JPH11506186A - Protective layer for turbine blade - Google Patents
Protective layer for turbine bladeInfo
- Publication number
- JPH11506186A JPH11506186A JP9532220A JP53222097A JPH11506186A JP H11506186 A JPH11506186 A JP H11506186A JP 9532220 A JP9532220 A JP 9532220A JP 53222097 A JP53222097 A JP 53222097A JP H11506186 A JPH11506186 A JP H11506186A
- Authority
- JP
- Japan
- Prior art keywords
- protective layer
- layer
- turbine blade
- mcraly
- surface layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/286—Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/13—Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- F05D2300/132—Chromium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Coating By Spraying Or Casting (AREA)
- Physical Vapour Deposition (AREA)
Abstract
(57)【要約】 本発明は耐食性のMCrAlY保護層を有するタービン羽根に関する。本発明の課題は保護層が破砕されないタービン羽根を提供することである。この課題はMCrAlY保護層の表面層が5〜50μmの深さまで、全表面層にわたり均一に広がった大きな面積の単相合金からなり、この場合にパルスした電子ビームで再溶融することにより単相合金が得られることにより解決される。 (57) [Summary] The present invention relates to a turbine blade having a corrosion-resistant MCrAlY protective layer. It is an object of the present invention to provide a turbine blade in which the protective layer is not crushed. The problem is that the surface layer of the MCrAlY protective layer consists of a single-phase alloy with a large area spread evenly over the entire surface layer to a depth of 5 to 50 μm, in which case the single-phase alloy is remelted with a pulsed electron beam. Is solved.
Description
【発明の詳細な説明】 タービン羽根用保護層 本発明は請求の範囲1の上位概念に記載のタービン羽根に関する。 高温ガスタービンを運転する際にタービン羽根の表面で900℃までの温度が 達成される。この高い温度で主な腐食のメカニズムは酸化(酸素の拡散)により 引き起こされる。従って羽根に高温−超合金MCrAlY(M=金属ベース、例 えばNi、Co)を被覆する。 MCrAlY保護層は一般にプラズマ溶射法により被覆する。合金は二相で硬 化する。これにより表面にAl2O3保護層を形成するために好ましくないベース が生じる。二相合金の表面で均一な酸化物層の形成が阻止される。形成される酸 化物保護層は破砕(スポーリング)する傾向がある。 R.Sivakumar,Princ.of Solidific.and Mat.Process 第2巻、671−726頁から、この二相合金をレー ザービームを用いて再溶融法により単相の合金に変換できることが公知である。 この方法の欠点は、一方ではレーザービームの(ここで必要な出力密度105〜 106W/cm2において)10-2cm2未満の小さい空間 的面積であり、他方では材料へのレーザー放射の少ない浸入の深さである。 空間的に限られたエネルギーの浸入は著しい熱応力を生じ、これは縦方向およ び横方向での亀裂形成により顕著になる。亀裂形成は酸化物層の破砕抵抗(Spal lationswiderstand)を減少し、従って耐食性を低下する。 小さいビーム直径のほかの結果は、レーザービームの走査により表面でのふく らみの形成および相の分離および表面層の再結晶が引き起こされることである。 数10μmの層厚の完全な溶融のための数ミリ秒のかなり長い照射時間は層内 の本来の化学量論の変更、すなわち軽い元素(Al、Y)の割合の減少を生じ、 これが表面に対流により浮遊し、従って酸化物保護層の再生工程に不足する。 本発明の課題は、保護層が破砕する傾向がないタービン羽根を提供することで ある。 前記課題は請求の範囲1の特徴部分により解決される。 請求の範囲2以下には本発明の有利な構成が記載されている。 本発明を以下の図面に示された実施例により詳細に説明する。図面には従来の 二相のMCrAlY−タービン羽根用保護層(a)および再溶融工程(b)後の 保護層の断面図が示される。 保護層を短時間溶融し、きわめて速く、すなわち相分離の時間が残らないよう に速く冷却すると、冷却速度に応じてナノ結晶または無定形である単相構造が得 られ、これは均一の、中断されない酸化物保護層の形成を生じる。1000℃で 空気中での10000時間までの腐食試験により、請求の範囲1記載の保護層の 表面に均一の、強固に付着する中断されない酸化物保護層が形成されることが示 され、一方処理されない比較試験においてはこれらの層は部分的に破砕した中断 した構造を示す。酸化物保護層内のこれらの傷はアルミニウムを入れることによ り回復するが、この工程はMCrAlY保護層内のアルミニウムの貧化を生じ、 従って可使時間の減少を生じる。 タービン羽根用保護層の他の利点は、製造に起因する表面の微細な粗面性が表 面の熱処理工程により除去され、これによりガスと表面との熱交換が減少し、従 ってより高いガス導入温度が可能であることである。より高いガス導入温度は効 率の向上を生じる。 均一の単相の合金に、均一の酸化物保護層を形成する条件が付与される。均一 な破砕に耐える酸化物保護層は最も効果的に酸素の浸入を阻止し、酸化物保護層 の新たな形成により保護層のAlの貧化を遅らせる。 腐食保護層を製造するために、大きな放射断面を有するパルスした電子ビーム を利用する。放射断面は25〜100cm2でなければならない。50〜100 cm2の断面が最適である。パルスした電子ビームの利点は大きな放射直径であ り、材料への電子の大きな浸入深さであり、これは電子のエネルギーにより容易 に調節できる。パルスした電子ビームを用いて50cm2の平面に均一に3×1 06W/cm2までの高い出力密度を達成することができる。これはレーザービー ムより10000倍大きい断面積である。均一な出力密度分布により溶融層中で 表面に平行な温度勾配が存在せず、従って横の応力亀裂の形成が行われない。放 射縁部でのいわゆる熱作用ゾーンの形成はきわめて短い処理時間および高い冷却 速度のために問題にならない。 溶融した層の深さはエネルギー、パルス時間および電子ビームの出力密度によ り調節される。 表面に対して垂直な応力亀裂が生じるために、および二相の合金を単相の、無 定形からナノ結晶までの構造に変換するために、自己急冷(Selbstabschreckung )工程の冷却速度が重要である。 105K°/sより低い冷却速度は所望の相形成を生じない。 107K°/sより高い冷却速度は熱応力亀裂を生じる。 自己急冷における冷却速度は電子エネルギー(これにより溶融深さが調節され る)、出力密度によりおよびパルス時間により影響を受けることがある。電子の 浸入深さ(溶融深さ)の拡大および出力密度の減少は低い冷却速度を生じる。 請求の範囲1から3のいずれか1項に記載された保護層を製造するための電子 ビームパラメーターは以下の構成を有することができる。 電子エネルギー: 50〜150keV 出力密度: 5×105〜3×106W/cm2 パルス時間: 10〜60μ秒 J.G.Smeggil Mat.Sci.and Eng.87(1987)261 /65頁およびA.M.Huntz:Mat.Sci.and Eng.87(1987 )251/60頁から、請求の範囲2記載の元素の合金化により層構造の破砕抵 抗、亀裂形成および高温安定性によい影響を与えることが公知である。 これらの合金はMCrAlY粉末と一緒にプラズマ溶射法により被覆する。こ の場合に、特に高温金属(Ta、Re、Mo、W)はその高い融点のために不十 分にのみ溶融し、一般に本来の粉末の形で凝結する。これにより高温金属からな る溶解しない島が形成され、金属はこの形で部分的にのみ有効である。本発明の 再溶融法により、これらの金属はMCrAlY保護層と共に溶解し、こうしては じめてその安定化作用を全部の合金化された層範囲で発揮することができる。 合金化した元素の安定化作用は腐食に強くさらされる表面に近い層にのみ必要 であり、従って請求の範囲 3により添加元素を被覆(例えばPVD)により表面に施し、再溶融法により合 金することが提案される。これは、多くの場合にきわめて高価な元素の加工すべ き量のかなりの部分を節約できるという経済的な利点を有する。DETAILED DESCRIPTION OF THE INVENTION Protective layer for turbine blade The invention relates to a turbine blade according to the preamble of claim 1. When operating a high temperature gas turbine, temperatures up to 900 ° C on the turbine blade surface Achieved. At this high temperature, the main mechanism of corrosion is oxidation (diffusion of oxygen) Is caused. Therefore, a high temperature superalloy MCrAlY (M = metal base, e.g. (Ni, Co). The MCrAlY protective layer is generally coated by a plasma spray method. Alloy is two-phase and hard Become As a result, AlTwoOThreeUnfavorable base for forming protective layer Occurs. The formation of a uniform oxide layer on the surface of the two-phase alloy is prevented. The acid formed The protection layer tends to spall. R. Sivakumar, Princ. of Solidific.and Mat. Process, Vol. 2, pp. 671-726. It is known that a single-phase alloy can be converted by a remelting method using a laser beam. The disadvantage of this method is, on the one hand, that of the laser beam (the required power density of 10Five~ 106W / cmTwoAt) 10-2cmTwoLess than small space Area, on the other hand, the depth of penetration of the material with less laser radiation. The ingress of spatially limited energy creates significant thermal stresses, which And crack formation in the lateral direction. Crack formation is due to the crush resistance of the oxide layer (Spal lationswiderstand) and therefore the corrosion resistance. Another consequence of the small beam diameter is that the laser beam scanning This leads to the formation of glaze and phase separation and recrystallization of the surface layer. Significantly longer irradiation times of a few milliseconds for complete melting of layer thicknesses of Changes in the original stoichiometry, ie, a decrease in the proportion of light elements (Al, Y), This floats on the surface by convection, and thus is insufficient in the step of regenerating the oxide protective layer. It is an object of the present invention to provide a turbine blade in which the protective layer has no tendency to fracture. is there. The object is achieved by the features of claim 1. Claims 2 and 3 describe advantageous embodiments of the invention. The present invention will be described in detail with reference to the embodiments shown in the following drawings. The drawing shows conventional Two-phase MCrAlY-turbine blade protective layer (a) and after remelting step (b) A sectional view of the protective layer is shown. Melt the protective layer for a short time and make sure it is very fast, i.e. no time for phase separation Faster cooling results in nanocrystalline or amorphous single-phase structures, depending on the cooling rate. This results in the formation of a uniform, uninterrupted oxide protective layer. At 1000 ° C The protection layer according to claim 1, which has been subjected to a corrosion test for up to 10,000 hours in air. It shows that a uniform, firmly adhered, uninterrupted oxide protective layer is formed on the surface. In the untreated comparative test, these layers were partially broken The following shows the structure. These scratches in the oxide protective layer can be However, this step causes the aluminum in the MCrAlY protective layer to become poor, Therefore, the working time is reduced. Another advantage of the protective layer for turbine blades is the fine roughness of the surface due to manufacturing. Surface heat treatment step, which reduces the heat exchange between the gas and the surface, Thus, a higher gas introduction temperature is possible. Higher gas inlet temperatures are effective This results in an increase in the rate. The conditions for forming a uniform oxide protective layer on a uniform single phase alloy are provided. Uniform An oxide protective layer that resists severe crushing most effectively prevents oxygen Of the protective layer is delayed by the new formation of Al. Pulsed electron beam with large emission cross section to produce corrosion protection layer Use Radiation cross section is 25-100cmTwoMust. 50-100 cmTwoIs optimal. The advantage of a pulsed electron beam is the large emission diameter. The depth of penetration of the electrons into the material, which is easier due to the energy of the electrons. Can be adjusted. 50 cm using a pulsed electron beamTwo3 × 1 uniformly on the plane 06W / cmTwoHigh power densities up to. This is laser bee The cross-sectional area is 10,000 times larger than that of the In the molten layer due to uniform power density distribution There is no temperature gradient parallel to the surface, and thus no lateral stress crack formation. Release The formation of a so-called thermal zone at the firing edge results in very short processing times and high cooling Not a problem for speed. The depth of the melted layer depends on the energy, pulse time and power density of the electron beam. Is adjusted. Due to the occurrence of stress cracks perpendicular to the surface, and the Self-quenching (Selbstabschreckung) ) The cooling rate of the process is important. 10FiveCooling rates below K ° / s do not produce the desired phase formation. 107Cooling rates higher than K ° / s cause thermal stress cracking. The cooling rate in self-quenching depends on the electron energy (this controls the melting depth). ), Power density and pulse time. electronic Increasing the penetration depth (melting depth) and decreasing the power density result in lower cooling rates. An electron for producing the protective layer according to any one of claims 1 to 3. The beam parameters can have the following configurations. Electron energy: 50 to 150 keV Power density: 5 × 10Five~ 3 × 106W / cmTwo Pulse time: 10-60 μs JG Smegil Mat. Sci. And Eng. 87 (1987) 261. / Page 65 and AM Huntz: Mat. Sci. And Eng. 87 (1987 ) From page 251/60, the fracture resistance of the layered structure by alloying the elements described in claim 2 It is known to have a positive effect on resistance, crack formation and high temperature stability. These alloys are coated with MCrAlY powder by plasma spraying. This In particular, high-temperature metals (Ta, Re, Mo, W) are inadequate due to their high melting points. It only melts in minutes and generally condenses in its original powder form. This makes it possible to Insoluble islands are formed and the metal is only partially effective in this form. Of the present invention By the remelting method, these metals dissolve with the MCrAlY protective layer, thus First, its stabilizing effect can be exerted in the entire alloyed layer range. Stabilizing effect of alloyed elements is only required for layers close to the surface that are strongly exposed to corrosion And therefore the claims 3 is applied to the surface by coating (for example, PVD), and It is suggested to make money. This is often the case for processing extremely expensive elements. It has the economic advantage of saving a significant portion of the volume.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ゲルト クラフト ドイツ連邦共和国 カールスルーエ ツァ イズィッヒヴェーク 8 (72)発明者 ゲオルク ミュラー ドイツ連邦共和国 カールスルーエ レッ シングシュトラーセ 45 (72)発明者 グスタフ シューマッハー ドイツ連邦共和国 カールスルーエ オー バーフェルトシュトラーセ 24────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Gerd Craft Germany Karlsruhe Iswigweg 8 (72) Inventor Georg Müller Karlsruhe, Germany Singstrasse 45 (72) Inventor Gustav Schumacher Germany Karlsruhe Oh Barfeldstrasse 24
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19609690A DE19609690C2 (en) | 1996-03-13 | 1996-03-13 | Turbine blade |
DE19609690.1 | 1996-03-13 | ||
PCT/EP1997/000630 WO1997034076A1 (en) | 1996-03-13 | 1997-02-12 | Protective coating for tubing blades |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11506186A true JPH11506186A (en) | 1999-06-02 |
JP3320739B2 JP3320739B2 (en) | 2002-09-03 |
Family
ID=7788051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53222097A Expired - Fee Related JP3320739B2 (en) | 1996-03-13 | 1997-02-12 | Protective layer for turbine blade |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0886721B1 (en) |
JP (1) | JP3320739B2 (en) |
AT (1) | ATE218670T1 (en) |
DE (2) | DE19609690C2 (en) |
WO (1) | WO1997034076A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002513081A (en) | 1998-04-29 | 2002-05-08 | シーメンス アクチエンゲゼルシヤフト | Product with corrosion protection layer and method of manufacturing corrosion protection layer |
DE19934418A1 (en) * | 1999-07-22 | 2001-01-25 | Abb Alstom Power Ch Ag | Process for coating a locally differently stressed component |
DE19934856A1 (en) * | 1999-07-24 | 2001-01-25 | Abb Research Ltd | Turbine blade and method for its manufacture |
DE10001516B4 (en) * | 2000-01-15 | 2014-05-08 | Alstom Technology Ltd. | Non-destructive method for determining the layer thickness of a metallic protective layer on a metallic base material |
DE10126896A1 (en) * | 2000-12-23 | 2002-07-11 | Alstom Switzerland Ltd | Protective coating used for turbines comprises a mono- or multi-layer sealing layer made from an amorphous material |
RU2302534C2 (en) * | 2001-12-11 | 2007-07-10 | Альстом (Свитзерлэнд) Лтд. | Gas-turbine device |
US6746783B2 (en) * | 2002-06-27 | 2004-06-08 | General Electric Company | High-temperature articles and method for making |
DE102004001575A1 (en) | 2004-01-10 | 2005-08-04 | Mtu Aero Engines Gmbh | Method for producing hollow blades and a rotor with hollow blades |
DE102004045049A1 (en) | 2004-09-15 | 2006-03-16 | Man Turbo Ag | Protection layer application, involves applying undercoating with heat insulating layer, and subjecting diffusion layer to abrasive treatment, so that outer structure layer of diffusion layer is removed by abrasive treatment |
DE102005030231B4 (en) * | 2005-06-29 | 2007-05-31 | Forschungszentrum Karlsruhe Gmbh | Method for applying a high-temperature suitable FeCrAl protective layer, cladding tube with such a protective layer applied and use of such a cladding tube |
CN111487272B (en) * | 2020-04-21 | 2023-06-02 | 中国航发沈阳发动机研究所 | Analysis method for product layer on surface of turbine blade of aero-engine |
CN111560584A (en) * | 2020-05-22 | 2020-08-21 | 江苏大学 | High-performance thermal barrier coating of aero-engine blade and multi-process combined preparation method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4152223A (en) * | 1977-07-13 | 1979-05-01 | United Technologies Corporation | Plasma sprayed MCrAlY coating and coating method |
DE3310650C1 (en) * | 1983-03-24 | 1984-03-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München | Process for improving thermally sprayed α-Al 2 O 3 layers |
DE3325251A1 (en) * | 1983-07-13 | 1985-01-24 | Brown, Boveri & Cie Ag, 6800 Mannheim | Process for testing and reconditioning protective layers applied to building elements |
DD220457A1 (en) * | 1983-12-14 | 1985-03-27 | Adw Ddr | ARRANGEMENT FOR IMPULSE HEATING DUENNER SURFACE LAYERS |
JPH0661911B2 (en) * | 1984-06-05 | 1994-08-17 | 株式会社ノダ | Coating material and manufacturing method thereof |
DE3568065D1 (en) * | 1984-07-16 | 1989-03-09 | Bbc Brown Boveri & Cie | Process for the deposition of a corrosion-inhibiting layer, comprising protective oxide-forming elements at the base of a gas turbine blade, and a corrosion-inhibiting layer |
DE3577888D1 (en) * | 1985-02-05 | 1990-06-28 | Nippon Steel Corp | SURFACE ALLOY METHOD USING AN ENERGY RAY AND STEEL ALLOY. |
JPS61204372A (en) * | 1985-03-06 | 1986-09-10 | Univ Osaka | Method for making material amorphous by use of implantation of heterogeneous atom into solid by electron beam |
DD247924A1 (en) * | 1986-04-10 | 1987-07-22 | Schmalkalden Werkzeug | METHOD FOR TREATING COATED OBJECTS |
ES2003327T3 (en) * | 1986-11-07 | 1993-04-01 | United Technologies Corporation | MANUFACTURING METHOD OF A MULTIMETALLIC ARTICLE. |
DD276210A3 (en) * | 1987-05-11 | 1990-02-21 | Bergmann Borsig Veb | PROCESS FOR PREPARING AN EROSION PROTECTION FOR TURBINE SHOVELS |
-
1996
- 1996-03-13 DE DE19609690A patent/DE19609690C2/en not_active Expired - Fee Related
-
1997
- 1997-02-12 DE DE59707422T patent/DE59707422D1/en not_active Expired - Lifetime
- 1997-02-12 WO PCT/EP1997/000630 patent/WO1997034076A1/en active IP Right Grant
- 1997-02-12 AT AT97904418T patent/ATE218670T1/en not_active IP Right Cessation
- 1997-02-12 JP JP53222097A patent/JP3320739B2/en not_active Expired - Fee Related
- 1997-02-12 EP EP97904418A patent/EP0886721B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE19609690C2 (en) | 2000-12-28 |
EP0886721A1 (en) | 1998-12-30 |
WO1997034076A1 (en) | 1997-09-18 |
DE19609690A1 (en) | 1997-10-09 |
EP0886721B1 (en) | 2002-06-05 |
JP3320739B2 (en) | 2002-09-03 |
ATE218670T1 (en) | 2002-06-15 |
DE59707422D1 (en) | 2002-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li-Yan et al. | High speed laser cladded Ti-Cu-NiCoCrAlTaY burn resistant coating and its oxidation behavior | |
EP1444388B1 (en) | Mcraly-coating | |
EP1995350B1 (en) | High temperature component with thermal barrier coating | |
JPH11506186A (en) | Protective layer for turbine blade | |
US5366345A (en) | Turbine blade of a basic titanium alloy and method of manufacturing it | |
JPH08176767A (en) | Method of fabricating turbine blade from alloy based on (alpha/beta)-titanium | |
US6277500B1 (en) | Gas turbine component | |
JP2001507758A (en) | High temperature protective coating | |
US7445434B2 (en) | Coating material for thermal barrier coating having excellent corrosion resistance and heat resistance and method of producing the same | |
JP5943649B2 (en) | Manufacturing method of thermal barrier coating material | |
JPH0251978B2 (en) | ||
US6149389A (en) | Protective coating for turbine blades | |
US20070186416A1 (en) | Component repair process | |
US8252376B2 (en) | Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane | |
JP2001288554A (en) | Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method | |
JP3188904B2 (en) | Structural member made of intermetallic compound having aluminum diffusion coating | |
CN112267086A (en) | Method for preparing titanium-aluminum alloy high-strength coating on surface of titanium alloy under assistance of electromagnetic field | |
US5540792A (en) | Components based on intermetallic phases of the system titanium-aluminum and process for producing such components | |
DE10254210A1 (en) | Stabilized zirconia heat barrier coating with hafnium (IV) oxide | |
JPS62274062A (en) | Production of ceramic coated member | |
JP2006016671A (en) | Ni-based alloy member and manufacturing method thereof, turbine engine component, welding material and manufacturing method thereof | |
US20080138648A1 (en) | Layer system with blocking layer, and production process | |
US20050025898A1 (en) | Process for obtaining a flexible/adaptive thermal barrier | |
RU2165474C2 (en) | Method of metal article surface treatment | |
JP4313459B2 (en) | High temperature exposed member and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |