JPH1160917A - Biodegradable resin composition and its production - Google Patents
Biodegradable resin composition and its productionInfo
- Publication number
- JPH1160917A JPH1160917A JP22810997A JP22810997A JPH1160917A JP H1160917 A JPH1160917 A JP H1160917A JP 22810997 A JP22810997 A JP 22810997A JP 22810997 A JP22810997 A JP 22810997A JP H1160917 A JPH1160917 A JP H1160917A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- aliphatic polyester
- biodegradable resin
- acid
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、優れた成形性、機
械的性能を有し、薬品、化粧品、食品及び産業資材・機
械類の包装部材、機械部品、繊維、モノフィラメント及
び衣料などとして使用される生分解性に優れる樹脂組成
物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent moldability and mechanical performance, and is used as a packaging member, a machine part, a fiber, a monofilament, a garment, etc. of medicines, cosmetics, food and industrial materials and machinery. And a resin composition having excellent biodegradability.
【0002】[0002]
【従来の技術】従来、数多くのプラスチックスが包装材
料、衣料、繊維、モノフィラメント、及び工業機械部品
用の成形材料として各種の産業分野において利用されて
いる。同時に、環境保護の立場から、プラスチックの再
利用が叫ばれるとともに、再利用が不可能な利用分野に
おいて、微生物の働き、または加水分解等により分解す
る生分解性樹脂の利用が社会的に強く要請されてきてい
る。2. Description of the Related Art Conventionally, many plastics are used in various industrial fields as molding materials for packaging materials, clothing, fibers, monofilaments, and industrial machine parts. At the same time, from the standpoint of environmental protection, the recycling of plastic is called out, and the use of biodegradable resins that degrade by the action of microorganisms or hydrolysis is strongly demanded in applications where recycling is not possible. Have been.
【0003】脂肪族ポリエステルは、化学合成や微生物
による発酵法により製造される。脂肪族ポリエステル
は、一般的に、加水分解性や自然界に広く分布している
微生物の働きによる生分解性を示し、かつ熱可塑性であ
ることから、既存の成形法による各種用途への利用が積
極的に検討されつつある。しかしながら、多くの脂肪族
ポリエステル、特に微生物産生によるポリヒドロキシア
ルカン酸は、融点と分解開始温度が近く、さらに溶融状
態での熱安定性が不足するため成形が困難である。更に
は、微生物産生によるポリヒドロキシアルカン酸は、主
に3−ヒドロキシ酪酸をその構成成分として含むが、3
−ヒドロキシ酪酸モル比が高くなるに従い、得られた成
型品は硬くて脆くなり、3−ヒドロキシ酪酸モル比10
0%の場合、その成型品の伸び率は約1%と極めて小さ
い。そのため従来からトリアセチンなどの可塑剤を添加
することによる改質が試みられている。しかし、例え
ば、トリアセチンをポリ−3−ヒドロキシ酪酸に10重
量%を添加した場合、融点は約10℃低下して分解開始
温度との温度差が大きくなり、成形加工が行い易くなる
ものの、得られた成型品の伸び率は約2%であり、効果
は不十分である。また、トリアセチンは高温での蒸発量
が比較的高いため、成形加工中に発生したガスが成形物
にしばしば悪影響を及ぼすことがある。最近では、高温
での蒸発量が少ないアセチルクエン酸トリブチルの使用
が提案されているが、成型品の伸び率はトリアセチンを
使用したときと変わらず、その効果は不十分である。[0003] Aliphatic polyesters are produced by chemical synthesis or microbial fermentation. Aliphatic polyesters generally exhibit hydrolytic properties and biodegradability due to the action of microorganisms widely distributed in nature, and are thermoplastic, so they are actively used for various applications by existing molding methods. Is being considered. However, many aliphatic polyesters, especially polyhydroxyalkanoic acids produced by microorganisms, have melting points and decomposition onset temperatures close to each other, and furthermore have insufficient thermal stability in a molten state, so that molding is difficult. Furthermore, polyhydroxyalkanoic acids produced by microorganisms mainly contain 3-hydroxybutyric acid as a component,
As the molar ratio of -hydroxybutyric acid increases, the resulting molded article becomes hard and brittle, and the molar ratio of 3-hydroxybutyric acid becomes 10%.
In the case of 0%, the elongation of the molded product is extremely small at about 1%. Therefore, modification by adding a plasticizer such as triacetin has been conventionally attempted. However, for example, when 10% by weight of triacetin is added to poly-3-hydroxybutyric acid, the melting point is reduced by about 10 ° C., and the temperature difference from the decomposition start temperature is increased. The elongation rate of the molded article obtained is about 2%, and the effect is insufficient. In addition, since triacetin has a relatively high amount of evaporation at a high temperature, a gas generated during molding often has a bad influence on a molded product. Recently, the use of tributyl acetyl citrate, which has a small amount of evaporation at a high temperature, has been proposed. However, the elongation of a molded product is not different from that when triacetin is used, and the effect is insufficient.
【0004】[0004]
【発明が解決しようとする課題】本発明は、従来技術に
見られる前記問題を解決し、機械的性能、成形性および
耐熱性に優れる、生分解性樹脂を提供することをその課
題とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a biodegradable resin which solves the above-mentioned problems in the prior art and is excellent in mechanical performance, moldability and heat resistance.
【0005】[0005]
【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意検討を重ねた結果、本発明を完成する
に至った。すなわち、リシノール酸誘導体が脂肪族ポリ
エステルを可塑化させ、更には、これが融点低下による
成形可能温度範囲の拡大と成形体の伸び率を大幅に増大
させる効果を有することを見出し本発明を完成させた。Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have completed the present invention. That is, the ricinoleic acid derivative plasticizes the aliphatic polyester, and furthermore, it has been found that this has the effect of expanding the moldable temperature range due to the lowering of the melting point and greatly increasing the elongation of the molded article, and completed the present invention. .
【0006】本発明の要旨は、(1)少なくとも1種類
のリシノール酸誘導体を含む可塑剤と脂肪族ポリエステ
ルとから成る生分解性樹脂組成物、(2)リシノール酸
誘導体が、アセチルリシノール酸メチルである(1)記
載の生分解性樹脂組成物、(3)脂肪族ポリエステル
が、微生物により生産されるポリヒドロキシアルカン酸
である(1)記載の生分解性樹脂組成物、(4)脂肪族
ポリエステルが、3−ヒドロキシ酪酸単位を含む(1)
記載の生分解性樹脂組成物、(5)脂肪族ポリエステル
が、ポリ−3−ヒドロキシ酪酸である(1)記載の生分
解性樹脂組成物、及び(6)脂肪族ポリエステルの重量
平均分子量が、10,000以上である(1)記載の生
分解性樹脂組成物であり、更に、(7)可塑剤および脂
肪族ポリエステルを溶融混練して得られる(1)〜
(6)のいずれかに記載の生分解性樹脂組成物の製造
法、及び(8)溶融混練時の温度を140℃〜220℃
で行う(7)記載の生分解性樹脂組成物の製造法とする
ものである。The gist of the present invention is that (1) a biodegradable resin composition comprising a plasticizer containing at least one kind of ricinoleic acid derivative and an aliphatic polyester, and (2) the ricinoleic acid derivative is methyl acetyl ricinoleate. (1) the biodegradable resin composition according to (1), (3) the biodegradable resin composition according to (1), wherein the aliphatic polyester is a polyhydroxyalkanoic acid produced by a microorganism; Contains a 3-hydroxybutyric acid unit (1)
The weight-average molecular weight of the biodegradable resin composition described in (1), wherein the (5) aliphatic polyester is poly-3-hydroxybutyric acid, and (6) the aliphatic polyester, The biodegradable resin composition according to (1), which is 10,000 or more, and further obtained by melt-kneading (7) a plasticizer and an aliphatic polyester.
(6) The method for producing a biodegradable resin composition according to any one of (6) and (8) a temperature at 140 ° C to 220 ° C during melt-kneading.
(7) The method for producing a biodegradable resin composition according to (7).
【0007】[0007]
【発明の実施の形態】本発明で示されるリシノール酸誘
導体は、アセチル化、メチル化、エチル化等されたリシ
ノール酸を示す。具体的には、アセチルリシノール酸メ
チルを挙げることができる。アセチルリシノール酸メチ
ルは、従来脂肪族ポリエステルに可塑剤として使用され
ているトリアセチンの沸点が218℃(常圧)であるの
に対し、アセチルリシノール酸メチルは、173℃(1
mmHg減圧下)であり、蒸発が原因で期待した性能が
得られない等の不都合が生じる可能性は少なく、また、
ベント口やダイからの蒸気発生量が少ないことは、作業
環境の面においても優れている。アセチルリシノール酸
メチルは、チューインガム基礎材の可塑化に用いられて
おり、安全性において問題を生じる危険性は少ない。BEST MODE FOR CARRYING OUT THE INVENTION The ricinoleic acid derivative shown in the present invention indicates ricinoleic acid which has been acetylated, methylated, ethylated and the like. Specifically, methyl acetyl ricinoleate can be mentioned. Methyl acetyl ricinoleate has a boiling point of 218 ° C. (normal pressure) of triacetin, which has been conventionally used as a plasticizer for aliphatic polyester, whereas methyl acetyl ricinoleate has a boiling point of 173 ° C. (1 ° C.).
mmHg under reduced pressure), and there is little possibility that inconvenience such as the expected performance not being obtained due to evaporation may occur.
The small amount of steam generated from the vent port and the die is also excellent in working environment. Methyl acetyl ricinoleate has been used for the plasticization of chewing gum base materials and has a low risk of causing safety problems.
【0008】本発明で示される脂肪族ポリエステルと
は、主として微生物が生産するポリヒドロキシアルカノ
エートであるが、グリコール類と脂肪族ジカルボン酸か
らやヒドロキシカルボン酸から化学合成されたものも含
まれる。ポリヒドロキシアルカノエートは、例えばアル
カリゲネス(Alcaligenes)属、アゾトバクター(Azoto
bacter)属、メチロバクテリウム(Methylobacterium)
属、ノカルジア(Nocardia)属、シュードモナス(Pseu
domonas)属等の細菌を用いた公知の発酵法により製造
することができる。発酵法により得られたポリヒドロキ
シアルカン酸を分離精製する方法に関しては、例えば、
米国特許第3036959号公報、同第4101533
号公報、同第3275610号公報、ヨーロッパ特許第
15123号公報に、ピリジン、塩化メチレン、1,2
−プロピレンカーボネート、クロロホルム、1,2−ジ
クロロエタン等の溶剤を用いた精製法が記載されてお
り、また特開平7−177894号公報には細菌菌体を
高圧ホモゲナイザーで破砕後、ポリヒドロキシアルカン
酸を分離し、分離したポリヒドロキシアルカン酸を酸素
系漂白剤で処理する方法が記載されている。The aliphatic polyester represented by the present invention is mainly a polyhydroxyalkanoate produced by a microorganism, but also includes those chemically synthesized from glycols and aliphatic dicarboxylic acids or from hydroxycarboxylic acids. Polyhydroxyalkanoates are, for example, those of the genus Alcaligenes, Azoto
bacter), Methylobacterium
Genus, Nocardia, Pseudomonas (Pseu)
domonas) by a known fermentation method using a bacterium such as the genus domonas. Regarding the method of separating and purifying the polyhydroxyalkanoic acid obtained by the fermentation method, for example,
U.S. Pat. Nos. 3,036,959 and 4,015,533
No. 3,275,610 and European Patent No. 15123, pyridine, methylene chloride, 1,2
-A purification method using a solvent such as propylene carbonate, chloroform, 1,2-dichloroethane and the like is described, and JP-A-7-177894 discloses that bacterial cells are crushed with a high-pressure homogenizer, and then polyhydroxyalkanoic acid is added. A method is described in which the separated and separated polyhydroxyalkanoic acid is treated with an oxygen bleach.
【0009】本発明に使用する脂肪族ポリエステルは重
量平均分子量10,000以上であることが望ましい。
なぜなら、脂肪族ポリエステルの中に−特にポリヒドロ
キシアルカン酸−は、熱安定性が劣るものもあり、溶融
成型時に溶融粘度が低下し、満足な成型品が得られな
い、あるいは成型品の機械的性能が充分ではない等の不
都合が生じるためである。The aliphatic polyester used in the present invention preferably has a weight average molecular weight of 10,000 or more.
Because, among the aliphatic polyesters, especially polyhydroxyalkanoic acid, some of them have poor thermal stability, the melt viscosity is lowered during melt molding, and a satisfactory molded product cannot be obtained, or the mechanical property of the molded product is poor. This is because problems such as insufficient performance occur.
【0010】本発明の生分解性樹脂組成物における脂肪
族ポリエステルと、少なくとも1種類のリシノール酸誘
導体を含む可塑剤との比率は、使用する脂肪族ポリエス
テルの種類により異なるが通常脂肪族ポリエステル10
0重量部に対し可塑剤5〜40重量部であり、好ましく
は脂肪族ポリエステル100重量部に対し可塑剤10〜
30重量部である。The ratio of the aliphatic polyester to the plasticizer containing at least one ricinoleic acid derivative in the biodegradable resin composition of the present invention varies depending on the type of the aliphatic polyester used.
The plasticizer is 5 to 40 parts by weight based on 0 parts by weight, and preferably the plasticizer 10 to 10 parts by weight based on 100 parts by weight of the aliphatic polyester.
30 parts by weight.
【0011】本発明の生分解性組成物には、使用用途、
成型方法などによって、可塑剤に加え無機充填剤や顔
料、酸化防止剤、結晶核剤等の慣用の補助添加物を配合
することができる。本発明に於ける生分解性樹脂組成物
は、可塑剤と脂肪族ポリエステルとを溶融混練すること
が望ましい。なぜなら溶融混練により、可塑剤が均一に
脂肪族ポリエステルに分散し、得られた成型品に期待す
る機械的性能を与えることができるからである。その
際、溶融混練時の温度は脂肪族ポリエステルの分解開始
温度以下で行わなければならない。[0011] The biodegradable composition of the present invention comprises
Depending on the molding method, conventional auxiliary additives such as inorganic fillers, pigments, antioxidants, and crystal nucleating agents can be added in addition to the plasticizer. In the biodegradable resin composition of the present invention, it is desirable that a plasticizer and an aliphatic polyester are melt-kneaded. This is because the melt-kneading uniformly disperses the plasticizer in the aliphatic polyester, and can give the obtained molded product the expected mechanical performance. At that time, the temperature at the time of melt kneading must be lower than the decomposition start temperature of the aliphatic polyester.
【0012】本発明の生分解性樹脂組成物は、射出成
形、射出ブロー成形、射出延伸ブロー成形、押出、押出
ブロー成形、押出延伸ブロー成形、延伸、圧延、熱成
形、紡糸、延伸を伴う紡糸、紡績等の一般に熱成形樹脂
に適応し得る成形加工法により、シート、フィルム、容
器、ボトル、チューブ、モノフィラメント、マルチフィ
ラメント、繊維、不織布、織布、機械部品、スポーツ用
具部品の製品に転化させることができる。これら成形加
工品のとくに具体的な用途として、使用後の回収または
再利用が不可能または困難な資材、例えば医療用器具お
よび備品、食品、薬剤、香料等の容器、ゴミ袋、釣り
糸、漁網等の糸、網、医療用、工業用の布、その他の工
業および農業用資材等を示すことができる。The biodegradable resin composition of the present invention is prepared by injection molding, injection blow molding, injection stretch blow molding, extrusion, extrusion blow molding, extrusion stretch blow molding, stretching, rolling, thermoforming, spinning, and spinning involving stretching. Converted into sheets, films, containers, bottles, tubes, monofilaments, multifilaments, fibers, non-woven fabrics, woven fabrics, machine parts, sports equipment parts by molding methods generally applicable to thermoforming resins such as spinning be able to. Particularly specific uses of these molded products include materials that are impossible or difficult to recover or reuse after use, such as medical equipment and fixtures, containers for foods, drugs, spices, garbage bags, fishing lines, fishing nets, etc. Yarns, nets, medical and industrial fabrics, and other industrial and agricultural materials.
【0013】[0013]
【発明の効果】本発明の組成物は、成形性に優れるとと
もに、機械的性能、耐熱性および生分解性に優れたフィ
ルム、シート、繊維、容器、ボトル、チューブ、射出成
形体及び各種の成形物を与える。Industrial Applicability The composition of the present invention is excellent in moldability, mechanical properties, heat resistance and biodegradability, and is suitable for films, sheets, fibers, containers, bottles, tubes, injection molded articles and various molded articles. Give things.
【0014】[0014]
方法:ゲル・パーミエーション・クロマトグラフィー
(GPC) 溶媒:クロロホルム 流速:1ml/min 〔融点の測定〕 装置:示差走査熱量計(DSC) 方法:JIS K 7121 〔引張性能〕 装置:引張試験機 試験片形状:短冊形 長さ100mm、幅10mm、チ
ャック間50mm 引張速度:50mm/min 測定環境:温度23℃、相対湿度50%Method: Gel permeation chromatography (GPC) Solvent: chloroform Flow rate: 1 ml / min [Measurement of melting point] Apparatus: Differential scanning calorimeter (DSC) Method: JIS K 7121 [Tensile performance] Apparatus: Tensile tester Test piece Shape: strip-shaped 100 mm long, 10 mm wide, 50 mm between chucks Peeling speed: 50 mm / min Measurement environment: temperature 23 ° C., relative humidity 50%
【0015】実施例1〜3 工業技術院生命工学工業技術研究所に寄託してある細
菌、プロトモナス エクストルクエンス(Protomonas e
xtorquens)K(受託番号:FERM BP−354
8)を用い、メタノールを炭素源として好気的に連続培
養を行った。培養条件は培養温度32℃、培養pH6.
5、平均滞留時間40時間であり、窒素の供給速度が菌
体増殖の律速となるよう連続培養を行った。なお、最近
の文献によれば本菌はメチロバクテリウム(Methylobac
terium)属に属されている(I.J.Bousfield and P.N.Gr
een;Int.J.Syst.Bacteriol.,35,209(1985)、T.Urakami
etal.;Int.J.Syst.Bcteriol.,43,504-513(1993) )。連
続培養により得られた菌体を上記特開平7−17789
4公報に記載のポリ−3−ヒドロキシ酪酸の分離精製法
に従い、高圧ホモゲナイザーで破砕後、遠心分離し、分
離したポリ−3−ヒドロキシ酪酸を先ずプロテアーゼで
処理し次いで過酸化水素処理を行い高純度のポリ−3−
ヒドロキシ酪酸を得た。この精製したポリ−3−ヒドロ
キシ酪酸の重量平均分子量は800,000であった。
このポリ−3−ヒドロキシ酪酸100部に対しアセチル
リシノール酸メチルを重量の10部〜30部となるよう
に加え、混合した後、スクリュー型押出機を用いてペレ
ット化を行った。その際のスクリュー温度は170〜1
80℃で行った。ペレット化した時点での重量平均分子
量は500,000であった。こうして得られたポリ−
3−ヒドロキシ酪酸ペレットの融点を測定した。Examples 1 to 3 A bacterium, Protomonas extorquens, deposited at the Institute of Biotechnology and Industrial Technology, National Institute of Advanced Industrial Science and Technology.
xtorquens) K (Accession number: FERM BP-354)
Using 8), continuous culture was performed aerobically using methanol as a carbon source. The culture conditions were a culture temperature of 32 ° C. and a culture pH of 6.
5. Continuous cultivation was performed so that the average residence time was 40 hours, and the nitrogen supply rate was the rate-determining rate of bacterial cell growth. According to recent literature, this bacterium is methylobacterium (Methylobac
terium) (IJBousfield and PNGr)
een; Int.J.Syst.Bacteriol., 35,209 (1985), T. Urakami
etal .; Int. J. Syst. Bcteriol., 43, 504-513 (1993)). The cells obtained by continuous culturing were subjected to the method described in JP-A-7-17789.
In accordance with the method for separating and purifying poly-3-hydroxybutyric acid described in Japanese Patent Publication No. 4 (1999), after crushing with a high-pressure homogenizer, centrifuging, the separated poly-3-hydroxybutyric acid is first treated with a protease, and then treated with hydrogen peroxide to obtain high purity. Poly-3-
Hydroxybutyric acid was obtained. The weight average molecular weight of this purified poly-3-hydroxybutyric acid was 800,000.
Methyl acetyl ricinoleate was added to 100 parts of this poly-3-hydroxybutyric acid so as to be 10 to 30 parts by weight, mixed, and then pelletized using a screw type extruder. The screw temperature at that time is 170-1
Performed at 80 ° C. The weight average molecular weight at the time of pelletization was 500,000. The poly thus obtained
The melting point of the 3-hydroxybutyric acid pellet was measured.
【0016】上記方法で得られた可塑剤が添加されたポ
リ−3−ヒドロキシ酪酸ペレットを単軸押出機[(株)東
洋精機製、ラボプラストミル、スクリュー径:20m
m]を使用し、シリンダー温度を170〜180℃とし
てTダイ・冷却ロール法により(冷却ロール温度:60
℃)、厚さ約200μmのフィルムを得た。得られたフ
ィルムから長さ100mm、幅10mmの短冊型試験片
を切り出し、引張性能を調べた。その結果を表1に示
す。The plasticizer-added poly-3-hydroxybutyric acid pellets obtained by the above method are subjected to a single screw extruder [Laboplast Mill, manufactured by Toyo Seiki Co., Ltd., screw diameter: 20 m].
m] and a cylinder temperature of 170 to 180 ° C. and a T-die / cooling roll method (cooling roll temperature: 60
° C), and a film having a thickness of about 200 µm was obtained. A strip-shaped test piece having a length of 100 mm and a width of 10 mm was cut out from the obtained film, and the tensile performance was examined. Table 1 shows the results.
【0017】比較例1 実施例1〜3と同手法により菌体から精製したポリ−3
−ヒドロキシ酪酸をスクリュー型押出機を用いてペレッ
ト化を行った。その際のスクリュー温度は180〜19
0℃で行った。ペレット化した時点での重量平均分子量
は450,000であった。こうして得られたポリ−3
−ヒドロキシ酪酸ペレットの融点を測定した。ポリ−3
−ヒドロキシ酪酸ペレットを単軸押出機[(株) 東洋精機
製、ラボプラストミル、スクリュー径:20mm] を使
用し、シリンダー温度を180〜190℃としてTダイ
・冷却ロール法により(冷却ロール温度:60℃)、厚
さ約200μmのフィルムを得た。得られたフィルムか
ら長さ100mm、幅10mmの短冊型試験片を切り出
し、引張性能を調べた。その結果を表1に示す。Comparative Example 1 Poly-3 purified from cells by the same method as in Examples 1 to 3.
-Hydroxybutyric acid was pelletized using a screw type extruder. The screw temperature at that time is 180-19
Performed at 0 ° C. The weight average molecular weight at the time of pelletization was 450,000. Poly-3 thus obtained
-The melting point of the hydroxybutyric acid pellets was measured. Poly-3
Using a single screw extruder [Labo Plast Mill, manufactured by Toyo Seiki Co., Ltd., screw diameter: 20 mm] with a cylinder temperature of 180 to 190 ° C and a T-die / cooling roll method, the hydroxybutyric acid pellets (cooling roll temperature: 60 ° C.) and a film having a thickness of about 200 μm was obtained. A strip-shaped test piece having a length of 100 mm and a width of 10 mm was cut out from the obtained film, and the tensile performance was examined. Table 1 shows the results.
【0018】比較例2〜4 実施例1〜3と同手法により菌体から精製したポリ−3
−ヒドロキシ酪酸100部に対しトリアセチンを10部
〜30部となるように加え、混合した後、スクリュー型
押出機を用いてペレット化を行った。その際のスクリュ
ー温度は170〜180℃で行った。ペレット化した時
点での重量平均分子量は500,000であった。こう
して得られたポリ−3−ヒドロキシ酪酸ペレットの融点
を測定した。上記方法で得られた可塑剤が添加されたポ
リ−3−ヒドロキシ酪酸ペレットを単軸押出機[(株) 東
洋精機製、ラボプラストミル、スクリュー径:20m
m] を使用し、シリンダー温度を170〜180℃とし
てTダイ・冷却ロール法により(冷却ロール温度:60
℃)、厚さ約200μmのフィルムを得た。得られたフ
ィルムから長さ100mm、幅10mmの短冊型試験片
を切り出し、引張性能を調べた。その結果を表1に示
す。Comparative Examples 2 to 4 Poly-3 purified from cells by the same method as in Examples 1 to 3
Triacetin was added to 100 parts of hydroxybutyric acid in an amount of 10 to 30 parts, mixed, and then pelletized using a screw type extruder. The screw temperature at that time was 170-180 ° C. The weight average molecular weight at the time of pelletization was 500,000. The melting point of the thus obtained poly-3-hydroxybutyric acid pellets was measured. The plasticizer-added poly-3-hydroxybutyric acid pellets obtained by the above-mentioned method are mixed with a single screw extruder [Labo Plastomill, manufactured by Toyo Seiki Co., Ltd., screw diameter: 20 m]
m] and using a T-die / cooling roll method with a cylinder temperature of 170 to 180 ° C. (cooling roll temperature: 60
° C), and a film having a thickness of about 200 µm was obtained. A strip-shaped test piece having a length of 100 mm and a width of 10 mm was cut out from the obtained film, and the tensile performance was examined. Table 1 shows the results.
【0019】比較例5〜7 実施例1〜3と同手法により菌体から精製したポリ−3
−ヒドロキシ酪酸100部に対しアセチルクエン酸トリ
ブチルを10部〜30部となるように加え、混合した
後、スクリュー型押出機を用いてペレット化を行った。
その際のスクリュー温度は170〜180℃で行った。
ペレット化した時点での重量平均分子量は500,00
0であった。こうして得られたポリ−3−ヒドロキシ酪
酸ペレットの融点を測定した。上記方法で得られた可塑
剤が添加されたポリ−3−ヒドロキシ酪酸ペレットを単
軸押出機[(株) 東洋精機製、ラボプラストミル、スクリ
ュー径:20mm]を使用し、シリンダー温度を170
〜180℃としてTダイ・冷却ロール法により(冷却ロ
ール温度:60℃)、厚さ約200μmのフィルムを得
た。得られたフィルムから長さ100mm、幅10mm
の短冊型試験片を切り出し、引張性能を調べた。その結
果を表1に示す。Comparative Examples 5 to 7 Poly-3 purified from cells by the same method as in Examples 1 to 3
-To 100 parts of hydroxybutyric acid, 10 to 30 parts of tributyl acetylcitrate was added and mixed, and then pelletized using a screw type extruder.
The screw temperature at that time was 170-180 ° C.
The weight average molecular weight at the time of pelletization is 500,00
It was 0. The melting point of the thus obtained poly-3-hydroxybutyric acid pellets was measured. The plasticizer-added poly-3-hydroxybutyric acid pellets obtained by the above method were subjected to single-screw extruder [Labo Plastmill, manufactured by Toyo Seiki Co., Ltd., screw diameter: 20 mm], and the cylinder temperature was adjusted to 170.
A temperature of about 180 ° C. and a T-die cooling roll method (cooling roll temperature: 60 ° C.) yielded a film having a thickness of about 200 μm. Length 100mm, width 10mm from the obtained film
Was cut out and the tensile performance was examined. Table 1 shows the results.
【0020】[0020]
【表1】 [Table 1]
Claims (8)
を含む可塑剤と脂肪族ポリエステルとから成る生分解性
樹脂組成物。1. A biodegradable resin composition comprising a plasticizer containing at least one ricinoleic acid derivative and an aliphatic polyester.
ール酸メチルである請求項1記載の生分解性樹脂組成
物。2. The biodegradable resin composition according to claim 1, wherein the ricinoleic acid derivative is methyl acetyl ricinoleate.
産されるポリヒドロキシアルカン酸である請求項1記載
の生分解性樹脂組成物。3. The biodegradable resin composition according to claim 1, wherein the aliphatic polyester is a polyhydroxyalkanoic acid produced by a microorganism.
酪酸単位を含む請求項1記載の生分解性樹脂組成物。4. The biodegradable resin composition according to claim 1, wherein the aliphatic polyester contains a 3-hydroxybutyric acid unit.
ロキシ酪酸である請求項1記載の生分解性樹脂組成物。5. The biodegradable resin composition according to claim 1, wherein the aliphatic polyester is poly-3-hydroxybutyric acid.
が、10,000以上である請求項1記載の生分解性樹
脂組成物。6. The biodegradable resin composition according to claim 1, wherein the aliphatic polyester has a weight average molecular weight of 10,000 or more.
混練して得られる、請求項1〜6のいずれかに記載の生
分解性樹脂組成物の製造法。7. The method for producing a biodegradable resin composition according to claim 1, which is obtained by melt-kneading a plasticizer and an aliphatic polyester.
で行う請求項7記載の生分解性樹脂組成物の製造法。8. The temperature at the time of melt-kneading is from 140 ° C. to 230 ° C.
8. The method for producing a biodegradable resin composition according to claim 7, wherein the method is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22810997A JPH1160917A (en) | 1997-08-25 | 1997-08-25 | Biodegradable resin composition and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22810997A JPH1160917A (en) | 1997-08-25 | 1997-08-25 | Biodegradable resin composition and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1160917A true JPH1160917A (en) | 1999-03-05 |
Family
ID=16871355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22810997A Pending JPH1160917A (en) | 1997-08-25 | 1997-08-25 | Biodegradable resin composition and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1160917A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002085983A1 (en) * | 2001-04-20 | 2002-10-31 | E.I. Du Pont De Nemours And Company | Processing of polyhydroxyalkanoates using a nucleant and a plasticizer |
WO2009127011A1 (en) * | 2008-04-18 | 2009-10-22 | Commonwealth Scientific And Industrial Research Organisation | Modified condensation polymers |
JP2014509695A (en) * | 2011-03-31 | 2014-04-21 | インシク ユ | Synthetic fiber containing vegetable fatty acid and method for producing the same |
-
1997
- 1997-08-25 JP JP22810997A patent/JPH1160917A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002085983A1 (en) * | 2001-04-20 | 2002-10-31 | E.I. Du Pont De Nemours And Company | Processing of polyhydroxyalkanoates using a nucleant and a plasticizer |
WO2009127011A1 (en) * | 2008-04-18 | 2009-10-22 | Commonwealth Scientific And Industrial Research Organisation | Modified condensation polymers |
JP2014509695A (en) * | 2011-03-31 | 2014-04-21 | インシク ユ | Synthetic fiber containing vegetable fatty acid and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0996670B1 (en) | Pha compositions and methods for their use in the production of pha films | |
EP1593705B1 (en) | Use of organic phosphonic or phosphinic acids, or of oxides, hydroxides or carboxylic acid salts of metals as thermal stabilizers for polyhydroxyalcanoates | |
JP6015748B2 (en) | Biodegradable polyester resin composition | |
EP3404130B1 (en) | Biodegradable aliphatic polyester-based fiber and method for producing same | |
EP1027384B1 (en) | Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation | |
JP3037431B2 (en) | Degradable polymer composition | |
JP2004002683A (en) | Biodegradable resin composition and molded product thereof | |
JPWO2010013483A1 (en) | Resin composition and sheet | |
JP2001261797A (en) | Aliphatic polyester resin and molded product | |
JP5517276B2 (en) | Polyester film | |
JP2017222791A (en) | Poly-3-hydroxyalkanoate-based resin composition and molded body | |
JP2000273207A (en) | Polylactic acid-based film and its production | |
JP2021102669A (en) | Aliphatic polyester resin composition and its usage | |
JP3707240B2 (en) | Polylactic acid composition, molded product, film, fiber and molded product using the same | |
AU676191B2 (en) | Polymer compositions | |
JP2019119840A (en) | Aliphatic polyester resin composition | |
JP2008120865A (en) | Manufacturing method of polylactic acid resin film | |
JPH1160917A (en) | Biodegradable resin composition and its production | |
KR20220063046A (en) | Water based biodegadable composition, products including the same and manufacturing method of water based biodegadable products | |
JP2005041980A (en) | Plasticizer for resin and resin composition containing the plasticizer, and molded form obtained by molding the resin composition | |
JP2000129143A (en) | Biodegradable molded product, its material and its production | |
JP2005126701A (en) | Molded product made from polylactic acid-based polymer composition | |
CN115380060A (en) | Method for producing thermoplastic resin composition, method for producing molded article, and film | |
JP3623053B2 (en) | Biodegradable resin molding | |
JPH11323116A (en) | Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040813 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051116 |
|
A02 | Decision of refusal |
Effective date: 20060329 Free format text: JAPANESE INTERMEDIATE CODE: A02 |