[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1154358A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor

Info

Publication number
JPH1154358A
JPH1154358A JP20502297A JP20502297A JPH1154358A JP H1154358 A JPH1154358 A JP H1154358A JP 20502297 A JP20502297 A JP 20502297A JP 20502297 A JP20502297 A JP 20502297A JP H1154358 A JPH1154358 A JP H1154358A
Authority
JP
Japan
Prior art keywords
internal electrode
conductor film
layer
electrode layer
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20502297A
Other languages
Japanese (ja)
Inventor
Seiichi Koizumi
成一 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20502297A priority Critical patent/JPH1154358A/en
Publication of JPH1154358A publication Critical patent/JPH1154358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the insulation resistance of a dielectric ceramic layer and, at the same time, to stably electrically connect internal electrodes composed mainly of Ni layers to external electrodes by preventing the corrosion of the internal electrode layers through a plating solution. SOLUTION: A laminated ceramic capacitor is provided with a laminated body 10, formed by alternately laminating dielectric ceramic layers 1 and internal electrode layers 2, composed mainly of Ni upon another and external electrodes 3 formed on the end faces of the laminated body. Each external electrode 3 is composed of a baser conductor film 31 connected to half of the internal electrode layers 2, a thermosetting conducive resin film 32 formed on the surface of the conductor film 31, and a surface plated layer 33 formed on the surface of the resin film 32. At the same time, the conductor film 31 is composed mainly of Cu and is set to a thickness of 5-30 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサに関し、特に、誘電体セラミック層とNiを主
成分とする内部電極層とを交互に積層した積層体と、こ
の積層体の端面に形成された外部電極とを具備した積層
セラミックコンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor, and more particularly, to a multilayer body in which dielectric ceramic layers and internal electrode layers mainly containing Ni are alternately stacked, and formed on an end face of the multilayer body. And an external electrode.

【0002】[0002]

【従来技術】近年、積層セラミックコンデンサの内部電
極層としてAg−Pd合金が使用されているが、最近の
低コスト化に対応するために、内部電極層にNi、Cu
などの卑金属材料が使用されるようになっている。この
Ni、Cuなどの卑金属は酸化され易い材料であるた
め、特に内部電極層の形成工程にあたり、また、形成し
た後の工程、例えば外部電極の形成工程で、内部電極層
の酸化を防止することが重要である。
2. Description of the Related Art In recent years, an Ag--Pd alloy has been used as an internal electrode layer of a multilayer ceramic capacitor. However, in order to cope with recent cost reduction, Ni or Cu is used for the internal electrode layer.
Such base metal materials are used. Since the base metals such as Ni and Cu are easily oxidized, the oxidation of the internal electrode layer should be prevented particularly in the step of forming the internal electrode layer and in the step after the formation, for example, in the step of forming the external electrode. is important.

【0003】例えば、内部電極層の焼成工程、即ち、誘
電体セラミック層と内部電極層とが交互に積層された積
層成形体の焼成工程や、その後の外部電極の形成工程
は、低酸素濃度(10-8〜10-12 atm)雰囲気で焼
成していた。
For example, the firing step of the internal electrode layer, that is, the firing step of the laminated molded body in which the dielectric ceramic layers and the internal electrode layers are alternately stacked, and the subsequent step of forming the external electrodes are performed at a low oxygen concentration ( The firing was performed in an atmosphere of 10 -8 to 10 -12 atm).

【0004】内部電極層材料としてNi、Cuなどの卑
金属材料を用いた積層セラミックコンデンサの外部電極
として、従来、特公平8−4055号公報には、銅の焼
き付け電極からなるものが開示されており、このような
積層セラミックコンデンサにおける銅の焼き付け電極
は、銅粉末55〜80重量%と、ガラスフリット5〜2
0重量%と、有機ビヒクル10〜30重量%とからなる
銅ペーストを塗布し、弱還元雰囲気中800℃、30分
の条件で焼き付けて形成されていた。このような銅の焼
き付け電極は、通常剥離等を防止するために60〜10
0μm程度の厚みとされていた。
As an external electrode of a laminated ceramic capacitor using a base metal material such as Ni or Cu as an internal electrode layer material, Japanese Patent Publication No. 8-4055 discloses an external electrode composed of a baked copper electrode. The baked electrode of copper in such a multilayer ceramic capacitor includes 55 to 80% by weight of copper powder and 5 to 2% of glass frit.
A copper paste composed of 0% by weight and 10 to 30% by weight of an organic vehicle was applied and baked at 800 ° C. for 30 minutes in a weak reducing atmosphere. Such a baked copper electrode usually has a thickness of 60 to 10 to prevent peeling or the like.
The thickness was about 0 μm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、銅の焼
き付け電極の厚みが60〜100μmと厚いため、脱バ
インダー処理しても電極中の炭素を完全に飛散できずに
残存し、内部電極層の焼成工程や外部電極の形成工程
で、上述のような低酸素濃度の焼成処理を行うと誘電体
セラミック層が還元され、誘電体セラミック材料の特性
が変化してしまい、特に、コンデンサとしての絶縁抵抗
値が低下してしまうという致命的な問題を誘発してしま
う。
However, since the thickness of the baked electrode of copper is as thick as 60 to 100 μm, even if the binder is removed, carbon in the electrode cannot be completely scattered and remains. When the above-described firing treatment with a low oxygen concentration is performed in the process or the formation process of the external electrode, the dielectric ceramic layer is reduced, and the characteristics of the dielectric ceramic material are changed. It causes a fatal problem of the decline.

【0006】絶縁抵抗値が低下してしまった積層セラミ
ックコンデンサにおいては、絶縁抵抗値を回復するため
に、例えば、高い酸素濃度雰囲気で熱処理して酸素を補
うことが考えられる。例えば、積層体焼結後の熱処理工
程である外部電極の焼き付け工程において高い酸素分圧
で熱処理を行うと、外部電極を通して内部電極層が酸化
され、内部電極層と外部電極との導通がとれず、静電容
量がバラツクという問題があった。結局、外部電極は低
い酸素分圧で焼き付けせざるを得ず、誘電体セラミック
層の絶縁抵抗値の改善は困難であった。
In order to recover the insulation resistance value of the multilayer ceramic capacitor whose insulation resistance value has been reduced, it is conceivable to supplement the oxygen by, for example, performing a heat treatment in a high oxygen concentration atmosphere. For example, when heat treatment is performed at a high oxygen partial pressure in the baking step of the external electrode, which is a heat treatment step after sintering the laminate, the internal electrode layer is oxidized through the external electrode, and the internal electrode layer and the external electrode cannot be electrically connected. However, there is a problem that the capacitance varies. As a result, the external electrodes had to be baked at a low oxygen partial pressure, and it was difficult to improve the insulation resistance of the dielectric ceramic layer.

【0007】このような誘電体セラミック層の絶縁抵抗
の低下を防止するために、銅の焼き付け電極を薄くする
ことが考えられる。しかしながら、銅の焼き付け電極の
表面には、一般に、ハンダとの濡れ性を向上し、外部電
極のハンダ食われを防止するためにメッキ処理が施され
るが、このメッキ液が銅の焼き付け電極を透過し、Ni
を主成分とする内部電極層を腐食させ、外部電極との電
気的な接続が不安定となったり、また内部電極層が腐食
して剥離しクラックやデラミネーションが発生するとい
う問題があった。
In order to prevent such a decrease in the insulation resistance of the dielectric ceramic layer, it is conceivable to reduce the thickness of the baked copper electrode. However, the surface of the copper baked electrode is generally plated to improve the wettability with solder and to prevent solder erosion of the external electrode. Penetrate, Ni
There is a problem in that the internal electrode layer mainly composed of aluminum is corroded and the electrical connection with the external electrode becomes unstable, and the internal electrode layer is corroded and peeled to cause cracks and delamination.

【0008】また、誘電体セラミック層の絶縁抵抗の低
下を防止するために銅ペーストを800℃以下の低温で
焼成しても良いが、この場合には銅の焼き付け電極の緻
密化が図れず、メッキ後に内部電極層が腐食し、上記と
同様の問題があった。
Further, in order to prevent the insulation resistance of the dielectric ceramic layer from lowering, the copper paste may be fired at a low temperature of 800 ° C. or less, but in this case, the copper baked electrode cannot be densified. After plating, the internal electrode layer corroded, causing the same problem as described above.

【0009】本発明は上述の課題に鑑みて案出されたも
のであり、その目的は、誘電体セラミック層の絶縁抵抗
を向上できるとともに、メッキ液による内部電極層の腐
食を防止して、Ni主成分からなる内部電極層と外部電
極との安定した電気的な接続を達成できる積層セラミッ
クコンデンサを提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to improve the insulation resistance of a dielectric ceramic layer, to prevent corrosion of an internal electrode layer by a plating solution, and to reduce the Ni content. An object of the present invention is to provide a multilayer ceramic capacitor capable of achieving stable electrical connection between an internal electrode layer composed of a main component and an external electrode.

【0010】[0010]

【課題を解決しようとする手段】本発明の積層セラミッ
クコンデンサは、誘電体セラミック層とNiを主成分と
する内部電極層とを交互に積層した積層体と、該積層体
の端面に形成された外部電極とを具備した積層セラミッ
クコンデンサであって、前記外部電極を、前記内部電極
層と接続する下地導体膜と、この下地導体膜表面に形成
された熱硬化性導電性樹脂膜と、この熱硬化性導電性樹
脂膜の表面に形成された表面メッキ層とから構成すると
ともに、前記下地導体膜がCuを主成分とし、かつその
厚みが5〜30μmであることを特徴とする。
SUMMARY OF THE INVENTION A multilayer ceramic capacitor according to the present invention is formed by alternately stacking a dielectric ceramic layer and an internal electrode layer containing Ni as a main component, and formed on an end face of the multilayer body. A multilayer ceramic capacitor comprising an external electrode, a base conductive film connecting the external electrode to the internal electrode layer, a thermosetting conductive resin film formed on the surface of the base conductive film; And a surface plating layer formed on the surface of the curable conductive resin film, wherein the underlying conductor film is mainly composed of Cu and has a thickness of 5 to 30 μm.

【0011】[0011]

【作用】本発明によれば、Cuを主成分とする下地導体
膜の厚みを5〜30μmとし、従来よりも薄くしたた
め、脱バインダー処理において有機溶媒を完全に飛散さ
せることができ、焼成時に誘電体セラミック層を還元す
ることがなく、これにより絶縁抵抗が低下することがな
い。
According to the present invention, the thickness of the underlying conductor film containing Cu as a main component is set to 5 to 30 μm, which is smaller than that of the conventional one. The body ceramic layer is not reduced, so that the insulation resistance is not reduced.

【0012】また、この下地導体膜表面に熱硬化性導電
性樹脂膜を形成し、この熱硬化性導電性樹脂膜の表面に
表面メッキ層を形成したので、下地導体膜の厚みが5〜
30μmと薄い場合であっても、メッキ液が熱硬化性導
電性樹脂膜により遮断され、内部電極層を腐食させるこ
とがない。これにより、外部電極との電気的な接続が不
安定となったり、また内部電極層が腐食することによる
クラックやデラミネーションの発生もない。また、表面
メッキ層により、熱硬化性導電性樹脂膜のハンダ濡れ性
を補い、外部電極のハンダ食われを防止することができ
る。
Further, a thermosetting conductive resin film is formed on the surface of the underlying conductive film, and a surface plating layer is formed on the surface of the thermosetting conductive resin film.
Even when the thickness is as thin as 30 μm, the plating solution is blocked by the thermosetting conductive resin film and does not corrode the internal electrode layer. As a result, there is no unstable electrical connection with the external electrode, and no cracks or delamination due to corrosion of the internal electrode layer. Further, the surface plating layer can supplement the solder wettability of the thermosetting conductive resin film and prevent the external electrode from being eroded by solder.

【0013】しかも、Niを主成分とする内部電極層
と、Cuを主成分とする下地導体膜との接合部分が、N
iとCuの合金を形成し、内部電極層と下地導体膜とが
一体化し、内部電極層と外部電極とを強固に接続でき
る。
In addition, the junction between the internal electrode layer mainly composed of Ni and the underlying conductor film mainly composed of Cu is N
By forming an alloy of i and Cu, the internal electrode layer and the underlying conductor film are integrated, and the internal electrode layer and the external electrode can be firmly connected.

【0014】さらに、本発明によれば、Niを主成分と
する内部電極層と誘電体セラミック層とが交互に積層し
た焼成前の積層成形体が、内部電極層が酸化されない程
度の低い酸素分圧中で焼成処理されて、その後、絶縁抵
抗値の回復のために、高い酸素濃度雰囲気で熱処理し、
Cuを主成分とする下地導体膜を厚み5〜30μmで積
層焼結体の端面に形成し、下地導体膜が酸化されない程
度の酸素分圧で焼成する。
Further, according to the present invention, the laminated molded body before firing, in which the internal electrode layers mainly containing Ni and the dielectric ceramic layers are alternately laminated, has a low oxygen content such that the internal electrode layers are not oxidized. Baked in pressure, and then heat-treated in a high oxygen concentration atmosphere to recover the insulation resistance,
A base conductor film containing Cu as a main component is formed on the end face of the laminated sintered body with a thickness of 5 to 30 μm, and fired at an oxygen partial pressure that does not oxidize the base conductor film.

【0015】その後熱硬化性導電性樹脂膜を大気雰囲気
中などで150℃以上の熱硬化処理を行って形成する
が、外部電極を構成する熱硬化性導電性樹脂膜を大気中
において低温で形成できるため、内部電極層および下地
導体膜を酸化させることなく、絶縁抵抗値の劣化及び信
頼牲の劣化が発生しない。
After that, a thermosetting conductive resin film is formed by performing a thermosetting process at 150 ° C. or more in an air atmosphere or the like, and a thermosetting conductive resin film constituting an external electrode is formed at a low temperature in the air. As a result, the internal electrode layer and the underlying conductor film are not oxidized, so that the insulation resistance value and the reliability do not deteriorate.

【0016】これにより、絶縁抵抗値の低下を改善して
も、内部電極層と外部電極との接合信頼性は高く、しか
も、内部電極層にNiを用いた低コストの積層セラミッ
クコンデンサを得ることができる。
As a result, even if the decrease in insulation resistance is improved, a low-cost monolithic ceramic capacitor using Ni for the internal electrode layer with high bonding reliability between the internal electrode layer and the external electrode is obtained. Can be.

【0017】尚、従来、特開平8−107039号公報
には、内部電極層がAg−Pdからなり、外部電極が、
内部電極層に接続されるAg、Ag−Pd、Cuからな
る下地導体膜と、この下地導体膜に形成されたNi、C
uメッキ膜と、このメッキ膜に形成された導電性樹脂膜
と、この導電性樹脂膜の上面に形成されたSn、Sn−
Pbのメッキ膜とから構成した積層コンデンサが開示さ
れている。
Conventionally, Japanese Patent Application Laid-Open No. Hei 8-107039 discloses that the internal electrode layer is made of Ag-Pd and the external electrode is
An underlying conductor film made of Ag, Ag-Pd, Cu connected to the internal electrode layer, and Ni, C formed on the underlying conductor film
u plated film, a conductive resin film formed on the plated film, and Sn, Sn− formed on the upper surface of the conductive resin film.
A multilayer capacitor comprising a Pb plating film is disclosed.

【0018】しかしながら、Ag−Pdからなる内部電
極層を用いていたため、上記したようにコスト高になる
という問題があったが、本願発明では、内部電極層がN
iを主成分とするため低コストとできる。
However, since the internal electrode layer made of Ag-Pd was used, there was a problem that the cost was increased as described above.
Since i is the main component, the cost can be reduced.

【0019】[0019]

【発明の実施の形態】図1は本発明の積層セラミックコ
ンデンサを示すもので、図において、符号1は誘電体セ
ラミック層、2はNiを主成分とする内部電極層、3は
外部電極を示している。この積層セラミックコンデンサ
は、誘電体セラミック層1とNiを主成分とする内部電
極層2とを交互に積層して積層体10を形成し、この積
層体10の両端面に外部電極3を形成して構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a multilayer ceramic capacitor according to the present invention. In the drawing, reference numeral 1 denotes a dielectric ceramic layer, 2 denotes an internal electrode layer mainly composed of Ni, and 3 denotes an external electrode. ing. In this multilayer ceramic capacitor, a dielectric ceramic layer 1 and an internal electrode layer 2 mainly composed of Ni are alternately laminated to form a laminated body 10, and external electrodes 3 are formed on both end surfaces of the laminated body 10. It is configured.

【0020】外部電極3は、積層体10の端面側からC
uを主成分とする下地導体膜31、熱硬化性導電性樹脂
膜32、表面メッキ層33とから構成されている。
The external electrode 3 is connected from the end face side of the laminate 10 to C
It is composed of a base conductor film 31 mainly composed of u, a thermosetting conductive resin film 32, and a surface plating layer 33.

【0021】誘電体セラミック層1は、チタン酸バリウ
ムやチタン酸バリウムに酸化イトリッウム、酸化マグネ
シウム、炭酸マグネシウムなどを含有する誘電体磁器で
あり、焼成後の1層当たりの膜厚は10〜30μmが望
ましい。
The dielectric ceramic layer 1 is a dielectric porcelain containing barium titanate or barium titanate containing indium oxide, magnesium oxide, magnesium carbonate, etc., and has a thickness of 10 to 30 μm per layer after firing. desirable.

【0022】内部電極層2は、Niを主成分とし、概略
矩形状の導体膜であり、上から第1層目、第3層目、第
5層目・・・の奇数層の内部電極層2は、その一端が積
層体10の一方端面に延出しており、上から第2層目、
第4層目、第6層目・・・の内部電極層2は、その一端
が積層体10の他方端面に延出している。
The internal electrode layer 2 is composed of Ni as a main component and is a substantially rectangular conductor film. The first, third, fifth,... 2 has one end thereof extending to one end face of the laminate 10 and a second layer from the top,
One end of each of the fourth, sixth,... Internal electrode layers 2 extends to the other end surface of the laminate 10.

【0023】Niを主成分とする内部電極層2とは、N
iのみからなる場合も含まれる概念であるが、Niの酸
化物を含有することがあり、さらに、例えば、Cr、C
o、Cu等の金属や化合物等が意図的に、また不純物と
して含まれる場合を含め、これらを総称して本発明で
は、Niを主成分とする内部電極層2という。
The internal electrode layer 2 mainly composed of Ni is N
Although the concept includes the case of only i, it may include an oxide of Ni, and further includes, for example, Cr, C
In the present invention, even when a metal or a compound such as o or Cu is intentionally included or as an impurity, these are collectively referred to as an internal electrode layer 2 mainly containing Ni in the present invention.

【0024】外部電極3の一部を構成する下地導体膜3
1は、焼成後の積層体10の両端面に、Cuを主成分と
する導電性ペーストの塗布及び積層体10への焼き付け
によって形成されるものである。
Base conductive film 3 constituting a part of external electrode 3
1 is formed by applying a conductive paste containing Cu as a main component and baking the laminated body 10 on both end surfaces of the laminated body 10 after firing.

【0025】Cuを主成分とする下地導体膜31とは、
Cuのみからなるものも含まれる概念であるが、Cuの
酸化物を含有することがあり、さらに、例えば、Cr、
Co、Ni、Zn等の金属や化合物等が意図的に、また
不純物として含まれる場合を含め、これらを総称してC
uを主成分とする下地導体膜31という。このCuを主
成分とする下地導体膜31とNiを主成分とする内部電
極層2との接合部は、NiとCuの合金が形成されてい
る。
The underlying conductive film 31 containing Cu as a main component is
Although the concept includes the one made only of Cu, it may contain an oxide of Cu.
Metals and compounds such as Co, Ni and Zn are collectively referred to as C, including those intentionally and as impurities.
It is referred to as a base conductor film 31 containing u as a main component. An alloy of Ni and Cu is formed at the junction between the underlying conductor film 31 mainly containing Cu and the internal electrode layer 2 mainly containing Ni.

【0026】そして、下地導体膜31の厚みは5〜30
μmとされている。下地導体膜31の厚みが5μmより
も薄い場合には、内部電極層との接合が不安定となるた
め容量バラツキが大きくなり、30μmよりも厚くなる
と、脱バインダー処理しても電極中の炭素を完全に飛散
できずに残存し、内部電極層2の焼成工程や外部電極3
の形成工程で、上述のような低酸素濃度の焼成処理を行
うと誘電体セラミック層1が還元され、コンデンサとし
ての絶縁抵抗値が低下し、信頼性不良の発生が多くなる
からである。下地導体膜31の厚みは容量、信頼性とい
う点から20〜30μmが望ましい。
The thickness of the base conductor film 31 is 5-30.
μm. When the thickness of the base conductor film 31 is less than 5 μm, the bonding with the internal electrode layer becomes unstable, so that the capacity variation increases. When the thickness is more than 30 μm, carbon in the electrode is reduced even if the binder is removed. It remains without being completely scattered, and the firing process of the internal electrode layer 2 and the external electrode 3
This is because, in the forming step, when the above-described firing treatment with a low oxygen concentration is performed, the dielectric ceramic layer 1 is reduced, the insulation resistance value as a capacitor is reduced, and the occurrence of poor reliability increases. The thickness of the underlying conductor film 31 is preferably 20 to 30 μm from the viewpoint of capacity and reliability.

【0027】また、熱硬化性導電性樹脂膜32は、例え
ばAg系(Ag単体またはAg合金)導体材料を含むエ
ポキシ系などの熱硬化性樹脂で構成され、このような樹
脂ペーストを下地導体膜31表面に塗布し、大気雰囲気
中で150〜300℃で熱処理されて形成される。
The thermosetting conductive resin film 32 is made of, for example, a thermosetting resin such as an epoxy-based material containing an Ag-based (Ag alone or Ag alloy) conductive material. 31 and is formed by heat treatment at 150 to 300 ° C. in the air atmosphere.

【0028】さらに、表面メッキ層33は、熱硬化性導
電性樹脂膜32の表面に順次形成された、例えばNiメ
ッキ層、Snメッキ層、半田メッキ層などからなる積層
構造であり、熱硬化性導電性樹脂膜32の半田濡れ性を
補い、また、外部電極3の半田食われを防止するもので
ある。
Further, the surface plating layer 33 has a laminated structure composed of, for example, a Ni plating layer, a Sn plating layer, a solder plating layer, and the like formed sequentially on the surface of the thermosetting conductive resin film 32. It compensates for the solder wettability of the conductive resin film 32 and prevents the external electrodes 3 from being eroded by solder.

【0029】以上のように、本発明の積層セラミックコ
ンデンサでは、先ず、内部電極層2としてNiを主成分
とする材料を用いているため、積層セラミックコンデン
サ全体として低コスト化が図れる。しかも、外部電極3
を構成し、且つ内部電極層2と接続する下地導体膜31
に、Cuを主成分とする材料を用いているため、下地導
体膜31を焼き付けると、内部電極層2と下地導体膜3
1との接合部は、NiとCuの合金を形成し、内部電極
層2と外部電極3とが一体化し、内部電極層2と下地導
体膜31との接続を強固なものとすることができる。
As described above, in the multilayer ceramic capacitor of the present invention, since the material mainly containing Ni is used for the internal electrode layer 2, the cost of the entire multilayer ceramic capacitor can be reduced. Moreover, the external electrode 3
And a base conductor film 31 connected to the internal electrode layer 2
When the base conductor film 31 is baked, the internal electrode layer 2 and the base conductor film 3
The joint with the first electrode 1 forms an alloy of Ni and Cu, the internal electrode layer 2 and the external electrode 3 are integrated, and the connection between the internal electrode layer 2 and the underlying conductor film 31 can be strengthened. .

【0030】また、本発明によれば、Cuを主成分とす
る下地導体膜31の厚みを5〜30μmとし、従来より
も薄くしたため、脱バインダー処理において有機溶媒を
完全に飛散させることができ、焼成時に誘電体セラミッ
ク層1を還元することがなく、これにより絶縁抵抗が低
下することがない。
Further, according to the present invention, the thickness of the underlying conductor film 31 containing Cu as a main component is set to 5 to 30 μm, which is thinner than the conventional one, so that the organic solvent can be completely scattered in the binder removal treatment. The dielectric ceramic layer 1 is not reduced during firing, and thus the insulation resistance is not reduced.

【0031】さらにまた、その後の熱処理である外部電
極3の熱硬化性導電性樹脂膜32の形成工程では、15
0℃以上、例えば、150〜300℃程度の熱処理が施
されるが、外部電極3の形成を大気雰囲気中で行うこと
ができ、内部電極層2と下地導体膜31との安定な接合
が何等影響されることがない。
Further, in the subsequent heat treatment step of forming the thermosetting conductive resin film 32 of the external electrode 3,
The heat treatment is performed at 0 ° C. or more, for example, at about 150 to 300 ° C., but the external electrode 3 can be formed in the air atmosphere, and any stable bonding between the internal electrode layer 2 and the underlying conductor film 31 can be achieved. Unaffected.

【0032】また、この下地導体膜31表面に熱硬化性
導電性樹脂膜32を形成し、この熱硬化性導電性樹脂膜
32の表面に表面メッキ層33を形成したので、下地導
体膜31の厚みが5〜30μmと薄い場合であっても、
メッキ液が熱硬化性導電性樹脂膜32により遮断され、
下地導体膜31を介して内部電極層2を腐食させること
がない。これにより、外部電極3との電気的な接続が不
安定となったり、また内部電極層2が腐食することによ
るクラックやデラミネーションの発生もない。
Further, a thermosetting conductive resin film 32 is formed on the surface of the underlying conductive film 31 and a surface plating layer 33 is formed on the surface of the thermosetting conductive resin film 32. Even when the thickness is as thin as 5 to 30 μm,
The plating solution is blocked by the thermosetting conductive resin film 32,
The internal electrode layer 2 does not corrode through the underlying conductor film 31. As a result, there is no unstable electrical connection with the external electrode 3 and no cracks or delamination due to corrosion of the internal electrode layer 2.

【0033】また、表面メッキ層33により、熱硬化性
導電性樹脂膜32のハンダ濡れ性を補い、外部電極3の
ハンダ食われを防止することができる。
The surface plating layer 33 can supplement the solder wettability of the thermosetting conductive resin film 32 and prevent the external electrode 3 from being eroded by solder.

【0034】本発明の積層セラミックコンデンサでは、
内部電極層と外部電極の下地導体膜との接合が非常に安
定し、セラミック焼成工程中で生じた酸素不足を解消す
る酸化処理を施しても両者の接合部分の酸化が進行する
ことがなく、しかも、外部電極を構成する導電性樹脂膜
を低温の大気中で形成できるため、熱履歴的な変動がな
く、絶縁抵抗値の劣化及び信頼牲の劣化が発生しない、
安価な積層セラミックコンデンサとなる。
In the multilayer ceramic capacitor of the present invention,
The bonding between the internal electrode layer and the underlying conductor film of the external electrode is very stable, and even when an oxidation treatment is performed to eliminate the oxygen deficiency generated during the ceramic firing step, the oxidation of the bonding portion between the two does not proceed, Moreover, since the conductive resin film constituting the external electrode can be formed in a low-temperature atmosphere, there is no change in thermal history, and no deterioration of insulation resistance and deterioration of reliability occur.
It becomes an inexpensive multilayer ceramic capacitor.

【0035】次に、本発明の積層セラミックコンデンサ
の製法の一例を簡単に説明すると、先ず、誘電体磁器組
成物に有機系粘結剤と媒体から成るバイダーを添加・攪
拌してセラミック泥漿を調製した後、得られたセラミッ
ク泥漿を用いて、ドクターブレード法により誘電体セラ
ミックグリーンシートを形成する。
Next, an example of a method for manufacturing the multilayer ceramic capacitor of the present invention will be briefly described. First, a ceramic slurry is prepared by adding and stirring a binder comprising an organic binder and a medium to a dielectric ceramic composition. After that, a dielectric ceramic green sheet is formed by a doctor blade method using the obtained ceramic slurry.

【0036】得られた誘電体セラミックグリーンシート
上に、Niを主成分とする内部電極層用ペーストを用い
て、内部電極層2となる導体膜を所定形状にスクリーン
印刷する。その後、上述の誘電体セラミックと同一のセ
ラミックペーストを塗布し、誘電体セラミック層1とな
る誘電体層を形成し、さらに、内部電極層2となる導体
膜、誘電体層を交互に塗布する。このようにして、それ
ぞれ100回繰り返す。こうして得られた積層成形体
を、所定寸法に切断してグリーンチップ(焼成前の積層
体)を作製した。
On the obtained dielectric ceramic green sheet, a conductor film to be the internal electrode layer 2 is screen-printed in a predetermined shape using an internal electrode layer paste mainly containing Ni. Thereafter, the same ceramic paste as the above-mentioned dielectric ceramic is applied to form a dielectric layer serving as the dielectric ceramic layer 1, and a conductor film serving as the internal electrode layer 2 and a dielectric layer are alternately applied. In this way, each is repeated 100 times. The laminate thus obtained was cut into a predetermined size to produce a green chip (a laminate before firing).

【0037】その積層成形体を脱バインダー処理、焼成
を行い、続いて大気雰囲気中において再酸化処理をす
る。これにより、誘電体セラミック層1での絶縁抵抗値
の低下を回復できる。
The laminated molded body is subjected to a binder removal treatment and firing, and then to a reoxidation treatment in an air atmosphere. This makes it possible to recover from a decrease in the insulation resistance value of the dielectric ceramic layer 1.

【0038】次に、焼成した積層体10の端面にCuを
主成分とするペーストを塗布し、焼成し、下地導体膜3
1を形成した後、Agを含むエポキシ樹脂からなる導電
牲Agペーストを、下地導体膜31上に塗布し、硬化さ
せて熱硬化性導電性樹脂膜を形成し、その後、熱硬化性
導電性樹脂膜の表面に表面メッキ層を施すことにより、
本発明の積層セラミックコンデンサが得られる。
Next, a paste containing Cu as a main component is applied to the end surface of the fired laminated body 10 and fired to form a base conductor film 3.
1, a conductive Ag paste made of an epoxy resin containing Ag is applied on the underlying conductive film 31 and cured to form a thermosetting conductive resin film, and then the thermosetting conductive resin is formed. By applying a surface plating layer on the surface of the film,
The multilayer ceramic capacitor of the present invention is obtained.

【0039】[0039]

【実施例】先ずチタン酸バリウム(BaTiO3 )と、
このチタン酸バリウム100重量部に対して酸化イット
リウム(Y2 3 )を1重量部、酸化マグネシウム(M
gO)を0.2重量部、炭酸マンガン(MnCO3
0.1重量部、Li2 OとSiO2 とからなるガラス成
分(LiとSiのモル比が1:1)を0.5重量部含有
する誘電体磁器組成物に、有機系粘結剤と媒体から成る
バイダーを添加・攪拌してセラミック泥漿を調製した
後、得られたセラミック泥漿を脱泡し、ドクターブレー
ド法により厚さ7μmの誘電体セラミックグリーンシー
トを形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, barium titanate (BaTiO 3 )
1 part by weight of yttrium oxide (Y 2 O 3 ) is added to 100 parts by weight of barium titanate, and magnesium oxide (M
gO), 0.2 parts by weight of manganese carbonate (MnCO 3 )
An organic binder is added to a dielectric ceramic composition containing 0.1 part by weight and 0.5 part by weight of a glass component (Li: Si molar ratio of 1: 1) composed of Li 2 O and SiO 2. After a ceramic slurry was prepared by adding and stirring a binder composed of a medium, the obtained ceramic slurry was defoamed, and a 7 μm thick dielectric ceramic green sheet was formed by a doctor blade method.

【0040】得られた誘電体セラミックグリーンシート
上に、Ni粉末と、エチルセルロース、テルピネオール
とからなる内部電極層用ペーストを用いてスクリーン印
刷した。その後、上述の誘電体セラミックグリーンシー
トと同一の組成のセラミックペーストを作製塗布し、誘
電体層成形体を形成し、さらに、内部電極層用ペースト
とセラミックペーストの塗布を交互にそれぞれ100回
繰り返した。こうして得られた積層成形体を、所定寸法
(2125型)に切断してグリーンチップ(焼成前の積
層成形体)を作製した。
Screen printing was performed on the obtained dielectric ceramic green sheet using an internal electrode layer paste composed of Ni powder, ethyl cellulose, and terpineol. Thereafter, a ceramic paste having the same composition as the above-described dielectric ceramic green sheet was prepared and applied to form a dielectric layer molded body, and further, the application of the internal electrode layer paste and the application of the ceramic paste were alternately repeated 100 times. . The laminated molded body thus obtained was cut into a predetermined size (2125 type) to produce a green chip (the laminated molded body before firing).

【0041】その積層成形体を大気中で400℃にて脱
バインダー処理を行い、その後1250℃(PO2 10
-11 atm)で2時間焼成し、続いて大気雰囲気中80
0℃で再酸化処理をした。
The laminated molded body is subjected to a binder removal treatment at 400 ° C. in the air, and then 1250 ° C. (PO 2 10
-11 atm) for 2 hours, followed by 80 in air
A reoxidation treatment was performed at 0 ° C.

【0042】次に、焼成した積層体10の端面にロール
転写法により、Cu粉末と、アクリル樹脂とからなるペ
ーストを塗布し、酸素濃度2ppmで900℃で焼成
し、表1に示すような厚みの下地導体膜31を形成し、
Agを含むエポキシ樹脂からなる導電牲Agペースト
を、下地導体膜31上に塗布し、200℃、30分で硬
化させ、厚みが60μmの熱硬化性導電性樹脂膜を形成
した。
Next, a paste composed of a Cu powder and an acrylic resin was applied to the end face of the fired laminate 10 by a roll transfer method, and fired at 900 ° C. at an oxygen concentration of 2 ppm. Forming a base conductor film 31 of
A conductive Ag paste made of an epoxy resin containing Ag was applied on the underlying conductive film 31 and cured at 200 ° C. for 30 minutes to form a thermosetting conductive resin film having a thickness of 60 μm.

【0043】その後、熱硬化性導電性樹脂膜32の表面
に、厚み2μmのNiメッキおよび厚み2μmのSnメ
ッキを施すことにより、本発明の積層セラミックコンデ
ンサを作製した。得られたコンデンサの誘電体セラミッ
ク層の積層数100層、一層当たりの厚みは5μmであ
った。
Thereafter, the surface of the thermosetting conductive resin film 32 was subjected to Ni plating with a thickness of 2 μm and Sn plating with a thickness of 2 μm to produce a multilayer ceramic capacitor of the present invention. The obtained capacitor had 100 laminated dielectric ceramic layers, and the thickness per layer was 5 μm.

【0044】得られた積層セラミックコンデンサは、L
CRメーター4284Aを用い、周波数1KHz入力信
号1Vrmsにて静電容量、誘電損失DFを測定した。
また、電圧16Vを印加して1分間後の絶縁抵抗IRを
測定した。さらに、150℃において40Vを印加する
高温負荷試験を300個行い、40時間以内に故障した
個数を測定し、信頼性不良率を算出した。また、250
℃の半田漕に試料を浸漬しクラックの発生状態を観察し
た。その結果を表1に示す。
The obtained multilayer ceramic capacitor has an L
Using a CR meter 4284A, the capacitance and the dielectric loss DF were measured at a frequency of 1 KHz and an input signal of 1 Vrms.
Further, the insulation resistance IR was measured one minute after applying a voltage of 16 V. Furthermore, 300 high-temperature load tests in which 40 V was applied at 150 ° C. were performed, the number of failures within 40 hours was measured, and the reliability failure rate was calculated. Also, 250
The sample was immersed in a solder bath at ℃ and the state of crack generation was observed. Table 1 shows the results.

【0045】[0045]

【表1】 [Table 1]

【0046】表1によれば、本発明の試料では、Cuか
らなる下地導体膜の厚みが5〜30μmの場合には、焼
成中にカーボンにより絶縁抵抗を劣化させることはな
く、絶縁抵抗が22GΩ以上となり、信頼性不良率およ
びクラックも発生しないことが判る。Cuからなる下地
導体膜の厚みが30μmよりも厚くなると、絶縁抵抗が
劣化し、信頼性不良率およびクラックの発生率も高くな
ることが判る。
According to Table 1, in the sample of the present invention, when the thickness of the underlying conductor film made of Cu is 5 to 30 μm, the insulation resistance is not deteriorated by carbon during firing, and the insulation resistance is 22 GΩ. As described above, it can be seen that the reliability failure rate and cracks do not occur. It can be seen that when the thickness of the underlying conductor film made of Cu is greater than 30 μm, the insulation resistance is deteriorated, and the reliability failure rate and the crack generation rate are also increased.

【0047】本発明者は、導電性樹脂膜を形成すること
なく、下地導体膜の表面に表面メッキ層を形成する以外
は、上記と同様にして積層セラミックコンデンサを作製
したところ、静電容量が720nF、誘電損失3.4
%、絶縁抵抗IRが18GΩ、信頼性不良率15%、ク
ラックの発生率が100%であった。
The present inventor produced a multilayer ceramic capacitor in the same manner as described above, except that a surface plating layer was formed on the surface of the underlying conductor film without forming a conductive resin film. 720 nF, dielectric loss 3.4
%, Insulation resistance IR was 18 GΩ, reliability failure rate was 15%, and crack generation rate was 100%.

【0048】[0048]

【発明の効果】以上のように、Cuを主成分とする下地
導体膜の厚みを5〜30μmとし、従来よりも薄くした
ため、脱バインダー処理において有機溶媒を完全に飛散
させることができ、焼成時に誘電体セラミック層を還元
することがなく、これにより絶縁抵抗が低下することが
ない。
As described above, since the thickness of the underlying conductor film containing Cu as the main component is 5 to 30 μm, which is smaller than that of the conventional one, the organic solvent can be completely scattered in the binder removal treatment, The dielectric ceramic layer is not reduced, and the insulation resistance is not reduced.

【0049】また、この下地導体膜表面に熱硬化性導電
性樹脂膜を形成し、この熱硬化性導電性樹脂膜の表面に
表面メッキ層を形成したので、下地導体膜の厚みが5〜
30μmと薄い場合であっても、メッキ液が熱硬化性導
電性樹脂膜により遮断され、下地導体膜を介して内部電
極層を腐食させることがない。
Further, a thermosetting conductive resin film is formed on the surface of the underlying conductive film, and a surface plating layer is formed on the surface of the thermosetting conductive resin film.
Even when the thickness is as thin as 30 μm, the plating solution is blocked by the thermosetting conductive resin film, and does not corrode the internal electrode layer via the underlying conductor film.

【0050】さらに、熱硬化性導電性樹脂膜を大気雰囲
気中などで150℃以上の熱硬化処理を行って形成でき
るが、外部電極を構成する熱硬化性導電性樹脂膜を大気
中において低温で形成できるため、内部電極層および下
地導体膜を酸化させることなく、絶縁抵抗値の劣化及び
信頼牲の劣化が発生しない。
Further, the thermosetting conductive resin film can be formed by performing a thermosetting treatment at 150 ° C. or more in an air atmosphere or the like, but the thermosetting conductive resin film constituting the external electrode is formed at a low temperature in the air. Since it can be formed, the internal electrode layer and the underlying conductor film are not oxidized, so that the insulation resistance value and the reliability do not deteriorate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層セラミックコンデンサの断面図で
ある。
FIG. 1 is a sectional view of a multilayer ceramic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・誘電体セラミック層 2・・・・内部電極層 3・・・・外部電極 10・・・・積層体 31・・・下地導体膜 32・・・熱硬化性導電性樹脂膜 33・・・表面メッキ層 DESCRIPTION OF SYMBOLS 1 ... dielectric ceramic layer 2 ... internal electrode layer 3 ... external electrode 10 ... laminated body 31 ... base conductor film 32 ... thermosetting conductive resin film 33 ... Surface plating layers

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】誘電体セラミック層とNiを主成分とする
内部電極層とを交互に積層した積層体と、該積層体の端
面に形成された外部電極とを具備した積層セラミックコ
ンデンサであって、前記外部電極を、前記内部電極層と
接続する下地導体膜と、この下地導体膜表面に形成され
た熱硬化性導電性樹脂膜と、この熱硬化性導電性樹脂膜
の表面に形成された表面メッキ層とから構成するととも
に、前記下地導体膜がCuを主成分とし、かつその厚み
が5〜30μmであることを特徴とする積層セラミック
コンデンサ。
1. A laminated ceramic capacitor comprising: a laminated body in which dielectric ceramic layers and internal electrode layers mainly containing Ni are alternately laminated; and external electrodes formed on end faces of the laminated body. A base conductor film for connecting the external electrode to the internal electrode layer, a thermosetting conductive resin film formed on the surface of the base conductor film, and a thermosetting conductive resin film formed on the surface of the thermosetting conductive resin film. A multilayer ceramic capacitor comprising a surface plating layer, wherein the underlying conductor film contains Cu as a main component and has a thickness of 5 to 30 μm.
JP20502297A 1997-07-30 1997-07-30 Laminated ceramic capacitor Pending JPH1154358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20502297A JPH1154358A (en) 1997-07-30 1997-07-30 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20502297A JPH1154358A (en) 1997-07-30 1997-07-30 Laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH1154358A true JPH1154358A (en) 1999-02-26

Family

ID=16500155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20502297A Pending JPH1154358A (en) 1997-07-30 1997-07-30 Laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH1154358A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053901A1 (en) * 2002-12-09 2004-06-24 Matsushita Electric Industrial Co., Ltd. Electronic part with external electrode
US6956731B2 (en) 2002-03-07 2005-10-18 Tdk Corporation Laminate type electronic component
JP2008028064A (en) * 2006-07-20 2008-02-07 Murata Mfg Co Ltd Electronic component and method for manufacturing the same
US10629379B2 (en) 2017-01-02 2020-04-21 Samsung Electro-Mechanics Co., Ltd. Capacitor component having external electrodes with reduced thickness

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956731B2 (en) 2002-03-07 2005-10-18 Tdk Corporation Laminate type electronic component
WO2004053901A1 (en) * 2002-12-09 2004-06-24 Matsushita Electric Industrial Co., Ltd. Electronic part with external electrode
US7751174B2 (en) 2002-12-09 2010-07-06 Matsushita Electric Industrial Co., Ltd. Electronic part with external electrode
JP2008028064A (en) * 2006-07-20 2008-02-07 Murata Mfg Co Ltd Electronic component and method for manufacturing the same
US10629379B2 (en) 2017-01-02 2020-04-21 Samsung Electro-Mechanics Co., Ltd. Capacitor component having external electrodes with reduced thickness
US10748710B2 (en) 2017-01-02 2020-08-18 Samsung Electro-Mechanics Co., Ltd. Capacitor component having external electrodes with reduced thickness
US11107634B2 (en) 2017-01-02 2021-08-31 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing capacitor component having external electrodes with reduced thickness
US11869722B2 (en) 2017-01-02 2024-01-09 Samsung Electro-Mechanics Co., Ltd. Capacitor component having external electrodes with reduced thickness

Similar Documents

Publication Publication Date Title
JP4561831B2 (en) Ceramic substrate, electronic device, and method for manufacturing ceramic substrate
KR100465140B1 (en) Multilayer capacitor
KR101107236B1 (en) Ceramic electronic component
JPH113834A (en) Multilayer ceramic capacitor and its manufacture
JP2009302300A (en) Laminated ceramic electronic component, and method for making the same
JP2004259991A (en) Laminated ceramic component
JP3359522B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2000100647A (en) Laminate ceramic capacitor and manufacture thereof
JP2943380B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP3494115B2 (en) Conductive paste and multilayer ceramic electronic component using the same
JP5668429B2 (en) Multilayer ceramic electronic components
JP3679529B2 (en) Terminal electrode paste and multilayer ceramic capacitor
JPH11243029A (en) Conducting paste for terminal and laminated ceramic capacitor
JPH10335168A (en) Laminated ceramic capacitor
JPH1154358A (en) Laminated ceramic capacitor
JP2002008938A (en) Laminated electronic component and method of manufacturing the same
JP3716746B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP3744710B2 (en) Multilayer ceramic capacitor
JP2001023862A (en) Manufacture of multilayer ceramic capacitor
JPH11329892A (en) Composite ceramic capacitor and manufacture thereof
JP3142013B2 (en) Multilayer electronic components
JPH07201637A (en) Multilayer ceramic electronic device
JP3253028B2 (en) External electrode forming method of multilayer ceramic capacitor
JP3804135B2 (en) Multilayer ceramic capacitor
JP2002231558A (en) Laminated ceramic capacitor