[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1150809A - Elongation adjuster for rotating body - Google Patents

Elongation adjuster for rotating body

Info

Publication number
JPH1150809A
JPH1150809A JP20774697A JP20774697A JPH1150809A JP H1150809 A JPH1150809 A JP H1150809A JP 20774697 A JP20774697 A JP 20774697A JP 20774697 A JP20774697 A JP 20774697A JP H1150809 A JPH1150809 A JP H1150809A
Authority
JP
Japan
Prior art keywords
temperature
air
rotating body
clearance
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20774697A
Other languages
Japanese (ja)
Inventor
Sunao Umemura
直 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20774697A priority Critical patent/JPH1150809A/en
Publication of JPH1150809A publication Critical patent/JPH1150809A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To adjust a clearance between the tip of a moving blade and a casing by adjusting the temperature of cooling air of a rotor in an elongation adjuster for the rotating body of a jet engine or a gas turbine. SOLUTION: Outlet air 26 from a compressor 30 is partly extracted to be introduced to a cooler 22, in which the air 26 is cooled by a refrigerant flowing in a refrigerant pipe 29. The cooled air 27 is supplied to a rotor cooling air inlet 34 by a fan 25, thereby cooling a rotor of a gas turbine 31. A clearance sensor 21 and a temperature sensor 24 are provided on a fixed side opposite to a two-stage moving blade 2S and an outlet pipeline of the cooler 22, respectively, which detect a clearance at the tip of a moving blade and the temperature of the cooling air 27, and then, input the results into a controller 28. The controller 28 controls an opening degree of a valve 23, decreases the temperature of the cooling air 27 at the time of starting, reduces elongation and increases the clearance; in contrast, it increases the temperature and the elongation, reduces the clearance at the time of rating. Namely, the controller 28 controls to keep the optimum clearance according to operating conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】回転体の伸び量調整装置に関
し、特に、ジェットエンジンやガスタービンの回転体と
静止体との間隙の最適化に適用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for adjusting the amount of elongation of a rotating body, and more particularly to an apparatus for optimizing a clearance between a rotating body and a stationary body of a jet engine or gas turbine.

【0002】[0002]

【従来の技術】回転体と静止体を有する例として図3に
ガスタービンの一般的なブロック図を示す。図におい
て、ガスタービンは圧縮機30とタービン31、燃焼器
32から構成されており、圧縮機30からの空気で燃料
を燃焼器32で燃焼させ、高温の燃焼ガスを得て、この
高温燃焼ガスをタービン31へ送る。燃焼ガスはロータ
に取付けられた動翼と静翼とを交互に多段に配置した燃
焼ガス通路に流れて動翼によりロータを回転させ、ロー
タに直結した発電機を駆動する。一方、タービン31は
高温燃焼ガスにさらされるので、圧縮機30からの空気
33を一部抽気してタービン31へ供給し、静翼、動翼
及びロータに導き、これらを冷却している。
2. Description of the Related Art FIG. 3 shows a general block diagram of a gas turbine as an example having a rotating body and a stationary body. In the figure, the gas turbine includes a compressor 30, a turbine 31, and a combustor 32, and burns fuel in the combustor 32 with air from the compressor 30 to obtain a high-temperature combustion gas. To the turbine 31. The combustion gas flows through a combustion gas passage in which moving blades and stationary blades attached to the rotor are alternately arranged in multiple stages, rotates the rotor by the moving blades, and drives a generator directly connected to the rotor. On the other hand, since the turbine 31 is exposed to the high-temperature combustion gas, a part of the air 33 from the compressor 30 is extracted and supplied to the turbine 31 and guided to the stationary blades, the moving blades and the rotor to cool them.

【0003】図3は上記に説明のガスタービンの一般的
な断面図であり、図2に示すタービン31の詳細を示
す。図において、1C,2C,3C,4Cは静翼であ
り、それぞれロータ周囲に放射状に複数枚が配置され、
静止側に取付けられている。1S,2S,3S,4Sは
動翼であり、それぞれ翼根部を介してロータ周囲に取付
けられており、静翼と交互に軸方向に配置され、ロータ
と共に回転する。11C,12C,13C,14Cはそ
れぞれ静翼1C〜4Cの内側シュラウド、11S,12
S,13S,14Sはそれぞれ動翼1S〜4Sのプラッ
トフォームである。
FIG. 3 is a general sectional view of the gas turbine described above, and shows details of the turbine 31 shown in FIG. In the drawing, reference numerals 1C, 2C, 3C, and 4C denote stationary blades, and a plurality of blades are radially arranged around the rotor, respectively.
Mounted on stationary side. Reference numerals 1S, 2S, 3S, and 4S denote moving blades, each of which is attached to the periphery of the rotor via a blade root portion, arranged alternately with the stationary blades in the axial direction, and rotate with the rotor. 11C, 12C, 13C and 14C are inner shrouds of the stationary blades 1C to 4C, 11S and 12C, respectively.
S, 13S, and 14S are platforms of the moving blades 1S to 4S, respectively.

【0004】22,23,24はシーリング保持環であ
り、静翼2C〜4Cの内側シュラウド12C〜14Cの
フランジにロータと近接するシールを保持している。こ
のように図3に示す例では静翼、動翼がそれぞれ4段か
ら構成されたガスタービンであり、このような構成によ
り燃焼器からの燃焼ガスによりロータを回転し、発電機
を駆動するものである。
[0004] Reference numerals 22, 23, and 24 denote sealing retaining rings which hold seals close to the rotor on flanges of inner shrouds 12C to 14C of the stationary blades 2C to 4C. In this manner, in the example shown in FIG. 3, the stationary blade and the moving blade are gas turbines each having four stages, and the rotor is rotated by the combustion gas from the combustor to drive the generator by such a configuration. It is.

【0005】上記に説明のガスタービンや、これと類似
の回転体を有するジェットエンジンでは冷却空気のもれ
を少なくするため回転体と静止体の間の半径方向の間隙
を可能な限り少なくすることが性能を向上させるために
要求されている。このため、間隙を調整し、運転状態で
最適な間隙を取ることが必要である。従来は間隙を計測
しながら静止側(ケーシング)の温度を調整して、間隙
を調整するアクティブクリアランスコントロールの方法
が主体であり、回転側の温度を調整して間隙を調整する
アクティブクリアランスコントロールの方法はまだ発明
されていない状況にある。
In the gas turbine described above and a jet engine having a rotating body similar thereto, the radial gap between the rotating body and the stationary body is reduced as much as possible in order to reduce leakage of cooling air. Is required to improve performance. For this reason, it is necessary to adjust the gap and to obtain an optimum gap in the operating state. Conventionally, the active clearance control method of adjusting the gap by adjusting the temperature on the stationary side (casing) while measuring the gap is mainly used, and the active clearance control method of adjusting the gap by adjusting the temperature on the rotating side. Has not been invented yet.

【0006】[0006]

【発明が解決しようとする課題】ガスタービンでは入口
燃焼ガス温度が800℃〜1300℃、あるいは近年の
高温ガスタービンにおいては1500℃クラスのものが
開発されており、静翼、動翼及びロータ部はこのような
高温燃焼ガスにさらされるので、前述のように圧縮機か
らの冷却空気を抽気して導き、冷却するシステムが採用
されている。回転体のロータ側と静止側との間には接触
を避けるために所定のクリアランスが必要であるが、こ
のクリアランスはシール空気のもれを少なくするため運
転状態でできるだけ小さく、最適な間隙を取ることが必
要である。しかし、上記の冷却空気は部材の強度確保の
ために使用されており、間隙の調整の観点からは用いら
れていない。
Gas turbines having an inlet combustion gas temperature of 800 ° C. to 1300 ° C. or a recent high temperature gas turbine having a temperature of 1500 ° C. have been developed. Is exposed to such a high-temperature combustion gas, and thus, a system for extracting and guiding cooling air from the compressor as described above is employed. A certain clearance is required between the rotor side and the stationary side of the rotating body to avoid contact, but this clearance is as small as possible during operation to minimize leakage of seal air, and has an optimal clearance It is necessary. However, the cooling air is used for securing the strength of the member, and is not used from the viewpoint of adjusting the gap.

【0007】そこで本発明はガスタービンやエンジンの
回転体と静止体との隙間を最適に調整するために、ロー
タ側に送り込む冷却空気の温度を調整し、この温度によ
ってディスクの温度を調整し、これによりディスクの伸
び量を調整することのできる回転体の伸び量調整装置を
提供することを目的としてなされたものである。
Therefore, the present invention adjusts the temperature of the cooling air sent to the rotor side, and adjusts the temperature of the disk based on this temperature in order to optimally adjust the gap between the rotating body and the stationary body of the gas turbine or the engine. It is an object of the present invention to provide an apparatus for adjusting the amount of elongation of a rotating body capable of adjusting the amount of elongation of a disk.

【0008】[0008]

【課題を解決するための手段】本発明は前述の課題を解
決するために次の(1),(2)の手段を提供する。
The present invention provides the following means (1) and (2) to solve the above-mentioned problems.

【0009】(1)ケーシングと、同ケーシング内で軸
回りに回転する回転体からなり、圧縮機からの空気を同
ケーシングと回転体に導き、これらを冷却する装置にお
いて、前記回転体と前記ケーシング内面との隙間を計測
する隙間センサと、前記圧縮機の出口空気を一部抽気し
て冷却し、前記回転体に導くクーラと、同クーラの出口
空気の温度を検出する温度センサと、前記クーラで冷却
される空気の温度を調整する手段と、前記隙間センサの
信号と前記温度センサの信号を入力し、前記回転体と前
記ケーシング内面との隙間が運転状況に応じて所定の隙
間となるように前記空気温度調整手段を制御するコント
ローラとを具備したことを特徴とする回転体の伸び量調
整装置。
(1) A device comprising a casing and a rotating body which rotates around an axis in the casing, and guides air from a compressor to the casing and the rotating body, and cools them. A gap sensor that measures a gap with an inner surface, a cooler that partially extracts and cools the outlet air of the compressor and guides it to the rotating body, a temperature sensor that detects the temperature of the outlet air of the cooler, and the cooler Means for adjusting the temperature of the air to be cooled in, and a signal from the gap sensor and a signal from the temperature sensor are input so that a gap between the rotating body and the inner surface of the casing becomes a predetermined gap according to an operating condition. And a controller for controlling the air temperature adjusting means.

【0010】(2)上記(1)において、前記冷却空気
の温度調整手段は前記クーラの冷媒の流量を調整するバ
ルブよりなることを特徴とする回転体の伸び量調整装
置。
(2) In the above (1), the cooling air temperature adjusting means comprises a valve for adjusting the flow rate of the cooling medium in the cooler.

【0011】上記の(1)の発明においては、圧縮機出
口空気の一部をクーラに導き、クーラで冷却した空気を
回転体に導き、この冷却空気の温度を制御することによ
り回転体の冷却温度が変わり、回転体、例えば動翼先端
との伸び量が変わり、動翼とケーシング内側との隙間を
調整することができる。冷却空気の温度の調整は空気温
度調整手段にて行なわれ、コントローラにより制御され
る。コントローラには、回転体とケーシング内側との隙
間を計測する隙間センサから隙間に応じた信号と、温度
センサからのクーラ出口の冷却空気の温度が入力され
る。コントローラには、例えば起動時と定格運転時での
適正な隙間の目標値を定めておき、運転中の隙間センサ
からの信号と、目標値とを比較し、それぞれの運転状況
に応じて目標値に近づくように空気温度調整手段に信号
を送り、これを制御してクーラによる冷却温度を調整
し、回転体の伸び量を変化させ、回転体とケーシング内
側との隙間が目標値となるように制御する。
In the above invention (1), a part of the compressor outlet air is guided to a cooler, the air cooled by the cooler is guided to a rotating body, and the temperature of the cooling air is controlled to cool the rotating body. The temperature changes, the amount of elongation with the rotating body, for example, the tip of the moving blade changes, and the gap between the moving blade and the inside of the casing can be adjusted. The temperature of the cooling air is adjusted by the air temperature adjusting means and controlled by the controller. A signal corresponding to the gap from a gap sensor that measures the gap between the rotating body and the inside of the casing and the temperature of the cooling air at the cooler outlet from the temperature sensor are input to the controller. For example, the controller sets an appropriate gap target value at startup and during rated operation, compares the signal from the gap sensor during operation with the target value, and sets the target value according to each operating condition. A signal to the air temperature adjustment means to control the temperature of the cooling unit by controlling the cooling temperature by controlling the cooling unit to change the amount of elongation of the rotating body so that the gap between the rotating body and the inside of the casing becomes the target value. Control.

【0012】空気調整手段としては、(2)の発明のよ
うにクーラの冷媒の流量をバルブで制御することにより
空気の冷却温度を容易に調整することができるが、他の
手段として、冷媒流量を変えずに冷却した空気を送風
機、等により回転体に送る風量を調整するようにしても
良い。
As the air adjusting means, the cooling temperature of the air can be easily adjusted by controlling the flow rate of the refrigerant in the cooler with a valve as in the invention of (2). The air volume to be sent to the rotating body by a blower or the like may be adjusted without changing the temperature.

【0013】コントローラの運転状況に応じた制御とし
ては、例えば起動時においては、ロータディスクの冷却
を充分に行うことにより動翼とケーシング内側との間隙
を大きくしておき、お互いが厳しい接触状態にならない
ようにクーラによる冷却温度を低くなるように空気温度
調整手段を制御し、回転体の伸び量を小さくする。又、
定格運転時では冷却空気の温度を高くして回転体の伸び
量を大きくし、回転体がケーシング内側に接触しない範
囲で隙間を小さくするように空気温度調整手段を制御す
る。
The control according to the operating condition of the controller includes, for example, at the time of start-up, a sufficient clearance between the rotor blades and the inside of the casing by sufficiently cooling the rotor disk, so that the mutual contact between the rotor blades and the casing is severe. The air temperature adjusting means is controlled so as to lower the cooling temperature of the cooler so as not to reduce the elongation of the rotating body. or,
At the time of rated operation, the temperature of the cooling air is increased to increase the amount of elongation of the rotating body, and the air temperature adjusting means is controlled so as to reduce the gap as long as the rotating body does not contact the inside of the casing.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係る回転体の伸び量調整装置を適用したガ
スタービンを示している。図において、30,31,3
2は図2で示すブロック図に対応し、30は圧縮機、3
1はガスタービン、32は燃焼器である。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows a gas turbine to which an elongation adjusting device for a rotating body according to an embodiment of the present invention is applied. In the figure, 30, 31, 3
2 corresponds to the block diagram shown in FIG.
1 is a gas turbine, 32 is a combustor.

【0015】21はクリアランスセンサでガスタービン
31の2段動翼2Sの先端に対向する車室内壁面に取付
けられている。22はクーラで内部に冷媒管29が通っ
ている。23はバルブであり冷媒管29に設けられ、冷
媒の流量を調整する。24は温度センサであり、クーラ
22の出口側の配管に設けられている。25は送風機、
26は圧縮機31の出口側近傍の圧縮機出口空気、27
はクーラ22で冷却された冷却空気である。
Reference numeral 21 denotes a clearance sensor which is mounted on the wall surface of the vehicle interior facing the tip of the two-stage bucket 2S of the gas turbine 31. Reference numeral 22 denotes a cooler through which a refrigerant pipe 29 passes. A valve 23 is provided in the refrigerant pipe 29 and adjusts the flow rate of the refrigerant. Reference numeral 24 denotes a temperature sensor, which is provided on a pipe on the outlet side of the cooler 22. 25 is a blower,
26 is a compressor outlet air near the outlet side of the compressor 31;
Is cooling air cooled by the cooler 22.

【0016】28はコントローラであり、クリアランス
センサ21の検出信号と温度センサ24の検出信号をそ
れぞれ入力し、冷却空気27の温度が適正値となるよう
にバルブ23の開度を調節する信号を出力する。クリア
ランスセンサ27は動翼2Sと静止側とのクリアランス
に対応した信号を出力し、温度センサ24は、抽気した
圧縮機出口空気26をクーラ22で冷却して低温となっ
た冷却空気27の温度を測定し、この測定温度の信号を
出力する。これらの両検出信号がコントローラ28に入
力され、コントローラ28ではこのクリアランスセンサ
21の信号が最適な目標のクリアランスとなるようにバ
ルブ23の開度を調整してクーラ22の冷媒管29内を
流れる冷媒の量を調整し、冷媒空気27の温度を制御す
る。
Reference numeral 28 denotes a controller which receives a detection signal of the clearance sensor 21 and a detection signal of the temperature sensor 24 and outputs a signal for adjusting the opening of the valve 23 so that the temperature of the cooling air 27 becomes an appropriate value. I do. The clearance sensor 27 outputs a signal corresponding to the clearance between the rotor blades 2S and the stationary side, and the temperature sensor 24 detects the temperature of the cooling air 27 cooled by the cooler 22 to reduce the temperature of the cooling air 27. It measures and outputs a signal of this measured temperature. These two detection signals are input to the controller 28, and the controller 28 adjusts the opening degree of the valve 23 so that the signal of the clearance sensor 21 becomes an optimum target clearance, and controls the refrigerant flowing through the refrigerant pipe 29 of the cooler 22. And the temperature of the refrigerant air 27 is controlled.

【0017】上記構成において、回転体の伸び量の調整
方法は次のようにして行う。まず圧縮機30の出口近傍
の空気を送風機25を駆動して抽気し、圧縮機出口空気
26としてクーラ22へ導き、冷媒管29を流れる冷媒
で冷却し、冷却空気27としてロータ冷却空気入口34
へ送る。この時はクリアランスセンサ21からの間隙に
応じた信号及び温度センサ24からの冷却空気27の温
度の信号がそれぞれコントローラ28に入力される。
In the above configuration, a method of adjusting the amount of elongation of the rotating body is performed as follows. First, the air near the outlet of the compressor 30 is extracted by driving the blower 25, guided to the cooler 22 as the compressor outlet air 26, cooled with the refrigerant flowing through the refrigerant pipe 29, and cooled as the cooling air 27 with the rotor cooling air inlet 34.
Send to At this time, a signal corresponding to the gap from the clearance sensor 21 and a signal of the temperature of the cooling air 27 from the temperature sensor 24 are input to the controller 28, respectively.

【0018】コントローラ28はガスタービンの起動時
と定格運転時においても、動翼2S先端部の固定側に対
するクリアランスの適正な目標値を定めておき、クリア
ランスセンサ21と温度センサ29との検出信号を入力
し、目標値と運転中のクリアランスセンサ21からの信
号とを比較し、それぞれの運転状況に応じた目標のクリ
アランスが得られるようにバルブ23の開度を制御し、
クーラ22による冷却空気の温度を温度センサ29を参
照して制御する。
The controller 28 determines an appropriate target value of the clearance with respect to the fixed side of the tip of the rotor blade 2S even at the time of starting the gas turbine and at the time of rated operation, and outputs detection signals from the clearance sensor 21 and the temperature sensor 29. Input, the target value is compared with a signal from the clearance sensor 21 during operation, and the opening degree of the valve 23 is controlled so as to obtain a target clearance according to each driving condition.
The temperature of the cooling air by the cooler 22 is controlled with reference to the temperature sensor 29.

【0019】上記のコントローラ28の制御について
は、ガスタービンの起動時にはディスクの冷却を十分に
行なうことによって、ケーシングと動翼先端のクリアラ
ンスの間隙を大きくして、お互いが厳しい接触を生じな
いように作用させる。そのために、コントローラ22は
バルブ23の開度を大きくして冷媒管29内の冷媒流量
を多くし、冷却空気27の温度を低くするように作用さ
せ、ロータ側の伸び量を少くする。
Regarding the control of the controller 28, when the gas turbine is started, by sufficiently cooling the disk, the clearance between the casing and the tip of the moving blade is increased so as not to cause severe contact with each other. Let it work. For this purpose, the controller 22 acts to increase the opening degree of the valve 23 to increase the flow rate of the refrigerant in the refrigerant pipe 29, lower the temperature of the cooling air 27, and reduce the amount of elongation on the rotor side.

【0020】一方、定格回転、定格負荷では冷却空気2
7の温度を高くしてロータを伸ばし、接触しない範囲で
両者の間隙を最適化する。そのためにコントローラ28
はバルブ23の開度を小さくし、冷却空気27の冷却を
弱めるように作用させる。
On the other hand, at rated rotation and rated load, cooling air 2
The rotor is stretched by increasing the temperature of 7, and the gap between them is optimized within a range where they do not contact each other. The controller 28
Acts to reduce the opening of the valve 23 and weaken the cooling of the cooling air 27.

【0021】上記に説明のように、ロータの冷却空気に
圧縮機30から発生した空気を一部抽気し、これを冷却
して使用するならば、この冷却をゆるめることによって
動翼のクリアランスを少なくすることが可能となるた
め,定格負荷で長期に使用される機器の性能の確保によ
り有効となる。
As described above, if a portion of the air generated from the compressor 30 is extracted as the cooling air of the rotor, and the air is cooled and used, the cooling is loosened to reduce the clearance of the moving blade. Therefore, it is more effective to ensure the performance of equipment used for a long time at the rated load.

【0022】次に、上記に説明の動翼の冷却空気の温度
による熱伸びの具体例を数字で示す。例えば、ロータの
冷却温度を100℃まで上昇させるためにディスク温度
が50℃だけ上昇したとする。その時のディスク温度Δ
P =50℃,ディスク外径=2000mm,α(熱伸び
係数)=1.4×10-5として、これにより、ディスク
外径の寸法変化は;ΔL=(D/2)×α×ΔTD
[(2×103 )/2]×1.4×10-5×50=0.
7mmとなる。
Next, specific examples of the thermal expansion of the above-described moving blade depending on the temperature of the cooling air are shown by numerals. For example, assume that the disk temperature is increased by 50 ° C. in order to increase the cooling temperature of the rotor to 100 ° C. Disk temperature at that time Δ
T P = 50 ° C., disk outer diameter = 2000 mm, α (thermal elongation coefficient) = 1.4 × 10 −5 , whereby the dimensional change of the disk outer diameter is: ΔL = (D / 2) × α × ΔT D =
[(2 × 10 3 ) / 2] × 1.4 × 10 −5 × 50 = 0.
7 mm.

【0023】よって、上記の結果からもわかるように、
ロータの冷却空気温度を調整することによって回転側と
静止側との半径方向の隙間を変化させることが可能とな
る。
Therefore, as can be seen from the above results,
By adjusting the cooling air temperature of the rotor, the radial gap between the rotating side and the stationary side can be changed.

【0024】なお、上記に説明の実施の形態において
は、冷却空気27の冷却温度を調整する場合にバルブ2
2を制御し、冷媒管29の冷媒量を制御する例で説明し
たが、本発明はこれに限定するものではなく、送風機2
5の送風量を制御したり、あるいはクーラのON,OF
F制御により空気の温度を上下させ、ロータの温度上昇
を制御するようにしても同様の効果が得られ、ロータの
温度を制御するものであれば当然本発明に含まれるもの
である。
In the embodiment described above, when adjusting the cooling temperature of the cooling air 27, the valve 2 is used.
2 has been described, and the amount of refrigerant in the refrigerant pipe 29 is controlled, but the present invention is not limited to this.
5 to control the air flow, or turn the cooler on and off
Even if the temperature of the air is raised and lowered by the F control to control the rise in the temperature of the rotor, the same effect can be obtained. Any control of the temperature of the rotor is naturally included in the present invention.

【0025】[0025]

【発明の効果】本発明の回転体の伸び量調整装置は、ケ
ーシングと、同ケーシング内で軸回りに回転する回転体
からなり、圧縮機からの空気を同ケーシングと回転体に
導き、これらを冷却する装置において、前記回転体と前
記ケーシング内面との隙間を計測する隙間センサと、前
記圧縮機の出口空気を一部抽気して冷却し、前記回転体
に導くクーラと、同クーラの出口空気の温度を検出する
温度センサと、前記クーラで冷却される空気の温度を調
整する手段と、前記隙間センサの信号と前記温度センサ
の信号とを入力し、前記回転体と前記ケーシング内面と
の隙間が運転状況に応じて所定の隙間となるように前記
空気温度調整手段を制御するコントローラとを具備した
ことを特徴としている。又、(2)の発明は、(1)の
発明において、前記冷却空気の温度調整手段は前記クー
ラの冷媒の流量を調整するバルブよりなることを特徴と
している。このような構成により次のような効果を奏す
る。
The device for adjusting the amount of elongation of a rotating body according to the present invention comprises a casing and a rotating body which rotates around an axis in the casing, and guides air from the compressor to the casing and the rotating body. In the cooling device, a gap sensor that measures a gap between the rotating body and the inner surface of the casing, a cooler that partially extracts and cools outlet air of the compressor and guides the cooled air to the rotating body, and an outlet air of the cooler. A temperature sensor for detecting the temperature of the air, a means for adjusting the temperature of the air cooled by the cooler, a signal from the gap sensor and a signal from the temperature sensor, and a gap between the rotating body and the inner surface of the casing. Is characterized by comprising a controller for controlling the air temperature adjusting means so as to form a predetermined gap in accordance with the operating condition. The invention of (2) is characterized in that, in the invention of (1), the cooling air temperature adjusting means comprises a valve for adjusting the flow rate of the refrigerant of the cooler. With such a configuration, the following effects can be obtained.

【0026】1)定格運転状態にて静止体と回転体との
間隙を最小にすることが可能となる。このように間隙を
最小とすることにより、例えば動翼先端とケーシングの
もれ量を最少にすることによって機械の効率の向上が可
能となる。
1) It is possible to minimize the gap between the stationary body and the rotating body in the rated operation state. By thus minimizing the gap, the efficiency of the machine can be improved by, for example, minimizing the amount of leakage between the blade tip and the casing.

【0027】2)機械を運転停止直後に起動する際に回
転体(ディスク)を冷却することによって半径方向の隙
間を大きくして回転体が静止体(翼がケーシング)と接
触して部品が損傷することを防止できる。
2) When the machine is started immediately after the operation is stopped, the rotating body (disk) is cooled to increase the radial gap, so that the rotating body comes into contact with the stationary body (wings are casings) and parts are damaged. Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る回転体の伸び量調
整装置の構成図である。
FIG. 1 is a configuration diagram of an elongation amount adjusting device for a rotating body according to an embodiment of the present invention.

【図2】ガスタービンの静翼と動翼の配置を示す一般的
な側面図である。
FIG. 2 is a general side view showing an arrangement of stationary blades and moving blades of a gas turbine.

【図3】ガスタービンの一般的な構成図である。FIG. 3 is a general configuration diagram of a gas turbine.

【符号の説明】[Explanation of symbols]

21 クリアランス 22 クーラ 23 バルブ 24 温度センサ 25 送風機 26 圧縮機出口空気 27 冷却空気 28 コントローラ 29 冷媒管 30 圧縮機 31 ガスタービン 32 燃焼器 34 ロータ冷却空気入口 DESCRIPTION OF SYMBOLS 21 Clearance 22 Cooler 23 Valve 24 Temperature sensor 25 Blower 26 Compressor outlet air 27 Cooling air 28 Controller 29 Refrigerant pipe 30 Compressor 31 Gas turbine 32 Combustor 34 Rotor cooling air inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ケーシングと、同ケーシング内で軸回り
に回転する回転体からなり、圧縮機からの空気を同ケー
シングと回転体に導き、これらを冷却する装置におい
て、前記回転体と前記ケーシング内面との隙間を計測す
る隙間センサと、前記圧縮機の出口空気を一部抽気して
冷却し、前記回転体に導くクーラと、同クーラの出口空
気の温度を検出する温度センサと、前記クーラで冷却さ
れる空気の温度を調整する手段と、前記隙間センサの信
号と前記温度センサの信号とを入力し、前記回転体と前
記ケーシング内面との隙間が運転状況に応じて所定の隙
間となるように前記空気温度調整手段を制御するコント
ローラとを具備したことを特徴とする回転体の伸び量調
整装置。
1. An apparatus comprising a casing and a rotating body that rotates around an axis in the casing, and guides air from a compressor to the casing and the rotating body, and cools them. A gap sensor that measures a gap between the compressor, a cooler that extracts and cools part of the outlet air of the compressor and guides it to the rotating body, a temperature sensor that detects the temperature of the outlet air of the cooler, and the cooler. Means for adjusting the temperature of the air to be cooled, a signal from the gap sensor and a signal from the temperature sensor, and a gap between the rotating body and the inner surface of the casing becomes a predetermined gap in accordance with an operating condition. And a controller for controlling the air temperature adjusting means.
【請求項2】 前記冷却空気の温度調整手段は前記クー
ラの冷媒の流量を調整するバルブよりなることを特徴と
する請求項1記載の回転体の伸び量調整装置。
2. The elongation adjusting device for a rotating body according to claim 1, wherein said cooling air temperature adjusting means comprises a valve for adjusting a flow rate of a refrigerant of said cooler.
JP20774697A 1997-08-01 1997-08-01 Elongation adjuster for rotating body Withdrawn JPH1150809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20774697A JPH1150809A (en) 1997-08-01 1997-08-01 Elongation adjuster for rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20774697A JPH1150809A (en) 1997-08-01 1997-08-01 Elongation adjuster for rotating body

Publications (1)

Publication Number Publication Date
JPH1150809A true JPH1150809A (en) 1999-02-23

Family

ID=16544861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20774697A Withdrawn JPH1150809A (en) 1997-08-01 1997-08-01 Elongation adjuster for rotating body

Country Status (1)

Country Link
JP (1) JPH1150809A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704796A1 (en) * 1993-05-07 1994-11-10 Boubechtoula Mohamed Decorated element for the handle of cutlery and knives and method for manufacturing it
JP2007138930A (en) * 2005-11-15 2007-06-07 General Electric Co <Ge> Integrated turbine sealing air and active clearance control system and method
JP2009275705A (en) * 2008-05-16 2009-11-26 General Electric Co <Ge> Cooling circuit used in turbine bucket cooling
JP2010001890A (en) * 2008-06-20 2010-01-07 General Electric Co <Ge> Method, system and apparatus for reducing turbine clearance
CN101892875A (en) * 2009-05-22 2010-11-24 通用电气公司 Active housing track control system and method
JP2014070510A (en) * 2012-09-27 2014-04-21 Mitsubishi Heavy Ind Ltd Control method for gas turbine cooling system, control device to execute the same and gas turbine facility mounted with the same
JP2015113113A (en) * 2013-12-06 2015-06-22 イートン リミテッドEaton Limited Onboard inert gas generation system and onboard inert gas generation method
CN105674928A (en) * 2016-01-07 2016-06-15 杭州高品自动化设备有限公司 Rotor elongation and bounce detection bench
CN106091914A (en) * 2016-05-31 2016-11-09 南京航空航天大学 A kind of tip clearance based on alternating current discharge measures system and measuring method
KR20160134848A (en) 2014-05-22 2016-11-23 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Cooling device, gas turbine installation provided with same, and method for operating cooling device
CN106403803A (en) * 2016-08-22 2017-02-15 南京航空航天大学 Blade tip clearance real-time measurement system and method based on constant voltage alternating current discharge
WO2019059273A1 (en) * 2017-09-22 2019-03-28 三菱日立パワーシステムズ株式会社 Rotating machine control device, rotating machine equipment, rotating machine control method, and rotating machine control program
KR20190045620A (en) * 2017-10-24 2019-05-03 두산중공업 주식회사 Apparatus for supplying compressed air and gas turbine comprising the same
JP2019518901A (en) * 2016-05-17 2019-07-04 シーメンス エナジー インコーポレイテッド System and method for determining safe start clearance of turbomachinery
US10655543B2 (en) 2014-10-03 2020-05-19 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine, combined cycle plant, and activation method of gas turbine
US11913341B2 (en) 2020-09-08 2024-02-27 Mitsubishi Heavy Industries, Ltd. Clearance control system for gas turbine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704796A1 (en) * 1993-05-07 1994-11-10 Boubechtoula Mohamed Decorated element for the handle of cutlery and knives and method for manufacturing it
JP2007138930A (en) * 2005-11-15 2007-06-07 General Electric Co <Ge> Integrated turbine sealing air and active clearance control system and method
JP2009275705A (en) * 2008-05-16 2009-11-26 General Electric Co <Ge> Cooling circuit used in turbine bucket cooling
JP2010001890A (en) * 2008-06-20 2010-01-07 General Electric Co <Ge> Method, system and apparatus for reducing turbine clearance
CN101892875A (en) * 2009-05-22 2010-11-24 通用电气公司 Active housing track control system and method
US10465563B2 (en) 2012-09-27 2019-11-05 Mitsubishi Hitachi Power Systems, Ltd. Method for controlling cooling system of gas turbine, control device performing the same, and gas turbine plant comprising the control device
JP2014070510A (en) * 2012-09-27 2014-04-21 Mitsubishi Heavy Ind Ltd Control method for gas turbine cooling system, control device to execute the same and gas turbine facility mounted with the same
JP2015113113A (en) * 2013-12-06 2015-06-22 イートン リミテッドEaton Limited Onboard inert gas generation system and onboard inert gas generation method
US10358923B2 (en) 2014-05-22 2019-07-23 Mitsubishi Hitachi Power Systems, Ltd. Cooling device, gas turbine installation provided with same, and method for operating cooling device
KR20160134848A (en) 2014-05-22 2016-11-23 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Cooling device, gas turbine installation provided with same, and method for operating cooling device
US10655543B2 (en) 2014-10-03 2020-05-19 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine, combined cycle plant, and activation method of gas turbine
CN105674928A (en) * 2016-01-07 2016-06-15 杭州高品自动化设备有限公司 Rotor elongation and bounce detection bench
JP2019518901A (en) * 2016-05-17 2019-07-04 シーメンス エナジー インコーポレイテッド System and method for determining safe start clearance of turbomachinery
CN106091914A (en) * 2016-05-31 2016-11-09 南京航空航天大学 A kind of tip clearance based on alternating current discharge measures system and measuring method
CN106091914B (en) * 2016-05-31 2017-12-22 南京航空航天大学 A kind of tip clearance measuring system and measuring method based on alternating current discharge
CN106403803B (en) * 2016-08-22 2018-08-21 南京航空航天大学 A kind of tip clearance real-time measurement system and method based on constant pressure type alternating current discharge
CN106403803A (en) * 2016-08-22 2017-02-15 南京航空航天大学 Blade tip clearance real-time measurement system and method based on constant voltage alternating current discharge
WO2019059273A1 (en) * 2017-09-22 2019-03-28 三菱日立パワーシステムズ株式会社 Rotating machine control device, rotating machine equipment, rotating machine control method, and rotating machine control program
JP2019056360A (en) * 2017-09-22 2019-04-11 三菱日立パワーシステムズ株式会社 Controller of rotary machine, rotary machine facility, control method of rotary machine and control program of rotary machine
CN110945227A (en) * 2017-09-22 2020-03-31 三菱日立电力系统株式会社 Control device for rotary machine, rotary machine device, control method for rotary machine, and control program for rotary machine
US11333081B2 (en) 2017-09-22 2022-05-17 Mitsubishi Power, Ltd. Rotating machine control device, rotating machine equipment, rotating machine control method, and rotating machine control program
CN110945227B (en) * 2017-09-22 2022-07-29 三菱重工业株式会社 Control device and method for rotary machine, rotary machine device, and storage medium
KR20190045620A (en) * 2017-10-24 2019-05-03 두산중공업 주식회사 Apparatus for supplying compressed air and gas turbine comprising the same
US11913341B2 (en) 2020-09-08 2024-02-27 Mitsubishi Heavy Industries, Ltd. Clearance control system for gas turbine

Similar Documents

Publication Publication Date Title
JP3564286B2 (en) Active clearance control system for interstage seal of gas turbine vane
JPH1150809A (en) Elongation adjuster for rotating body
US4363599A (en) Clearance control
EP2587028B1 (en) Active clearance control system and method for a gas turbine engine
US7269955B2 (en) Methods and apparatus for maintaining rotor assembly tip clearances
US5772400A (en) Turbomachine
US7766611B2 (en) Method for setting a radial gap of an axial-throughflow turbomachine and compressor
JP4362231B2 (en) Gas turbine having interstage sealing mechanism
US9840932B2 (en) System and method for blade tip clearance control
US8668431B2 (en) Seal clearance control on non-cowled gas turbine engines
EP2236747A2 (en) Systems, methods, and apparatus for passive purge flow control in a turbine
JPH06102988B2 (en) Gas turbine engine casing temperature controller
JPS62182444A (en) Method and device for controlling cooling air for gas turbine
JPS6157441B2 (en)
JP2005127325A (en) Labyrinth seal device for gas turbine engine
US7201556B2 (en) Displacement casing
GB2062117A (en) Clearance Control for Turbine Blades
JPH11229898A (en) Start-up control device of gas turbine
JP2005240573A (en) Two-shaft gas turbine and its cooling air admission method
JP2009185779A (en) Gas turbine and shutdown method for gas turbine
JPS62111104A (en) Clearance adjustment system for gas turbine
JPH06272698A (en) Axial gap control method for centrifugal compressor
JPS5820904A (en) Seal structure of tip of moving blade for gas turbine
JP2000356140A (en) Turbine casing deformation preventing method at gas turbine starting
JPH1136983A (en) Turbine frame structure of turbofan engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005