JPH1150242A - Copper sputtering target for forming electrode coating, its production and copper series electrode coating - Google Patents
Copper sputtering target for forming electrode coating, its production and copper series electrode coatingInfo
- Publication number
- JPH1150242A JPH1150242A JP21705297A JP21705297A JPH1150242A JP H1150242 A JPH1150242 A JP H1150242A JP 21705297 A JP21705297 A JP 21705297A JP 21705297 A JP21705297 A JP 21705297A JP H1150242 A JPH1150242 A JP H1150242A
- Authority
- JP
- Japan
- Prior art keywords
- target
- transition metal
- electrode coating
- electrode film
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体、液晶、P
DP(プラズマディスプレイ)等に用いられる電極膜を
形成するために用いられる電極膜形成用Cu系スパッタ
リングターゲットおよびその製造方法ならびにCu系電
極膜に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor, a liquid crystal,
The present invention relates to a Cu-based sputtering target for forming an electrode film used for forming an electrode film used in a DP (plasma display) and the like, a method for manufacturing the same, and a Cu-based electrode film.
【0002】[0002]
【従来の技術】現在の様々なデバイスの電極材について
製品別に見ると、TFT(ThinFilm Tran
sistor)液晶の電極形成用材料としては純Cr、
Mo、W、Ta単体かこれらの合金が採用されている。
また、LSI等の電極膜形成にはAlまたはAl合金が
採用されている。また、PDP(Plasma Dis
play)の配線材料にはCu、Alが採用されてい
る。最近では、TFT液晶は画素の高精細化に伴い配線
幅の縮小が不可避となりつつあり、前記高融点金属系の
配線材料からAl系やCu系の配線材料の採用が検討さ
れている。また、半導体デバイスでは回路の高集積化に
伴い、Cu合金配線を採用することが検討されている。2. Description of the Related Art When looking at the current electrode materials of various devices by product, TFT (Thin Film Tran) is used.
pure Cr as a material for forming an electrode of a liquid crystal,
Mo, W, Ta alone or an alloy thereof is employed.
Further, Al or an Al alloy is employed for forming an electrode film such as an LSI. In addition, PDP (Plasma Dis
For example, Cu and Al are employed as the wiring material of the play. In recent years, it has become unavoidable to reduce the wiring width of TFT liquid crystals as the definition of pixels increases, and the use of Al-based or Cu-based wiring materials from the above-mentioned high-melting-point metal-based wiring materials is being studied. In addition, in semiconductor devices, adoption of Cu alloy wiring has been studied along with higher integration of circuits.
【0003】AlまたはAl合金配線ではエレクトロマ
イグレーション、ストレスマイグレーションによる断線
の問題があり、加熱工程においてヒロックと呼ばれる突
起が膜表面に発生し、積層した配線が導通する等の問題
がある。一方、Cu配線にはこの様な問題点が少なく、
しかもAl配線に比べて電気抵抗率が低いという特徴を
有するため有効と考えられている。しかしながら、Cu
電極膜は耐酸化性に劣り、加熱工程において酸化が進行
し抵抗値が増加するという問題点がありこの点の改善が
要望されている。その一つの解決方法として、Cu電極
膜の耐酸化性を改善するために添加元素を加えて合金化
することにより改善する方法が提案されている。[0003] Al or Al alloy wiring has a problem of disconnection due to electromigration and stress migration, and there is a problem that projections called hillocks are generated on the film surface in a heating step, and the laminated wiring is conducted. On the other hand, Cu wiring has few such problems.
Moreover, it is considered to be effective because it has a characteristic that the electric resistivity is lower than that of the Al wiring. However, Cu
The electrode film is inferior in oxidation resistance, and has a problem that oxidation proceeds in a heating step and a resistance value increases. Therefore, improvement in this point is demanded. As one of the solutions, there has been proposed a method of improving the oxidation resistance of a Cu electrode film by adding an additive element and performing alloying.
【0004】たとえばスパッタリングにより形成された
Cu−Ti合金薄膜層を窒素含有雰囲気中熱処理し、配
線膜表面に薄いTiN層を形成し、耐酸化性を向上させ
ようという提案がなされている。(1988年秋季第4
9回応用物理学会学術講演会講演予稿集第2分冊第43
4頁) また、特開平3−196619号ではスパッタリング法
により形成されたCu−Zr合金膜を窒素またはNH3
含有雰囲気で熱処理を施すことによりCu配線膜表面に
Zr窒化層を形成することにより耐酸化性を向上させる
方法が提案されている。また、同様に窒化層を形成する
方法として、特開平3−196620号では同じくスパ
ッタリング法により形成されたCu−B膜窒素またはN
H3含有雰囲気で熱処理を施すことによりCu配線膜表
面にB窒化層を形成する事により耐酸化性を向上させる
方法の提案がなされている。For example, it has been proposed to heat-treat a Cu—Ti alloy thin film layer formed by sputtering in a nitrogen-containing atmosphere to form a thin TiN layer on the surface of a wiring film to improve oxidation resistance. (Fourth Autumn 1988
Proceedings of the 9th Annual Meeting of the Japan Society of Applied Physics second volume 43
In addition, in Japanese Patent Application Laid-Open No. Hei 3-196419, a Cu—Zr alloy film formed by a sputtering method is coated with nitrogen or NH 3.
A method of improving oxidation resistance by forming a Zr nitride layer on the surface of a Cu wiring film by performing a heat treatment in a containing atmosphere has been proposed. Similarly, as a method of forming a nitride layer, Japanese Patent Application Laid-Open No. 3-196620 discloses a Cu—B film formed by a sputtering method.
There has been proposed a method of improving the oxidation resistance by forming a B nitride layer on the surface of a Cu wiring film by performing a heat treatment in an atmosphere containing H 3 .
【0005】また、Cu、Crを別々の蒸発源から同時
に蒸着する方法によりCu−Cr合金膜を形成した後、
10マイナス6乗Torr以下の真空雰囲気において熱
処理を施し、Cu配線膜表面にCr酸化物層を形成する
ことにより耐酸化性を向上させる方法が提案されてい
る。この方法は、成膜ままではCuに固溶しているCr
が熱処理により析出してCu層とCr層に分離する作用
を有するため、Cuに固溶する元素を添加して耐食性を
向上する手法と異なり、Cuの持つ低抵抗性を保ったま
ま、耐食性に優れた酸化物層を形成できるという利点が
ある。Further, after forming a Cu—Cr alloy film by a method of simultaneously depositing Cu and Cr from separate evaporation sources,
A method has been proposed in which a heat treatment is performed in a vacuum atmosphere of 10 −6 Torr or less to form a Cr oxide layer on the surface of a Cu wiring film, thereby improving oxidation resistance. This method uses a method in which Cr is dissolved in Cu as it is formed as a film.
Has the effect of separating by heat treatment and separating into a Cu layer and a Cr layer. Therefore, unlike the method of adding an element that dissolves in Cu to improve corrosion resistance, while maintaining the low resistance of Cu, corrosion resistance is improved. There is an advantage that an excellent oxide layer can be formed.
【0006】[0006]
【発明が解決しようとする課題】上述したように、Cu
−Crの合金膜を使用する方法は、Cuの持つ低抵抗性
を保ったまま、耐食性に優れた酸化物層を形成できると
いう利点がある。本発明者がこの手法を検討したとこ
ろ、上述した方法のように、蒸発源から同時に蒸着する
方法では、CuがCrに対して融点が著しく低い(C
u:1083℃、Cr:1857℃)ことから、蒸気圧
が大きく違うことになり、これら2元素をそれぞれ別個
に制御する必要があるため組成の制御が難しく製品の大
量生産を行う上で大きな問題となることが判明した。As described above, as described above, Cu
The method using an alloy film of -Cr has an advantage that an oxide layer having excellent corrosion resistance can be formed while keeping the low resistance of Cu. The inventor of the present invention has studied this technique. As a result, Cu has a remarkably low melting point with respect to Cr (C
u: 1083 ° C., Cr: 1857 ° C.), the vapor pressures are greatly different, and it is necessary to control these two elements separately, and it is difficult to control the composition, which is a major problem in mass-producing products. It turned out to be.
【0007】一方、薄膜を形成する方法として、ターゲ
ットを使用するスパッタリング法があるが、Cu−Cr
のように金属同士であってもほとんど固溶せず、しかも
融点に大きな差がある組成系の薄膜を形成するターゲッ
トは開発されていないのが現状である。本発明の目的
は、上述した問題点に鑑み、優れた耐食性と低い抵抗率
を有する電極膜を再現性良く製造することができるCu
系スパッタリングターゲットおよびその製造方法ならび
にこれを用いたCu系電極膜を提供することにある。On the other hand, as a method of forming a thin film, there is a sputtering method using a target.
At present, no target has been developed to form a thin film of a composition system that hardly forms a solid solution even with metals as described above and has a large difference in melting point. An object of the present invention is to provide an electrode film having excellent corrosion resistance and low resistivity with high reproducibility in view of the above problems.
An object of the present invention is to provide a system-based sputtering target, a method of manufacturing the same, and a Cu-based electrode film using the same.
【0008】[0008]
【課題を解決するための手段】本発明者は、Cu−Cr
に代表される金属同士であってもお互いに固溶しにくい
系を利用する電極膜の形成に適するターゲットを検討し
た。その結果、Cu相をマトリックスとして、Cuに非
固溶な遷移金属元素相を分散したミクロ組織を有するタ
ーゲットであれば膜組成が安定し、再現性のよい薄膜を
得られることを見いだし、本発明に到達した。Means for Solving the Problems The present inventor has proposed Cu-Cr
A target suitable for forming an electrode film using a system in which even metals represented by the above are hardly dissolved in each other was studied. As a result, the present inventors have found that a target having a microstructure in which a transition metal element phase insoluble in Cu is dispersed using a Cu phase as a matrix has a stable film composition and a thin film with good reproducibility can be obtained. Reached.
【0009】すなわち本発明は、Cuを主体とするマト
リックスに、該マトリックスに非固溶な遷移金属元素相
が分散している電極膜形成用Cu系スパッタリングター
ゲットである。That is, the present invention is a Cu-based sputtering target for forming an electrode film in which a transition metal element phase insoluble in the matrix is dispersed in a matrix mainly composed of Cu.
【0010】耐食性と低抵抗性を確保する上において好
ましくは、上記遷移金属元素相は、(Cr、Co、M
o、W、Fe、Nb、V)から選ばれる1種または2種
以上の単体または合金相でなるものとする。In order to ensure corrosion resistance and low resistance, the transition metal element phase is preferably composed of (Cr, Co, M
o, W, Fe, Nb, V), or one or more of single or alloy phases.
【0011】上述した本発明のターゲットは、たとえば
Cuに非固溶な遷移金属元素粉末と、Cu粉末とを混合
し、加圧焼結することによって得ることができる。上述
したターゲットを用いて、薄膜を形成した後、熱処理を
施すことにより、Cuマトリックスに、Cuに非固溶な
遷移金属元素が析出した低抵抗のCu系電極膜を得るこ
とができる。The above-described target of the present invention can be obtained, for example, by mixing a transition metal element powder insoluble in Cu and a Cu powder and subjecting the mixture to pressure sintering. By performing a heat treatment after forming a thin film using the above-described target, a low-resistance Cu-based electrode film in which a transition metal element insoluble in Cu is precipitated in a Cu matrix can be obtained.
【0012】[0012]
【発明の実施の形態】上述したように、本発明の重要な
特徴は、Cu相をマトリックスとして、Cuに非固溶な
遷移金属元素相を分散したミクロ組織を有するターゲッ
トとしたことである。上述したCu−Cr系に代表され
るほとんど固溶しない組成系を溶解法により作製する場
合、固溶域をほとんど持たず、CuとCuに非固溶な遷
移金属元素との凝固温度に著しい差があるために、鋳型
の温度分布により極端な偏析を生じ易く、実用に耐え得
るターゲットを製造することは困難であった。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that a target having a microstructure in which a transition metal element phase insoluble in Cu is dispersed using a Cu phase as a matrix. When a composition system that hardly forms a solid solution represented by the above-described Cu-Cr system is prepared by a dissolution method, the solidification region hardly has a solid solution region, and the solidification temperature of Cu and a transition metal element that is not solid-soluble in Cu significantly differs. For this reason, extreme segregation is likely to occur due to the temperature distribution of the mold, and it has been difficult to manufacture a target that can withstand practical use.
【0013】また、Cuターゲット上に添加元素のペレ
ットを置き成膜を行う複合ターゲットを使用する方法も
検討したが、この方法では、選択的にペレットが消耗す
ることによる組成のずれが発生しやすく再現性に乏しい
という問題点があった。このような方法に対して、本発
明では粉末焼結法を適用し、Cuを主体としてCuに非
固溶な遷移金属元素相をミクロ組織的に分散することに
より、金属同士であってもお互いに固溶しにくく、さら
にお互いの融点に大きな差がある組成系であっても安定
した膜組成を得ることができたものである。Further, a method using a composite target in which a pellet of an additive element is deposited on a Cu target to form a film was also studied. However, in this method, a compositional shift due to selective consumption of the pellet is likely to occur. There was a problem that reproducibility was poor. In contrast to such a method, the present invention employs a powder sintering method and microscopically disperses a transition metal element phase which is mainly composed of Cu and which is insoluble in Cu, so that even if the two metals are mutually metallic, Thus, a stable film composition could be obtained even in a composition system in which a solid solution hardly forms a solid solution and the melting points of the composition systems differ greatly.
【0014】本発明の電極膜として使用できる非固溶な
遷移金属元素相を構成する元素としては、具体的には、
たとえばCr、Mo、W、Co、Fe、Nb、Vがあ
る。これらの元素は、Cuとほとんど固溶せず、Cuマ
トリックスから析出させることができ、かつ電極膜に耐
食性を付与することができる元素である。本発明におい
て添加される非固溶な遷移金属元素量は、比抵抗と耐食
性を考慮して設定する必要があるが、2〜20at%で
あることが好ましい。The elements constituting the non-solid solution transition metal element phase that can be used as the electrode film of the present invention include, specifically,
For example, there are Cr, Mo, W, Co, Fe, Nb, and V. These elements hardly form a solid solution with Cu, can be precipitated from a Cu matrix, and can impart corrosion resistance to the electrode film. The amount of the non-solid solution transition metal element added in the present invention must be set in consideration of the specific resistance and corrosion resistance, but is preferably 2 to 20 at%.
【0015】本発明の製造方法における特徴は、粉末の
加圧焼結である。加圧焼結によれば、非固溶の粉末同士
を一体化することができ、粉末を混合することでCuに
非固溶な遷移金属元素で均一に分散した組織を得ること
ができる。具体的には、加圧焼結法としては、Cuが溶
融しない温度での焼結が必要であり、高圧を発生するこ
とが可能な、熱間静水圧プレス法の適用が望ましい。A feature of the manufacturing method of the present invention is pressure sintering of powder. According to the pressure sintering, non-solid solution powders can be integrated with each other, and by mixing the powders, a structure can be obtained in which the transition metal element insoluble in Cu is uniformly dispersed. Specifically, as the pressure sintering method, sintering at a temperature at which Cu is not melted is necessary, and it is preferable to apply a hot isostatic pressing method capable of generating a high pressure.
【0016】好ましい焼結温度は、600℃から105
0℃であり、さらに、好ましくは800℃から1000
℃である。焼結圧力は高いほど望ましく、100MPa
以上、実用的には200MPa以下の圧力とすることが
望ましい。上述した加圧焼結条件を適用することによ
り、ターゲット中にCuと添加元素が単独で存在すると
仮定して計算された理論密度に対して、99%以上の高
い相対密度を得ることが可能である。[0016] The preferred sintering temperature is from 600 ° C to 105 ° C.
0 ° C, more preferably from 800 ° C to 1000 ° C.
° C. The higher the sintering pressure, the better, 100MPa
As described above, it is practically desirable to set the pressure to 200 MPa or less. By applying the above-described pressure sintering conditions, it is possible to obtain a high relative density of 99% or more with respect to the theoretical density calculated assuming that Cu and the additive element exist alone in the target. is there.
【0017】また、使用する原料粉末の大きさは、均一
な分散性を確保するために、500μm以下、さらに好
ましくは、200μm以下に分級したものが好ましい。
本発明においては、Cuと非固溶の遷移金属元素が、C
uマトリックスにほとんど拡散しないため、原料粒子の
粒径とターゲット組織中に分散する相の大きさがほぼ一
致するものとなる。本発明のターゲットをスパッタする
ことによって得た薄膜を熱処理し、Cuに非固溶な元素
を析出させることで、比抵抗の小さい電極膜を得ること
ができる。The size of the raw material powder used is preferably 500 μm or less, more preferably 200 μm or less, in order to ensure uniform dispersibility.
In the present invention, the transition metal element insoluble with Cu is C
Since it hardly diffuses into the u matrix, the particle size of the raw material particles and the size of the phase dispersed in the target structure are almost the same. By heat-treating the thin film obtained by sputtering the target of the present invention to precipitate an element that is insoluble in Cu, an electrode film having a small specific resistance can be obtained.
【0018】[0018]
【実施例】以下本発明の一実施例について説明する。粒
径100μm以下のCu粉末と粒径200μm以下の添
加元素X粉末(X:Cr,Fe,Nb)とをロッキング
ミキサーにて混合し、充填寸法φ133mm×25mm
の鉄製の缶に充填し、10マイナス6乗Pa以下に排気
を行いながら400℃で1時間保持し脱気を行った。次
にこれを950℃、123MPaでHIP(熱間静水圧
プレス)を行った後、機械加工によりφ100mm×5
mmのCu−10at%X焼結ターゲットを得た。ま
た、電解法によって製造された平均粒径10μmのCu
粉末と還元法によって製造された添加元素粉末X(X:
Mo,W)とを用いて同様にCu−10at%X焼結タ
ーゲットを得た。An embodiment of the present invention will be described below. A Cu powder having a particle size of 100 μm or less and an additive element X powder (X: Cr, Fe, Nb) having a particle size of 200 μm or less are mixed by a rocking mixer, and a filling dimension φ133 mm × 25 mm
And kept at 400 ° C. for 1 hour while evacuating to 10 6 Pa or less to degas. Next, this was subjected to HIP (Hot Isostatic Press) at 950 ° C. and 123 MPa, and then φ100 mm × 5 by machining.
mm Cu-10at% X sintered target was obtained. Further, Cu having an average particle size of 10 μm manufactured by the electrolytic method is used.
Powder and an additive element powder X (X:
Mo, W) to obtain a Cu-10 at% X sintered target in the same manner.
【0019】図1〜5に本発明の試料1〜5に対応する
X=Cr,Mo,W,Fe,Nbを添加元素とした場合
のターゲット組織の典型的な金属ミクロ組織写真を示
す。図1〜5に示すように、本発明のターゲットはCu
マトリックスに、元素Xでなる相がが均一に分散した組
織になっていることがわかる。FIGS. 1 to 5 show typical metal microstructure photographs of a target structure when X = Cr, Mo, W, Fe, and Nb are added elements corresponding to samples 1 to 5 of the present invention. As shown in FIGS. 1 to 5, the target of the present invention is Cu
It can be seen that the matrix has a structure in which the phase composed of the element X is uniformly dispersed.
【0020】比較例1として、φ100mm×5mmの
Cuターゲット上に5mm×5mm×1mmのCrペレ
ットを12ヶ配置した複合ターゲットを用意した。これ
らのターゲットをDCマグネトロンスパッタ装置に装着
し、1.0×10マイナス6乗Pa以下に排気を行な
い、ついでArガスを0.3Paまで導入し投入電力3
00Wで30分間プレスパッタを行った後、洗浄済みの
ガラス基板上に投入電力500Wで膜厚1μmの膜を形
成した。スパッタリング終了後、チャンバーをN2ガス
で置換して基板を取り出した。この作業をそれぞれのタ
ーゲットについて5回行い、それぞれについてバッチの
異なる5枚の試料を用意した。これらの膜の組成をIC
P(誘導結合プラズマ発光分光分析法)により分析し
た。(試料6)As Comparative Example 1, there was prepared a composite target in which 12 Cr pellets of 5 mm × 5 mm × 1 mm were arranged on a Cu target of φ100 mm × 5 mm. These targets were mounted on a DC magnetron sputtering apparatus, and the gas was evacuated to a pressure of 1.0 × 10−6 Pa or less.
After performing pre-sputtering at 00 W for 30 minutes, a film having a thickness of 1 μm was formed on the cleaned glass substrate at an input power of 500 W. After the completion of the sputtering, the chamber was replaced with N 2 gas, and the substrate was taken out. This operation was performed five times for each target, and five samples of different batches were prepared for each target. The composition of these films is
Analysis was performed by P (inductively coupled plasma emission spectroscopy). (Sample 6)
【0021】また、比較例2として2元蒸着装置に2つ
の蒸発源にそれぞれCu、Crの原料を投入し、1.0
×10マイナス6乗Pa以下に排気を行った後、洗浄済
みのガラス基板上に投入電力500Wで膜厚1μmの膜
を形成したのち、チャンバーをN2ガスで置換して基板
を取り出した。この作業を5回行い、それぞれについて
バッチの異なる5枚の試料を用意した。これらの膜の組
成をICPにより分析した。(試料7) 以上の結果を表1に示す。また、本発明のターゲットの
密度を水中置換法により測定した。測定して得られた密
度の実測値と理論密度で計算される相対密度を表2に示
す。As Comparative Example 2, Cu and Cr raw materials were respectively charged into two evaporation sources in a binary vapor deposition apparatus,
After evacuation was performed at a pressure of × 10 −6 Pa or less, a film having a thickness of 1 μm was formed on the cleaned glass substrate with an input power of 500 W, and then the chamber was replaced with N 2 gas and the substrate was taken out. This operation was performed five times, and five samples of different batches were prepared for each. The composition of these films was analyzed by ICP. (Sample 7) The above results are shown in Table 1. Further, the density of the target of the present invention was measured by an underwater displacement method. Table 2 shows the measured density values obtained by the measurement and the relative densities calculated from the theoretical densities.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】表1に示すように、本発明のスパッタリン
グターゲットにより成膜した膜の目標組成に対するバッ
チ間の組成変動は±5%以内に収まっており、比較例1
および2の試料と比べて極めて組成変動が少なく、再現
性の高い電極膜が得られたことがわかる。また、表2に
示すように、本発明のターゲットの密度は、相対密度9
9%以上の高い密度であり、スパッタリング時の異常放
電等の原因となる空隙の少ないターゲットとなっている
ことがわかる。As shown in Table 1, the composition variation between batches with respect to the target composition of the film formed by the sputtering target of the present invention was within ± 5%.
It can be seen that the composition of the electrode film was extremely low in compositional variation compared to the samples of Examples 2 and 2, and a highly reproducible electrode film was obtained. Further, as shown in Table 2, the target of the present invention had a relative density of 9%.
It is understood that the target has a high density of 9% or more and has few voids which cause abnormal discharge or the like during sputtering.
【0025】[0025]
【発明の効果】本発明によれば優れた耐食性と低い抵抗
率を有する電極膜を再現性良く製造することができるC
u系スパッタリングターゲットを提供することができる
ため、低比抵抗電極を必要とする各種デバイスの実用化
にとって欠くことのできない技術となる。According to the present invention, an electrode film having excellent corrosion resistance and low resistivity can be produced with good reproducibility.
Since a u-based sputtering target can be provided, this is an indispensable technique for practical use of various devices that require a low specific resistance electrode.
【図1】本発明のCrを添加したターゲットの一例を示
す金属ミクロ組織写真である。FIG. 1 is a metal microstructure photograph showing an example of a Cr-added target of the present invention.
【図2】本発明のMoを添加したターゲットの一例を示
す金属ミクロ組織写真である。FIG. 2 is a metal microstructure photograph showing an example of a target to which Mo of the present invention is added.
【図3】本発明のWを添加したターゲットの一例を示す
金属ミクロ組織写真である。FIG. 3 is a metal microstructure photograph showing one example of a target to which W of the present invention is added.
【図4】本発明のFeを添加したターゲットの一例を示
す金属ミクロ組織写真である。FIG. 4 is a metal microstructure photograph showing an example of a target to which Fe of the present invention is added.
【図5】本発明のNbを添加したターゲットの一例を示
す金属ミクロ組織写真である。FIG. 5 is a metal microstructure photograph showing an example of a target to which Nb according to the present invention is added.
Claims (4)
トリックスに非固溶な遷移金属元素相が分散しているこ
とを特徴とする電極膜形成用Cu系スパッタリングター
ゲット。1. A Cu-based sputtering target for forming an electrode film, wherein a transition metal element phase insoluble in the matrix is dispersed in a matrix mainly composed of Cu.
o、W、Fe、Nb、V)から選ばれる1種または2種
以上の単体または合金相でなることを特徴とする電極膜
形成用Cu系スパッタリングターゲット。2. The transition metal element phase comprises (Cr, Co, M
o, W, Fe, Nb, V). A Cu-based sputtering target for forming an electrode film, comprising at least one element selected from the group consisting of a single substance and an alloy phase.
粉末とを混合し、加圧焼結することを特徴とする電極膜
形成用Cu系スパッタリングターゲットの製造方法。3. A transition metal element powder insoluble in Cu and Cu
A method for producing a Cu-based sputtering target for forming an electrode film, comprising mixing powder and sintering under pressure.
成されたことを特徴とするCu系電極膜。4. A Cu-based electrode film formed by the target according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21705297A JP3710022B2 (en) | 1997-07-28 | 1997-07-28 | Cu-based sputtering target for electrode film formation and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21705297A JP3710022B2 (en) | 1997-07-28 | 1997-07-28 | Cu-based sputtering target for electrode film formation and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1150242A true JPH1150242A (en) | 1999-02-23 |
JP3710022B2 JP3710022B2 (en) | 2005-10-26 |
Family
ID=16698083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21705297A Expired - Lifetime JP3710022B2 (en) | 1997-07-28 | 1997-07-28 | Cu-based sputtering target for electrode film formation and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3710022B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001073127A (en) * | 1999-07-14 | 2001-03-21 | Praxair St Technol Inc | PRODUCTION OF LOW OXYGEN HIGH DENSITY Cu/Cr SPUTTERING TARGET |
KR100788266B1 (en) * | 2007-08-06 | 2007-12-27 | 데프트 가부시키가이샤 | Electronic part, electronic equipment, process for producing electronic part and electronic optical part |
KR100787883B1 (en) | 2006-02-17 | 2007-12-27 | 데프트 가부시키가이샤 | Metallic material for electronic part and method of working metallic material |
JP2008506040A (en) * | 2004-07-15 | 2008-02-28 | プランゼー エスエー | Materials for conductive wires made from copper alloys |
CN102747326A (en) * | 2011-04-21 | 2012-10-24 | 鸿富锦精密工业(深圳)有限公司 | Preparation method of coated article and coated article prepared by it |
CN102747332A (en) * | 2011-04-21 | 2012-10-24 | 鸿富锦精密工业(深圳)有限公司 | Preparation method of coated article and coated article prepared by it |
WO2012147998A1 (en) * | 2011-04-27 | 2012-11-01 | 東邦チタニウム株式会社 | α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME |
US8435390B2 (en) * | 2011-04-21 | 2013-05-07 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Method for making coated article |
JP2013133489A (en) * | 2011-12-26 | 2013-07-08 | Sumitomo Metal Mining Co Ltd | Cu ALLOY SPUTTERING TARGET, METHOD FOR PRODUCING THE SAME, AND METAL THIN FILM |
WO2014132857A1 (en) * | 2013-03-01 | 2014-09-04 | Jx日鉱日石金属株式会社 | High-purity copper-cobalt alloy sputtering target |
JP2016103436A (en) * | 2014-11-28 | 2016-06-02 | 住友金属鉱山株式会社 | Conductive substrate and method for producing the same |
US10297429B2 (en) | 2012-01-25 | 2019-05-21 | Jx Nippon Mining & Metals Corporation | High-purity copper-chromium alloy sputtering target |
WO2023093011A1 (en) * | 2021-11-25 | 2023-06-01 | 江苏科技大学 | Copper alloy thin film, and protective layer based on service of copper alloy thin film and preparation method therefor |
-
1997
- 1997-07-28 JP JP21705297A patent/JP3710022B2/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001073127A (en) * | 1999-07-14 | 2001-03-21 | Praxair St Technol Inc | PRODUCTION OF LOW OXYGEN HIGH DENSITY Cu/Cr SPUTTERING TARGET |
JP4689011B2 (en) * | 1999-07-14 | 2011-05-25 | プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド | Low oxygen high density Cu / Cr sputtering target manufacturing method |
JP2008506040A (en) * | 2004-07-15 | 2008-02-28 | プランゼー エスエー | Materials for conductive wires made from copper alloys |
KR100787883B1 (en) | 2006-02-17 | 2007-12-27 | 데프트 가부시키가이샤 | Metallic material for electronic part and method of working metallic material |
KR100788266B1 (en) * | 2007-08-06 | 2007-12-27 | 데프트 가부시키가이샤 | Electronic part, electronic equipment, process for producing electronic part and electronic optical part |
US8435390B2 (en) * | 2011-04-21 | 2013-05-07 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Method for making coated article |
US8425736B2 (en) * | 2011-04-21 | 2013-04-23 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Method for making coated article |
US8425737B2 (en) * | 2011-04-21 | 2013-04-23 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Method for making coated article |
CN102747326A (en) * | 2011-04-21 | 2012-10-24 | 鸿富锦精密工业(深圳)有限公司 | Preparation method of coated article and coated article prepared by it |
CN102747332A (en) * | 2011-04-21 | 2012-10-24 | 鸿富锦精密工业(深圳)有限公司 | Preparation method of coated article and coated article prepared by it |
WO2012147998A1 (en) * | 2011-04-27 | 2012-11-01 | 東邦チタニウム株式会社 | α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME |
JP5692940B2 (en) * | 2011-04-27 | 2015-04-01 | 東邦チタニウム株式会社 | α + β-type or β-type titanium alloy and method for producing the same |
JP2013133489A (en) * | 2011-12-26 | 2013-07-08 | Sumitomo Metal Mining Co Ltd | Cu ALLOY SPUTTERING TARGET, METHOD FOR PRODUCING THE SAME, AND METAL THIN FILM |
US10297429B2 (en) | 2012-01-25 | 2019-05-21 | Jx Nippon Mining & Metals Corporation | High-purity copper-chromium alloy sputtering target |
WO2014132857A1 (en) * | 2013-03-01 | 2014-09-04 | Jx日鉱日石金属株式会社 | High-purity copper-cobalt alloy sputtering target |
KR20160002673A (en) * | 2013-03-01 | 2016-01-08 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | High-purity copper-cobalt alloy sputtering target |
US9909196B2 (en) | 2013-03-01 | 2018-03-06 | Jx Nippon Mining & Metals Corporation | High-purity copper-cobalt alloy sputtering target |
JP5837202B2 (en) * | 2013-03-01 | 2015-12-24 | Jx日鉱日石金属株式会社 | High purity copper cobalt alloy sputtering target |
JP2016103436A (en) * | 2014-11-28 | 2016-06-02 | 住友金属鉱山株式会社 | Conductive substrate and method for producing the same |
WO2023093011A1 (en) * | 2021-11-25 | 2023-06-01 | 江苏科技大学 | Copper alloy thin film, and protective layer based on service of copper alloy thin film and preparation method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3710022B2 (en) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1948376B1 (en) | Methods of making molybdenum titanium sputtering plates and targets | |
JP3445276B2 (en) | Mo-W target for wiring formation, Mo-W wiring thin film, and liquid crystal display device using the same | |
JP4432015B2 (en) | Sputtering target for thin film wiring formation | |
JP5210498B2 (en) | Joining type sputtering target and method for producing the same | |
JP3710022B2 (en) | Cu-based sputtering target for electrode film formation and manufacturing method thereof | |
JP2008506040A (en) | Materials for conductive wires made from copper alloys | |
JP2011504547A (en) | Sputtering target doped with refractory metal | |
JP6479788B2 (en) | Sputtering target and manufacturing method thereof | |
JP4415303B2 (en) | Sputtering target for thin film formation | |
WO1995004167A1 (en) | High melting point metallic silicide target and method for producing the same, high melting point metallic silicide film and semiconductor device | |
JP2000294556A (en) | Aluminum alloy wiring film excellent in dry etching and target for aluminum alloy wiring film formation | |
JP3967067B2 (en) | Sputtering target | |
KR20140106468A (en) | MoTi TARGET MATERIAL AND METHOD FOR MANUFACTURING FOR THE SAME | |
JP2004217990A (en) | Sputtering target, and production method therefor | |
TW478043B (en) | High performance Cu/Cr sputter targets for semiconductor application | |
JPH05222525A (en) | Production of tungsten target for semiconductor | |
JP2000001732A (en) | Mo-W MATERIAL FOR WIRING FORMATION, Mo-W TARGET FOR WIRING FORMATION AND ITS PRODUCTION, AND Mo-W WIRING THIN FILM AND LIQUID CRYSTAL DISPLAY DEVICE | |
JP2000328242A (en) | Ti-al alloy sputtering target and its production | |
JP4921653B2 (en) | Sputtering target and manufacturing method thereof | |
JPH10147860A (en) | Al-based sputtering target material and its production | |
JPH06299354A (en) | Thin al alloy film and its production, and thin al alloy film forming sputtering target | |
JPH05214520A (en) | Sputtering target for titanium | |
JP2000355761A (en) | Ta TARGET FOR FILM-FORMING BARRIER MATERIAL AND ITS PRODUCTION | |
JP2001214261A (en) | METHOD FOR REFINING STRUCTURE OF Al SERIES TARGET MATERIAL FOR SPUTTERING | |
JP2000063971A (en) | Sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050304 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050722 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050804 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090819 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090819 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100819 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100819 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110819 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110819 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120819 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120819 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130819 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |