設備Gからの圧縮
空気供給量を、発電設備の負荷に応じて、例えば、夜間
に余剰となる圧縮空気を余剰分に応じて供給するように
すれば、圧縮空気がさらに有効利用できるから、電力の
平準化が図れるとともに、低純度酸素の製造コストをさ
らに低減することができる。Further, when high-pressure compressed air is supplied from the power generation equipment G as a part of the raw air as in the present embodiment, the power cost for compressing the raw air can be reduced and the high pressure of the compressed air can be reduced. Is effectively used to perform high-pressure distillation,
Since the product can be taken out at a high pressure and supplied directly to the use destination, there is no need for a compression means for delivering the product, and the equipment cost and the compression power cost can be reduced. Further, if the amount of compressed air supplied from the power generation equipment G is supplied according to the load of the power generation equipment, for example, the excess compressed air at night is supplied according to the surplus, the compressed air can be further effectively used. Therefore, the power can be leveled and the production cost of low-purity oxygen can be further reduced.
【0029】そして、凝縮蒸発器13を、高圧塔5から
経路26を経て低圧塔中部7bに導入される液化空気の
導入位置より少なくとも1理論段下に配設することによ
り、低圧塔上部7cを流下する下降液に加え、高圧塔5
底部から導入された酸素富化液化空気も凝縮蒸発器13
で膨張窒素ガスと熱交換させることができ、下降液を気
化して低圧塔中部7b,上部7cの上昇ガスを増加さ
せ、低圧塔下部7aの下降液を減少させるとともに、凝
縮蒸発器13内で液化された液化窒素を還流液として低
圧塔7の頂部に導入し、低圧塔上部7cの下降液を増加
させるという凝縮蒸発器13の機能を十分に発揮するこ
とができる。Then, the condensing evaporator 13 is disposed at least one theoretical stage below the introduction position of the liquefied air introduced from the high-pressure column 5 through the path 26 into the low-pressure column central portion 7b, thereby lowering the low-pressure column upper portion 7c. In addition to the descending liquid flowing down, the high pressure tower 5
The oxygen-enriched liquefied air introduced from the bottom is
Can exchange heat with the expanded nitrogen gas, evaporating the descending liquid to increase the ascending gas in the low-pressure column middle part 7b and the upper part 7c, decrease the descending liquid in the low-pressure tower lower part 7a, and reduce The liquefied liquefied nitrogen is introduced into the top of the low-pressure column 7 as a reflux liquid, and the function of the condensing evaporator 13 to increase the descending liquid in the upper portion 7c of the low-pressure column 7 can be sufficiently exhibited.
【0030】また、高圧塔5又は低圧塔7若しくはその
両方を、シーブトレイより圧力損失が小さい充填物を用
いた充填式蒸留塔とすることにより、原料空気の供給圧
力が同じ場合において、シーブトレイを用いた場合より
更に高い圧力で製品を回収することができる。Further, the high pressure column 5 and / or the low pressure column 7 may be a packed distillation column using a packing having a smaller pressure loss than the sieve tray, so that the sieve tray is used when the feed pressure of the raw material air is the same. The product can be recovered at a higher pressure than if it had been.
【0031】また、液製品の割合を多くしようとする場
合、膨張タービン12で発生した動力で第1昇圧機11
の圧縮動力の全てを賄うとすれば、膨張タービン12の
処理量は、製品液増量に相当する量となり、凝縮蒸発器
13に過剰の窒素が導入され、製品酸素の回収率が低下
する。すなわち、液製品の割合を増加させるためには、
寒冷発生量を増加する必要がありその手段としては、膨
張タービン12の処理量を増加するか、又は、量を一定
として膨張前の圧力を高くすることの二通りがある。処
理量を増加すると凝縮蒸発器13に導入される窒素流量
が増加するため、低圧塔下部7aの下降液と上昇ガスと
はさらに減少し、この減少量が多すぎると低圧塔下部7
aでの蒸留効果が悪化し、回収率が低下することにな
る。When the ratio of the liquid product is to be increased, the first booster 11
Assuming that all of the compression power is supplied, the processing amount of the expansion turbine 12 becomes an amount corresponding to the increase in the product liquid, excessive nitrogen is introduced into the condensing evaporator 13, and the recovery rate of the product oxygen decreases. That is, in order to increase the ratio of liquid products,
It is necessary to increase the amount of cold generation, and there are two means for increasing the amount of processing of the expansion turbine 12 or increasing the pressure before expansion by keeping the amount constant. When the throughput is increased, the flow rate of nitrogen introduced into the condensing evaporator 13 is increased, so that the descending liquid and the rising gas in the lower part 7a of the low pressure column are further reduced.
The distillation effect in a is deteriorated, and the recovery rate is reduced.
【0032】したがって、液製品の割合を増加させる場
合は、膨張タービン12での膨張仕事を第一昇圧機11
の圧縮動力の一部に利用し、残りの圧縮動力を外部から
供給することによって昇圧圧力を高くし、膨張タービン
12の処理量を所望量に維持しながら寒冷量を増大させ
ることができるから、回収率を低下させることなく、液
製品の採取割合を大きくすることができる。Therefore, when increasing the ratio of the liquid product, the expansion work in the expansion turbine 12 is performed by the first booster 11.
It is possible to use a part of the compression power and increase the boost pressure by supplying the remaining compression power from the outside and increase the amount of cooling while maintaining the processing amount of the expansion turbine 12 at a desired amount. The liquid product collection ratio can be increased without lowering the recovery rate.
【0033】また、前記形態例で示した圧力より更に高
い圧力で原料空気が供給される場合は、図1に破線で示
したように、低圧塔7から抜出されて主熱交換器4から
経路34に導出された製品窒素ガスの一部を循環させて
低圧塔7の還流液として再利用する経路を設けることに
より対処することができる。When the raw material air is supplied at a pressure higher than the pressure shown in the embodiment, as shown by a broken line in FIG. This can be dealt with by providing a path for circulating a part of the product nitrogen gas led to the path 34 and reusing it as the reflux liquid of the low-pressure column 7.
【0034】すなわち、低圧塔7の頂部から経路31に
抜出され、過冷器10,経路32,過冷器9,経路3
3,主熱交換器4を通り、寒冷が回収されて経路34に
導出される窒素ガスの少なくとも一部は、経路50に分
岐して第二昇圧機51に導入され、所定圧力に昇圧され
る。この昇圧窒素ガスは、冷却器51aで冷却されて経
路52から主熱交換器4に導入され、低温流体により沸
点近くまで冷却された後、経路53を通り、前記膨張タ
ービン12で膨張した窒素ガスの経路45に合流する。
合流した窒素ガスは、低圧塔中部7bに設けられた凝縮
蒸発器13に導かれ、低圧塔7内を流下する下降液を気
化させるとともに、自身は液化して液化窒素となり、経
路46を通って過冷器10で過冷状態に冷却され、経路
47を通って弁47aで減圧され、高圧塔5からの還流
液化窒素経路30に合流して低圧塔7の頂部に導入され
る。これにより、低圧塔7頂部に導入する還流液化窒素
の量を増加させることができる。That is, it is extracted from the top of the low-pressure tower 7 to the path 31, and the subcooler 10, the path 32, the subcooler 9, and the path 3
3. At least a portion of the nitrogen gas, which has passed through the main heat exchanger 4 and whose cold has been collected and is led out to the path 34, branches off to the path 50, is introduced into the second booster 51, and is pressurized to a predetermined pressure. . The pressurized nitrogen gas is cooled by the cooler 51a, introduced into the main heat exchanger 4 from the path 52, cooled to near the boiling point by the low-temperature fluid, passed through the path 53, and expanded by the expansion turbine 12 in the expansion turbine 12. To the route 45.
The combined nitrogen gas is led to the condensing evaporator 13 provided in the low-pressure column middle part 7b, and vaporizes the descending liquid flowing down in the low-pressure column 7 and liquefies itself as liquefied nitrogen, and passes through the path 46. It is cooled to a supercooled state by the subcooler 10, depressurized by the valve 47 a through the path 47, merges with the reflux liquefied nitrogen path 30 from the high-pressure column 5, and is introduced into the top of the low-pressure column 7. Thereby, the amount of reflux liquefied nitrogen introduced to the top of the low-pressure column 7 can be increased.
【0035】このように、より圧力の高い高圧蒸留であ
っても、高圧蒸留における比揮発度の低下に伴って不足
する還流液を補充することができるから、収率を低下さ
せることなく製品を得ることができる。さらに、本プロ
セスは、窒素又は低純度酸素を液製品として回収する場
合に特に有効である。As described above, even in the case of high-pressure distillation at a higher pressure, the insufficient reflux liquid can be replenished with the decrease in the specific volatility in the high-pressure distillation, so that the product can be produced without lowering the yield. Obtainable. Further, the process is particularly effective when recovering nitrogen or low purity oxygen as a liquid product.
【0036】[0036]
【発明の効果】以上説明したように、本発明の低純度酸
素の製造方法及び装置によれば、高圧での蒸留操作にお
いても低圧塔上部乃至中部における窒素と酸素との分離
効果を損なうことがないので、収率を低下させることな
く圧力の高い製品を得ることができる。As described above, according to the method and apparatus for producing low-purity oxygen of the present invention, the effect of separating nitrogen and oxygen in the upper to middle parts of the low-pressure column is impaired even in a high-pressure distillation operation. As a result, a product with high pressure can be obtained without lowering the yield.
【図1】 本発明の低純度酸素の製造装置の一形態例を
示す系統図である。FIG. 1 is a system diagram showing one embodiment of an apparatus for producing low-purity oxygen of the present invention.
1…原料空気圧縮機、2…予冷設備、3…精製設備、4
…主熱交換器、5…高圧塔、6…主凝縮器、7…低圧
塔、8…複式蒸留塔、9,10…過冷器、11…第一昇
圧機、12…膨張タービン、13…凝縮蒸発器、51…
第二昇圧機1 ... raw material air compressor, 2 ... pre-cooling equipment, 3 ... refining equipment, 4
... Main heat exchanger, 5 ... High pressure tower, 6 ... Main condenser, 7 ... Low pressure tower, 8 ... Double distillation tower, 9,10 ... Supercooler, 11 ... First pressurizer, 12 ... Expansion turbine, 13 ... Condensation evaporator, 51 ...
Second booster
Claims (9)
式蒸留設備で低温蒸留することにより、少なくとも低純
度酸素を製品として分離回収する低純度酸素の製造方法
において、原料空気を圧縮する工程と、圧縮された原料
空気を予冷する工程と、予冷した原料空気から水分や二
酸化炭酸等の不純物を除去して精製する工程と、精製し
た原料空気を低温蒸留で得られた流体との熱交換により
冷却する工程と、冷却された原料空気を前記高圧塔に導
入して低温蒸留することにより窒素富化流体と酸素富化
流体とに分離する工程と、該高圧塔で分離された窒素富
化流体と酸素富化流体とを低圧塔に導入して窒素と酸素
とに分離する工程と、前記高圧塔で分離された窒素富化
流体の一部を抜出して原料空気との熱交換により加熱す
る工程と、加熱された窒素富化流体を昇圧する工程と、
昇圧された窒素富化流体を低温蒸留で得られた流体との
熱交換により冷却する工程と、冷却された窒素富化流体
を断熱膨張させる工程と、断熱膨張させた窒素富化流体
を前記低圧塔の中部を流下する下降液との熱交換により
液化する工程と、液化した窒素富化流体を前記低圧塔の
還流液として供給する工程と、前記低圧塔で分離した酸
素及び窒素を抜出して原料空気との熱交換により昇温し
て酸素ガス及び窒素ガスとして回収する工程とを含むこ
とを特徴とする低純度酸素の製造方法。1. A method for producing low-purity oxygen, comprising separating and recovering at least low-purity oxygen as a product by subjecting raw air to low-temperature distillation in a double distillation apparatus having a high-pressure tower and a low-pressure tower, wherein the raw air is compressed. Pre-cooling the compressed raw air, purifying the pre-cooled raw air by removing impurities such as moisture and carbon dioxide, and heat-exchanging the purified raw air with a fluid obtained by low-temperature distillation. A step of cooling, a step of introducing the cooled raw material air into the high-pressure column and performing low-temperature distillation to separate it into a nitrogen-enriched fluid and an oxygen-enriched fluid, and the nitrogen-enriched fluid separated in the high-pressure column. Introducing oxygen and an oxygen-enriched fluid into a low-pressure column to separate them into nitrogen and oxygen; and extracting a portion of the nitrogen-enriched fluid separated by the high-pressure column and heating by exchanging heat with raw air. And is heated Pressurizing the nitrogen-enriched fluid,
Cooling the pressurized nitrogen-enriched fluid by heat exchange with the fluid obtained by low-temperature distillation; adiabatic expansion of the cooled nitrogen-enriched fluid; A step of liquefying by heat exchange with a descending liquid flowing down the center of the column, a step of supplying a liquefied nitrogen-enriched fluid as a reflux liquid of the low-pressure column, and extracting oxygen and nitrogen separated in the low-pressure column to obtain a raw material Recovering oxygen gas and nitrogen gas by raising the temperature by heat exchange with air.
を昇圧する工程と、昇圧された窒素ガスを低温蒸留で得
られた流体との熱交換により冷却する工程と、冷却され
た窒素ガスを前記低圧塔の中部を流下する下降液との熱
交換により液化する工程と、液化した液化窒素を低圧塔
の還流液として導入する工程とを含むことを特徴とする
請求項1記載の低純度酸素の製造方法。2. A step of increasing the pressure of at least a part of the recovered nitrogen gas; a step of cooling the increased pressure of the nitrogen gas by heat exchange with a fluid obtained by low-temperature distillation; The method according to claim 1, further comprising the steps of: liquefying by heat exchange with a descending liquid flowing down the center of the low pressure column; and introducing the liquefied liquefied nitrogen as a reflux liquid of the low pressure column. Production method.
その一部を該窒素富化流体の断熱膨張による仕事を利用
して行われることを特徴とする請求項1記載の低純度酸
素の製造方法。3. The production of low-purity oxygen according to claim 1, wherein the pressurization of the nitrogen-enriched fluid is performed at least in part by utilizing the work of adiabatic expansion of the nitrogen-enriched fluid. Method.
設備の空気圧縮機から供給される圧縮空気であることを
特徴とする請求項1記載の低純度酸素の製造方法。4. The method for producing low-purity oxygen according to claim 1, wherein at least a part of the raw air is compressed air supplied from an air compressor of a power generation facility.
なくとも低純度酸素を製品として分離回収する低純度酸
素の製造装置において、原料空気を圧縮する原料空気圧
縮機と、圧縮された原料空気を予冷する予冷設備と、予
冷した原料空気から水分や二酸化炭素等の不純物を除去
して精製する精製設備と、精製した原料空気を低温蒸留
で得られた流体と熱交換させる主熱交換器と、主熱交換
器で冷却された原料空気を低温蒸留して窒素と酸素に分
離する高圧塔,主凝縮器及び低圧塔からなる複式蒸留塔
と、前記高圧塔の上部から抜出されて前記主熱交換器で
昇温した窒素ガスを昇圧する第一昇圧機と、第一昇圧機
で昇圧されて前記主熱交換器で冷却された窒素ガスを断
熱膨張させる膨張タービンと、膨張タービンで断熱膨張
した窒素ガスを前記低圧塔の中部を流下する下降液と熱
交換させて液化する凝縮蒸発器と、凝縮蒸発器で液化し
た液化窒素を前記低圧塔上部に還流液として供給する経
路と、前記低圧塔で分離生成した窒素及び酸素を前記主
熱交換器で温度回復させて回収する窒素ガス回収経路及
び酸素ガス回収経路とを備えていることを特徴とする低
純度酸素の製造装置。5. A low-purity oxygen producing apparatus for separating and recovering at least low-purity oxygen as a product by low-temperature distillation of raw air, wherein a raw air compressor for compressing the raw air and a pre-cooled compressed air for the raw air are provided. A pre-cooling facility, a purification facility for removing impurities such as moisture and carbon dioxide from the pre-cooled feed air, and a main heat exchanger for heat-exchanging the purified feed air with a fluid obtained by low-temperature distillation. A double distillation column comprising a high-pressure column, a main condenser and a low-pressure column for low-temperature distillation of the raw material air cooled by the heat exchanger to separate it into nitrogen and oxygen; A first booster that pressurizes the nitrogen gas heated by the heat exchanger, an expansion turbine that adiabatically expands the nitrogen gas that is pressurized by the first booster and cooled by the main heat exchanger, and nitrogen that is adiabatically expanded by the expansion turbine Gas A condensation evaporator that liquefies by exchanging heat with the descending liquid flowing down the center of the low pressure column, a path for supplying liquefied nitrogen liquefied by the condensation evaporator to the upper part of the low pressure column as a reflux liquid, and a separation and generation by the low pressure column An apparatus for producing low-purity oxygen, comprising: a nitrogen gas recovery path and an oxygen gas recovery path for recovering nitrogen and oxygen by recovering the temperature in the main heat exchanger.
抜出されて低圧塔に導入される酸素富化液化空気の導入
位置より少なくとも1理論段下に配設されていることを
特徴とする請求項5記載の低純度酸素の製造装置。6. The condensing evaporator is disposed at least one theoretical stage below an introduction position of oxygen-enriched liquefied air that is extracted from the bottom of the high-pressure column and introduced into the low-pressure column. The apparatus for producing low-purity oxygen according to claim 5.
スの一部を昇圧する第二昇圧機と、第二昇圧機で昇圧さ
れた窒素ガスを前記主熱交換器を介して冷却した後、前
記凝縮蒸発器に導入する経路とを備えていることを特徴
とする請求項5記載の低純度酸素の製造装置。7. A second pressurizer for pressurizing a part of the nitrogen gas recovered in the nitrogen gas recovery path, and after cooling the nitrogen gas pressurized by the second booster through the main heat exchanger, 6. The apparatus for producing low-purity oxygen according to claim 5, further comprising a path for introducing into the condensing evaporator.
に、発電設備からの圧縮空気を導く圧縮空気導入経路が
接続されていることを特徴とする請求項5記載の低純度
酸素の製造装置。8. The apparatus for producing low-purity oxygen according to claim 5, wherein a compressed air introduction path for guiding compressed air from a power generation facility is connected to a raw air outlet path of the raw air compressor. .
れか一方が、充填式蒸留塔であることを特徴とする請求
項5記載の低純度酸素の製造装置。9. The apparatus for producing low-purity oxygen according to claim 5, wherein at least one of the high-pressure column and the low-pressure column is a packed distillation column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21876497A JP3748677B2 (en) | 1997-08-13 | 1997-08-13 | Method and apparatus for producing low purity oxygen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21876497A JP3748677B2 (en) | 1997-08-13 | 1997-08-13 | Method and apparatus for producing low purity oxygen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1163812A true JPH1163812A (en) | 1999-03-05 |
JP3748677B2 JP3748677B2 (en) | 2006-02-22 |
Family
ID=16725040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21876497A Expired - Fee Related JP3748677B2 (en) | 1997-08-13 | 1997-08-13 | Method and apparatus for producing low purity oxygen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3748677B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003028568A (en) * | 2001-07-17 | 2003-01-29 | Nippon Sanso Corp | Method and apparatus for separating air |
CN100424451C (en) * | 2006-05-15 | 2008-10-08 | 白杨 | Super low pressure low temperature method for separating air and making oxygen |
CN100443838C (en) * | 2005-04-20 | 2008-12-17 | 苏州市兴鲁空分设备科技发展有限公司 | Method and equipment for separating stream backed expansion air |
JP2016008778A (en) * | 2014-06-24 | 2016-01-18 | 大陽日酸株式会社 | Air separation method and air separation device |
CN108106327A (en) * | 2018-01-12 | 2018-06-01 | 杭州特盈能源技术发展有限公司 | A kind of oxygen-enriched device for making of low-purity and method |
-
1997
- 1997-08-13 JP JP21876497A patent/JP3748677B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003028568A (en) * | 2001-07-17 | 2003-01-29 | Nippon Sanso Corp | Method and apparatus for separating air |
JP4520667B2 (en) * | 2001-07-17 | 2010-08-11 | 大陽日酸株式会社 | Air separation method and apparatus |
CN100443838C (en) * | 2005-04-20 | 2008-12-17 | 苏州市兴鲁空分设备科技发展有限公司 | Method and equipment for separating stream backed expansion air |
CN100424451C (en) * | 2006-05-15 | 2008-10-08 | 白杨 | Super low pressure low temperature method for separating air and making oxygen |
JP2016008778A (en) * | 2014-06-24 | 2016-01-18 | 大陽日酸株式会社 | Air separation method and air separation device |
CN108106327A (en) * | 2018-01-12 | 2018-06-01 | 杭州特盈能源技术发展有限公司 | A kind of oxygen-enriched device for making of low-purity and method |
CN108106327B (en) * | 2018-01-12 | 2023-10-17 | 杭州特盈能源技术发展有限公司 | Low-purity oxygen-enriched preparation device and method |
Also Published As
Publication number | Publication date |
---|---|
JP3748677B2 (en) | 2006-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110307694B (en) | Nitrogen production method and nitrogen production apparatus | |
JP2875206B2 (en) | High purity nitrogen production apparatus and method | |
JPH0447234B2 (en) | ||
JPH06207775A (en) | Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide | |
JP6092804B2 (en) | Air liquefaction separation method and apparatus | |
JP3737611B2 (en) | Method and apparatus for producing low purity oxygen | |
JPH07151458A (en) | Method and equipment for preparing gaseous oxygen and/or nitrogen under pressure | |
JPH0933166A (en) | Method and apparatus for producing ultrahigh-purity nitrogen | |
JP3748677B2 (en) | Method and apparatus for producing low purity oxygen | |
JP4230213B2 (en) | Air liquefaction separation apparatus and method | |
JP3181546B2 (en) | Method and apparatus for producing nitrogen and argon from air | |
JP4177507B2 (en) | Method and apparatus for producing low purity oxygen | |
JP3737612B2 (en) | Method and apparatus for producing low purity oxygen | |
JP4577977B2 (en) | Air liquefaction separation method and apparatus | |
JPH11132652A (en) | Method and device for manufacturing low-purity oxygen | |
JP3703943B2 (en) | Method and apparatus for producing low purity oxygen | |
JP2001336876A (en) | Method and system for producing nitrogen | |
JP2000130928A (en) | Method and apparatus for manufacturing oxygen | |
JP2000018813A (en) | Method and device for producing nitrogen | |
JPH11325716A (en) | Separation of air | |
JPH11118352A (en) | Manufacture of low purity oxygen, and its device | |
JPS61276680A (en) | Method of liquefying and separating air | |
JP2007510879A (en) | Method and apparatus for separating air by cryogenic distillation | |
JP3667889B2 (en) | Nitrogen production method and apparatus | |
JPH11325721A (en) | Manufacture of nitrogen and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051129 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131209 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |