JPH1149922A - Acrylic resin composition - Google Patents
Acrylic resin compositionInfo
- Publication number
- JPH1149922A JPH1149922A JP9219971A JP21997197A JPH1149922A JP H1149922 A JPH1149922 A JP H1149922A JP 9219971 A JP9219971 A JP 9219971A JP 21997197 A JP21997197 A JP 21997197A JP H1149922 A JPH1149922 A JP H1149922A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- stage
- acrylic resin
- stage polymer
- stained
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、アクリル系樹脂組
成物に関するものであって、さらに詳しくは、特に温度
変化による光学特性の変動が極めて小さく、透明性、流
動性等のアクリル樹脂本来の諸特性が損なわれずに耐溶
剤性が改良されたアクリル系樹脂組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acrylic resin composition. The present invention relates to an acrylic resin composition having improved solvent resistance without impairing properties.
【0002】[0002]
【従来の技術】アクリル樹脂の耐溶剤性を改善する方法
としては、アクリル樹脂自体の分子量を大きくする方
法、または架橋構造を有する軟質層と硬質層を組み合わ
せた多層構造重合体を含有せしめる方法等が提案されて
いる。しかし、アクリル樹脂自体の分子量を大きくする
方法においては、実質的な効果を得るにはその分子量を
非常に大きくすることが必要であるため、ポリマーの流
動性が低下して成形性が悪化するという問題点があり、
また一定量の変形が与えられる環境下では耐溶剤性が著
しく低下するといった問題もある。2. Description of the Related Art As a method for improving the solvent resistance of an acrylic resin, a method of increasing the molecular weight of the acrylic resin itself, a method of incorporating a multilayer structure polymer in which a soft layer having a crosslinked structure and a hard layer are incorporated, and the like. Has been proposed. However, in the method of increasing the molecular weight of the acrylic resin itself, it is necessary to greatly increase the molecular weight in order to obtain a substantial effect, so that the flowability of the polymer decreases and moldability deteriorates. There is a problem,
There is also a problem that the solvent resistance is significantly reduced in an environment where a certain amount of deformation is given.
【0003】一方、多層構造重合体を含有せしめる方法
においては、一定量の変形が与えられる環境下でも効果
が認められるものの、温度変化による光学特性の変動が
大きく、耐溶剤性を有するアクリル樹脂の応用範囲が限
定されるなどの問題点があった。この問題を改良するた
め、樹脂成分とエラストマー成分とのグラフト率を高め
ることにより温度変化による光学特性の変動を低減させ
る方法も検討されている(特開昭63−199258号
公報等参照)が、これらの方法により得られるポリマー
では、実用に供するに十分な物性を有しているものは未
だ得られていないのが実情である。また、多層構造重合
体の粒径を小さくする方法も検討されている(特公昭5
9−10745号公報等)。しかしながら、この方法で
は、多層構造重合体の粒径を0.02〜0.09μmに
する必要があるため、温度変化による光学特性の変動は
小さいものの、重合時に多量の乳化剤を必要とするの
で、製造コストが高くなったり、アクリル樹脂の色調や
透明性が悪化したり、重合時の粘度が過大となり、生産
性が悪化したりするなどの問題点を有している。On the other hand, in the method of incorporating a multi-layered polymer, although the effect is recognized even in an environment where a certain amount of deformation is given, the optical characteristics greatly fluctuate due to a change in temperature, and an acrylic resin having solvent resistance is used. There were problems such as the limited range of application. In order to improve this problem, a method of reducing a change in optical characteristics due to a temperature change by increasing a graft ratio between a resin component and an elastomer component has been studied (see Japanese Patent Application Laid-Open No. 63-199258). In fact, none of the polymers obtained by these methods have physical properties sufficient for practical use. Also, a method of reducing the particle size of the multilayer structure polymer is being studied (Japanese Patent Publication No. Sho 5
No. 9-10745). However, in this method, since the particle size of the multilayer structure polymer needs to be 0.02 to 0.09 μm, the fluctuation of the optical characteristics due to the temperature change is small, but a large amount of an emulsifier is required at the time of polymerization. There are problems such as an increase in manufacturing cost, deterioration in color tone and transparency of the acrylic resin, and an increase in viscosity during polymerization, resulting in deterioration in productivity.
【0004】[0004]
【発明が解決しようとする課題】したがって、本発明の
目的は、温度変化による光学特性の変動が極めて小さ
く、透明性、流動性等アクリル樹脂本来の諸特性を損な
わずに耐溶剤性が改良されたアクリル系樹脂組成物を提
供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the solvent resistance of an acrylic resin without deteriorating the inherent properties of the acrylic resin such as transparency and fluidity, by minimizing fluctuations in optical characteristics due to temperature changes. To provide an acrylic resin composition.
【0005】[0005]
【課題を解決するための手段】本発明者らは、このよう
な現状に鑑み鋭意検討した結果、ゴム含有アクリル系多
段階重合体を特定の状態で分散させることにより上記問
題点が解決されることを見出し、本発明を完成するに至
った。Means for Solving the Problems The present inventors have made intensive studies in view of such a situation, and as a result, the above problems can be solved by dispersing a rubber-containing acrylic multi-stage polymer in a specific state. This led to the completion of the present invention.
【0006】すなわち本発明の要旨とするところは、
(A)メタクリル酸メチル80〜100重量%およびこ
れと共重合可能な他の単量体0〜20重量%からなる熱
可塑性アクリル樹脂20〜96重量部と、(B)乳化重
合により得られるゴム含有アクリル系多段階重合体80
〜4重量部とからなる樹脂組成物であって、該樹脂組成
物の四酸化ルテニウム染色した超薄切片を透過型電子顕
微鏡を用いて観察した際に、該樹脂組成物が海島構造を
有しており、海部分は四酸化ルテニウムで染色されない
連続相部分であり、島部分は染色された部分と染色され
ない部分とからなる非連続相部分であって、主として島
部分が、四酸化ルテニウムで染色されない円形状部分の
外周部を四酸化ルテニウムで染色された部分が断続的に
複数個の粒子状物となって囲み、かつ染色されない円形
状部分中に四酸化ルテニウムで染色された部分がミクロ
分散している構造であることを特徴とするアクリル系樹
脂組成物である。That is, the gist of the present invention is as follows.
(A) 20 to 96 parts by weight of a thermoplastic acrylic resin comprising 80 to 100% by weight of methyl methacrylate and 0 to 20% by weight of another monomer copolymerizable therewith, and (B) a rubber obtained by emulsion polymerization Containing acrylic multi-stage polymer 80
~ 4 parts by weight of the resin composition, when observed with a transmission electron microscope ultra-thin sections of the resin composition stained with ruthenium tetroxide, the resin composition has a sea-island structure The sea portion is a continuous phase portion that is not stained with ruthenium tetroxide, and the island portion is a discontinuous phase portion that is composed of a stained portion and a portion that is not stained, and the island portion is mainly stained with ruthenium tetroxide. The outer part of the circular part that is not dyed is intermittently surrounded by ruthenium tetroxide as a plurality of particles, and the part that is dyed with ruthenium tetroxide is micro-dispersed in the circular part that is not dyed. This is an acrylic resin composition characterized by having a structure having
【0007】[0007]
【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
【0008】本発明に用いる熱可塑性アクリル樹脂
(A)は、メタクリル酸メチル80〜100重量%およ
びこれと共重合可能な他の単量体0〜20重量%からな
り、これらの単量体を重合して得られる熱可塑性の重合
体である。メタクリル酸メチルと共重合可能な他の単量
体としては、特に限定されず、例えば、メタクリル酸エ
チル、メタクリル酸シクロヘキシル、メタクリル酸ベン
ジル等のメタクリル酸メチル以外のメタクリル酸エステ
ル;アクリル酸メチル、アクリル酸エチル等のアクリル
酸エステル;スチレン、ビニルトルエン、α−メチルス
チレン等の芳香族ビニル化合物;N−シクロヘキシルマ
レイミド、N−o−クロロフェニルマレイミド、N−t
ert−ブチルマレイミド等のN−置換マレイミド化合
物;アクリロニトリル、メタクリロニトリル等のシアン
化ビニル化合物などが挙げられ、それらは単独又は2種
以上で用いられる。これらメタクリル酸メチルと共重合
可能な他の単量体の使用割合は0〜20重量%、好まし
くは0.5〜15重量%である。The thermoplastic acrylic resin (A) used in the present invention comprises 80 to 100% by weight of methyl methacrylate and 0 to 20% by weight of another monomer copolymerizable therewith. It is a thermoplastic polymer obtained by polymerization. Other monomers copolymerizable with methyl methacrylate are not particularly limited, and include, for example, methacrylic esters other than methyl methacrylate such as ethyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate; methyl acrylate, acrylic Acrylic esters such as ethyl acrylate; aromatic vinyl compounds such as styrene, vinyltoluene and α-methylstyrene; N-cyclohexylmaleimide, No-chlorophenylmaleimide, Nt
N-substituted maleimide compounds such as tert-butylmaleimide; vinyl cyanide compounds such as acrylonitrile and methacrylonitrile; and the like, used alone or in combination of two or more. The proportion of the other monomer copolymerizable with methyl methacrylate is 0 to 20% by weight, preferably 0.5 to 15% by weight.
【0009】熱可塑性アクリル樹脂(A)は、懸濁重
合、溶液重合、乳化重合、塊状重合等の公知の方法によ
り得られ、2種以上の異なる組成のものや異なる製造方
法で得られたものを混合して用いることも可能である。
また熱可塑性アクリル樹脂(A)としては、市販の成形
用アクリル樹脂を用いることもできる。熱可塑性アクリ
ル樹脂(A)は、成形加工性をよくするために、メルカ
プタン等の連鎖移動剤を用いて重合することができ、そ
の重量平均分子量を通常3万〜20万、好ましくは4〜
16万の範囲に調節することが好ましい。The thermoplastic acrylic resin (A) is obtained by a known method such as suspension polymerization, solution polymerization, emulsion polymerization, bulk polymerization, etc., and is obtained by two or more different compositions or by different production methods. May be used in combination.
Also, as the thermoplastic acrylic resin (A), a commercially available acrylic resin for molding can be used. The thermoplastic acrylic resin (A) can be polymerized using a chain transfer agent such as mercaptan in order to improve molding processability, and its weight average molecular weight is usually 30,000 to 200,000, preferably 40 to 200,000.
It is preferable to adjust to a range of 160,000.
【0010】本発明に用いるゴム含有アクリル系多段階
重合体(B)は、乳化重合によってえられるものであっ
て、熱可塑性アクリル樹脂(A)と混合、混練されて後
述する分散状態をとるものであれば特に制限されない。
ゴム含有アクリル系多段階重合体(B)の製造方法とし
ては、例えば、まず第1段階の単量体混合物を乳化重合
させて芯粒子(第1段の重合体に相当)を得た後、次の
段階の単量体混合物をその芯粒子の存在下において乳化
重合させ、さらに芯と殻からなる当該粒子の存在下にお
いてさらに他の単量体混合物を乳化重合させて別の殻を
作るなどして、重合の繰り返しにより所望の多段階重合
体を得ることができる。各層の重合体又は共重合体を形
成させるための重合温度は、各層とも通常5〜120
℃、好ましくは40〜90℃の範囲である。The rubber-containing acrylic multi-stage polymer (B) used in the present invention is obtained by emulsion polymerization and is mixed and kneaded with the thermoplastic acrylic resin (A) to obtain a dispersion state described later. If it is, there is no particular limitation.
As a method for producing the rubber-containing acrylic multi-stage polymer (B), for example, first, after a first-stage monomer mixture is emulsion-polymerized to obtain core particles (corresponding to the first-stage polymer), Emulsion polymerization of the next stage monomer mixture in the presence of the core particles, and further emulsion polymerization of another monomer mixture in the presence of the core and shell particles to form another shell, etc. Thus, a desired multi-stage polymer can be obtained by repeating the polymerization. The polymerization temperature for forming the polymer or copolymer of each layer is usually 5 to 120 for each layer.
° C, preferably in the range of 40 to 90 ° C.
【0011】乳化重合に使用される乳化剤の種類と量
は、通常重合系の安定性、目的とする平均粒子径等によ
って選択されるが、アニオン界面活性剤、カチオン界面
活性剤、ノニオン界面活性剤等の公知の乳化剤を単独又
は2種以上で用いることができる。これらのうち好まし
い乳化剤はアニオン界面活性剤である。アニオン界面活
性剤としては、例えば、ステアリン酸ナトリウム、ミリ
スチン酸ナトリウム、N−ラウロイルザルコシン酸ナト
リウム等のカルボン酸塩;ジオクチルスルホコハク酸ナ
トリウム、ドデシルベンゼンスルホン酸ナトリウム等の
スルホン酸塩;ドデシルジフェニルエーテルジスルホン
酸ナトリウム等のジスルホン酸塩;ラウリル硫酸ナトリ
ウム等の硫酸エステル塩;モノ−n−ブチルフェニルペ
ンタオキシエチレンリン酸ナトリウム等のリン酸エステ
ル塩等が挙げられる。The type and amount of the emulsifier used in the emulsion polymerization are usually selected depending on the stability of the polymerization system, the desired average particle size, etc., but anionic surfactants, cationic surfactants, nonionic surfactants And other known emulsifiers can be used alone or in combination of two or more. Of these, preferred emulsifiers are anionic surfactants. Examples of the anionic surfactant include carboxylate salts such as sodium stearate, sodium myristate, and sodium N-lauroyl sarcosinate; sulfonates such as sodium dioctyl sulfosuccinate and sodium dodecyl benzene sulfonate; dodecyl diphenyl ether disulfonic acid Disulfonates such as sodium; sulfates such as sodium lauryl sulfate; phosphates such as mono-n-butylphenylpentaoxyethylene sodium phosphate.
【0012】乳化重合に使用される重合開始剤は特に限
定されず、例えば過硫酸カリウム、過硫酸アンモニウム
等の無機過酸化物;過酸化水素−第一鉄塩系、過硫酸カ
リウム−酸性亜硫酸ナトリウム系、過硫酸アンモニウム
−酸性亜硫酸ナトリウム系等の水溶性レドックス系開始
剤;クメンハイドロパーオキシド−ナトリウムホルムア
ルデヒドスルホキシレート系、tert−ブチルハイド
ロパーオキシド−ナトリウムホルムアルデヒドスルホキ
シレート系等の水溶−油溶レドックス系などが用いられ
る。The polymerization initiator used in the emulsion polymerization is not particularly limited, and examples thereof include inorganic peroxides such as potassium persulfate and ammonium persulfate; hydrogen peroxide-ferrous salt, potassium persulfate-sodium acid sulfite; Water-soluble redox initiators such as ammonium persulfate-sodium acid sulfite; water-soluble redox initiators such as cumene hydroperoxide-sodium formaldehyde sulfoxylate and tert-butyl hydroperoxide-sodium formaldehyde sulfoxylate; Are used.
【0013】また、連鎖移動剤として、例えばn−オク
チルメルカプタン、n−ドデシルメルカプタン、ter
t−ドデシルメルカプタン、sec−ブチルメルカプタ
ン等が必要に応じて用いられる。乳化重合において、単
量体、乳化剤、開始剤、連鎖移動剤等は、一括添加法、
分割添加法、連続添加法等任意の公知の方法で添加する
ことができる。As the chain transfer agent, for example, n-octyl mercaptan, n-dodecyl mercaptan, ter
t-Dodecyl mercaptan, sec-butyl mercaptan and the like are used as needed. In emulsion polymerization, a monomer, an emulsifier, an initiator, a chain transfer agent, and the like are added all at once,
It can be added by any known method such as a split addition method and a continuous addition method.
【0014】本発明におけるゴム含有アクリル系多段階
重合体(B)の好ましいものとしては、(1)第1段階
としてメタクリル酸メチル主体の単量体混合物、(2)
第2段階としてゴム成分となるアクリル酸ブチル主体の
単量体混合物、および(3)第3段階としてメタクリル
酸メチル主体の単量体混合物を重合して得られるものが
挙げられる。The rubber-containing acrylic multi-stage polymer (B) in the present invention is preferably (1) a monomer mixture mainly composed of methyl methacrylate as the first stage, (2)
As the second step, a monomer mixture mainly composed of butyl acrylate as a rubber component, and (3) as the third step, a monomer mixture mainly composed of methyl methacrylate obtained by polymerization are exemplified.
【0015】上記好ましい態様であるゴム含有アクリル
系多段階重合体における第1段の重合体としては、例え
ばメタクリル酸メチル80〜99.99重量%、グラフ
ト結合性単量体0.01〜0.5重量%、及びこれらと
共重合可能な他の単量体0〜19.99重量%よりなる
単量体混合物を乳化重合して得られるものである。グラ
フト結合性単量体としては、メタクリル酸メチルと共重
合可能なα,β−不飽和カルボン酸のアリルエステルが
好ましく、例えば、メタクリル酸アリル、アクリル酸ア
リル、桂皮酸アリル、ソルビン酸アリル等が挙げられ
る。これらは単独または2種以上で用いることができ
る。これらグラフト結合性単量体は、通常0.01〜
0.5重量%の範囲で用いられる。The first stage polymer in the rubber-containing acrylic multi-stage polymer of the preferred embodiment is, for example, 80 to 99.99% by weight of methyl methacrylate, 0.01 to 0. It is obtained by emulsion polymerization of a monomer mixture consisting of 5% by weight and 0 to 19.99% by weight of other monomers copolymerizable therewith. As the graft-linking monomer, an allyl ester of an α, β-unsaturated carboxylic acid copolymerizable with methyl methacrylate is preferable, for example, allyl methacrylate, allyl acrylate, allyl cinnamate, allyl sorbate and the like. No. These can be used alone or in combination of two or more. These graft-linking monomers are usually 0.01 to
It is used in the range of 0.5% by weight.
【0016】また、メタクリル酸メチルや上記グラフト
結合性単量体と共重合可能な他の単量体としては、例え
ばメタクリル酸エチル、メタクリル酸シクロヘキシル、
メタクリル酸ベンジル等のメタクリル酸メチル以外のメ
タクリル酸エステル;アクリル酸メチル、アクリル酸エ
チル等のアクリル酸エステル;スチレン、ビニルトルエ
ン、α−メチルスチレン等の芳香族ビニル化合物;N−
シクロヘキシルマレイミド、N−o−クロロフェニルマ
レイミド、N−tert−ブチルマレイミド等のN−置
換マレイミド化合物;アクリロニトリル、メタクリロニ
トリル等のシアン化ビニル化合物が挙げられ、それらは
単独又は2種以上で用いられる。これらの単量体は、0
〜19.99重量%、好ましくは0〜15重量%用いら
れる。ゴム含有アクリル系多段階重合体に占める第1段
の重合体の割合は、30〜70重量%、好ましくは35
〜60重量%である。Examples of other monomers copolymerizable with methyl methacrylate and the graft-linking monomer include ethyl methacrylate, cyclohexyl methacrylate, and the like.
Methacrylates other than methyl methacrylate such as benzyl methacrylate; acrylates such as methyl acrylate and ethyl acrylate; aromatic vinyl compounds such as styrene, vinyltoluene and α-methylstyrene;
N-substituted maleimide compounds such as cyclohexylmaleimide, No-chlorophenylmaleimide, and N-tert-butylmaleimide; vinyl cyanide compounds such as acrylonitrile and methacrylonitrile; these may be used alone or in combination of two or more. These monomers have 0
To 19.99% by weight, preferably 0 to 15% by weight. The proportion of the first-stage polymer in the rubber-containing acrylic multistage polymer is 30 to 70% by weight, preferably 35 to 70% by weight.
6060% by weight.
【0017】第1段におけるグラフト結合性単量体を除
く共重合組成は、熱可塑性アクリル樹脂(A)の共重合
組成と類似したものであることが、温度変化による光学
特性の変動を小さく抑える必要性から好ましい。また、
第1段の重合体を構成する単量体、組成比が上記に記載
した範囲内であれば、第1段をさらに分割したり、単量
体の組成比や種類を変化させることも可能である。The copolymer composition in the first stage excluding the graft-linking monomer is similar to the copolymer composition of the thermoplastic acrylic resin (A). It is preferable from the necessity. Also,
As long as the monomers constituting the first-stage polymer and the composition ratio are within the ranges described above, it is possible to further divide the first stage or to change the composition ratio and type of the monomers. is there.
【0018】次いでゴム含有アクリル系多段階重合体の
第2段は、上記第1段の重合体の存在下、例えばアクリ
ル酸n−ブチル70〜89重量%、好ましくは76〜8
7重量%、スチレン10〜29重量%、好ましくは12
〜23重量%およびグラフト結合性単量体1〜5重量%
よりなる単量体混合物を重合して得られる。グラフト結
合性単量体としては、前記第1段で挙げたものが使用可
能である。ゴム含有アクリル系多段階重合体に占める第
2段の割合は、応力等で発生する歪を効果的に低減させ
るためとヘイズなどの光学物性の温度依存性を低下させ
るためのバランスの観点から10〜40重量%、好まし
くは15〜35重量%である。第2段の重合体のTg
は、応力等で発生する歪を効果的に低減させるため25
℃以下であることが好ましく、0℃以下がより好まし
い。また、第2段の重合体を構成する単量体、組成比が
上記に記載した範囲内であれば、第2段をさらに分割し
たり、単量体の組成比や種類を変化させることも可能で
ある。第2段の重合により得られる粒子の平均粒子径
は、50〜300nmであることが好ましい。Next, the second stage of the rubber-containing acrylic multi-stage polymer is, for example, 70 to 89% by weight, preferably 76 to 8% by weight of n-butyl acrylate in the presence of the first stage polymer.
7% by weight, 10 to 29% by weight of styrene, preferably 12%
-23% by weight and graft-linking monomer 1-5% by weight
Obtained by polymerizing a monomer mixture consisting of As the graft-linking monomer, those mentioned in the first stage can be used. The proportion of the second stage in the rubber-containing acrylic multi-stage polymer is 10 from the viewpoint of balance for effectively reducing strain generated due to stress and the like and reducing temperature dependence of optical properties such as haze. -40% by weight, preferably 15-35% by weight. Tg of second stage polymer
Is 25 to effectively reduce the strain generated by stress and the like.
C. or lower, more preferably 0.degree. C. or lower. Further, if the monomers constituting the second-stage polymer and the composition ratio are within the ranges described above, the second stage may be further divided, or the composition ratio and type of the monomers may be changed. It is possible. The average particle diameter of the particles obtained by the second-stage polymerization is preferably 50 to 300 nm.
【0019】さらにゴム含有アクリル系多段階重合体中
における第3段は、上記第1段および第2段で得られた
重合体の存在下、メタクリル酸メチル80〜100重量
%およびこれらと共重合可能な他の単量体0〜20重量
%よりなる単量体混合物を重合して得られる、第1段お
よび第2段で得られる重合体を内部に含有するものであ
る。メタクリル酸メチルと共重合可能な他の単量体とし
ては、前記第1段で挙げたものが使用できる。第3段に
おいては、ゴム含有アクリル系多段階重合体と熱可塑性
アクリル樹脂を加熱熔融混合する際、その流動性を良く
するために、必要に応じ連鎖移動剤により分子量を調整
することが好ましい。ゴム含有アクリル系多段階重合体
に占める第3段の割合は、熔融混練時の良好な分散性を
得るため、および第2段の比率を適正な範囲とするため
に5〜50重量%、好ましくは15〜35重量%であ
る。また第3段の重合体のTgは成形物の良好な耐熱性
を得るため50℃以上であることが好ましい。さらに、
第3段の重合体を構成する単量体、組成比が上記に記載
した範囲内であれば、第3段をさらに分割したり、単量
体、連鎖移動剤などの組成比や種類を変化させることも
可能である。Further, the third stage in the rubber-containing acrylic multi-stage polymer is prepared by mixing 80 to 100% by weight of methyl methacrylate and copolymerizing with methyl methacrylate in the presence of the polymer obtained in the first stage and the second stage. It contains the polymer obtained in the first and second stages obtained by polymerizing a monomer mixture consisting of 0 to 20% by weight of other possible monomers. As other monomers copolymerizable with methyl methacrylate, those mentioned in the first stage can be used. In the third stage, when the rubber-containing acrylic multi-stage polymer and the thermoplastic acrylic resin are heated and melt-mixed, it is preferable to adjust the molecular weight with a chain transfer agent as necessary in order to improve the fluidity. The proportion of the third stage in the rubber-containing acrylic multi-stage polymer is preferably 5 to 50% by weight, in order to obtain good dispersibility during melt-kneading and to make the ratio of the second stage an appropriate range. Is 15 to 35% by weight. The Tg of the third-stage polymer is preferably 50 ° C. or higher in order to obtain good heat resistance of the molded product. further,
If the monomers constituting the third stage and the composition ratio are within the ranges described above, the third stage may be further divided or the composition ratios and types of the monomers and chain transfer agents may be changed. It is also possible to make it.
【0020】乳化重合法により製造されるゴム含有アク
リル系多段階重合体(B)含有エマルジョンは、例えば
熱可塑性アクリル樹脂(A)を含むエマルジョン、安定
剤等を加えた後、噴霧乾燥法、酸添加法、塩添加法、凍
結凝固法など公知の方法により固形分の分離が行われ
る。分離された固形分は水又は温水で洗浄した後、乾燥
して粉体とする。The emulsion containing the rubber-containing acrylic multi-stage polymer (B) produced by the emulsion polymerization method is prepared by adding, for example, an emulsion containing a thermoplastic acrylic resin (A), a stabilizer, and the like, and then spray-drying the mixture. Solid matter is separated by a known method such as an addition method, a salt addition method, and a freeze-coagulation method. The separated solid is washed with water or warm water, and then dried to form a powder.
【0021】本発明のアクリル系樹脂組成物は、熱可塑
性アクリル樹脂(A)20〜96重量部、好ましくは4
0〜90重量部とゴム含有アクリル系多段階重合体
(B)80〜4重量部、好ましくは60〜10重量部と
からなることが必要である。ゴム含有アクリル系多段階
重合体(B)が4重量部未満の場合には、アクリル樹脂
組成物の耐溶剤性が不足し、一方80重量部を越える場
合には色調、熔融加工性の点で十分なものが得られず好
ましくない。The acrylic resin composition of the present invention contains 20 to 96 parts by weight, preferably 4 parts by weight, of the thermoplastic acrylic resin (A).
It must be composed of 0 to 90 parts by weight and 80 to 4 parts by weight, preferably 60 to 10 parts by weight of the rubber-containing acrylic multi-stage polymer (B). When the amount of the rubber-containing acrylic multi-stage polymer (B) is less than 4 parts by weight, the solvent resistance of the acrylic resin composition is insufficient. On the other hand, when it exceeds 80 parts by weight, the color tone and the melt processability are poor. It is not preferable because sufficient one cannot be obtained.
【0022】さらに本発明のアクリル系樹脂組成物にお
いては、四酸化ルテニウム染色した該樹脂組成物の超薄
切片を透過型電子顕微鏡を用いて観察した際に、該樹脂
組成物が海島構造を有しており、海部分は四酸化ルテニ
ウムで染色されない連続相部分であり、島部分は染色さ
れる部分と染色されない部分とからなる非連続相部分で
あって、主として島部分が、四酸化ルテニウムで染色さ
れない円形状の部分(非染色部a)の外周部を四酸化ル
テニウムで染色された部分(染色部b)が断続的に複数
個の粒子状物となって囲み、かつ非染色部a中に四酸化
ルテニウムで染色された部分(染色部c)がミクロ分散
している構造であることが必要である。この要件を満た
すために、本発明のゴム含有アクリル系多段階重合体
(B)は、第1段の重合体と第2段の重合体の重量比
が、第1段の重合体/第2段の重合体>1、好ましくは
第1段の重合体/第2段の重合体>1.25であること
が必要である。第2段の重合体の第1段の重合体に対す
る量が多くなりすぎると、第2段の重合で生成する染色
部bが、非染色部aの外周部を取り巻く範囲が多くな
り、染色部bの粒子状物1個あたりの大きさが大きくな
ったり、染色部b同士がつながりあったりするため、結
果として染色部bが大きくなって非染色部aを完全にと
りかこみ好ましくない。第2段が第1段を層状に取り巻
いたりすると、アクリル系樹脂組成物の光学物性が温度
変化により大きく変動するなどして好ましくない。Further, in the acrylic resin composition of the present invention, when an ultrathin section of the resin composition stained with ruthenium tetroxide is observed using a transmission electron microscope, the resin composition has a sea-island structure. The sea portion is a continuous phase portion that is not stained with ruthenium tetroxide, and the island portion is a discontinuous phase portion that is composed of a stained portion and a non-stained portion, and the island portion is mainly made of ruthenium tetroxide. A part (stained part b) dyed with ruthenium tetroxide intermittently surrounds an outer part of a circular part (unstained part a) which is not dyed as a plurality of particulates, and the inside of the non-stained part a It is necessary that the portion dyed with ruthenium tetroxide (stained portion c) has a micro-dispersed structure. In order to satisfy this requirement, the rubber-containing acrylic multi-stage polymer (B) of the present invention has a weight ratio of the first stage polymer to the second stage polymer of the first stage polymer / second polymer. It is necessary that the stage polymer> 1 and preferably the first stage polymer / the second stage polymer> 1.25. When the amount of the second-stage polymer with respect to the first-stage polymer is too large, the range in which the dyed portion b generated by the second-stage polymerization surrounds the outer periphery of the non-dyeed portion a increases, and the dyed portion Since the size per particle of b becomes large or the dyed parts b are connected to each other, the dyed part b becomes large and the non-dyed part a is completely taken in, which is not preferable. It is not preferable that the second stage surrounds the first stage in a layered manner because the optical properties of the acrylic resin composition greatly fluctuate due to a temperature change.
【0023】アクリル系樹脂組成物の染色部bの粒子状
物1個あたりの平均粒子径は、50nm以下、好ましく
は5〜50nm、より好ましくは7〜40nmであるこ
とが望ましい。染色部bの粒子状物1個あたりの平均粒
子径は、アクリル系樹脂組成物を四酸化ルテニウム染色
した超薄切片を、透過型電子顕微鏡を用いて観察して測
定することができ、通常電子顕微鏡写真を撮影してその
写真を用いて粒子径の測定を行う。この際に、ゴム含有
アクリル系多段階重合体(B)の構造のうち、第1段の
外側を第2段の重合体が取り巻く構造が層状、いわゆる
第2段の重合体がコア−シェル状に第1段の重合体を覆
う構造ではなく、第2段が第1段の外側を通常直径50
nm以下の粒子(染色部b)に分割して非染色部aを断
続的に取り巻く構造を有することが必要である。上記染
色部bの粒子状物1個あたりの平均粒子径とは、この分
割した粒子1個あたりの粒子径を意味する。The average particle size per particle of the dyed portion b of the acrylic resin composition is 50 nm or less, preferably 5 to 50 nm, more preferably 7 to 40 nm. The average particle diameter per particle of the dyed portion b can be measured by observing an ultrathin section of the acrylic resin composition stained with ruthenium tetroxide using a transmission electron microscope, A micrograph is taken and the particle size is measured using the photograph. At this time, of the structure of the rubber-containing acrylic multi-stage polymer (B), the structure in which the second stage polymer surrounds the outside of the first stage is a layered structure, and the so-called second stage polymer is a core-shell shape. Instead of a structure covering the first stage polymer, the second stage covers the outside of the first stage with a normal diameter of 50 mm.
It is necessary to have a structure in which the non-stained portion a is intermittently divided into particles (stained portions b) having a size of nm or less. The average particle diameter per particle in the dyed portion b means the particle diameter per divided particle.
【0024】アクリル系樹脂組成物は、熱可塑性アクリ
ル樹脂(A)およびゴム含有アクリル系多段階重合体
(B)に、必要に応じ安定剤、滑剤、可塑剤、充てん
剤、染料、顔料等の公知の添加剤を加え、公知の方法で
混合または混練して製造することができる。The acrylic resin composition is prepared by adding a thermoplastic acrylic resin (A) and a rubber-containing acrylic multi-stage polymer (B) to a stabilizer, a lubricant, a plasticizer, a filler, a dye, a pigment and the like, if necessary. It can be produced by adding a known additive and mixing or kneading by a known method.
【0025】このようにして得られたアクリル系樹脂組
成物は、押出成形法、射出成形法等の公知の方法により
フィルム、シート、成形物等の成形体を得ることができ
る。これらの成形体においては、その曲げ弾性率が15
000kg/cm2 〜32000kg/cm2 であるこ
とが望ましい。The acrylic resin composition thus obtained can be used to obtain molded articles such as films, sheets, molded articles and the like by known methods such as extrusion molding and injection molding. In these compacts, the flexural modulus is 15
It is desirable that it is 000 kg / cm 2 to 32000 kg / cm 2 .
【0026】[0026]
【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明する。なお、実施例中の「部」および「%」は、
それぞれ「重量部」および「重量%」を示す。また実施
例に示した測定・評価は下記の方法に従って実施した。
全光線透過率、ヘイズ;ASTM−D1003に準じ
て、厚さ3.2mmの試験片を用いて、23℃および7
0℃における光学物性を測定した。The present invention will now be described more specifically with reference to examples. In the examples, “part” and “%” are
"Parts by weight" and "% by weight" are shown, respectively. The measurements and evaluations shown in the examples were performed according to the following methods.
Total light transmittance, haze: 23 ° C. and 7 ° C. using a 3.2 mm thick test piece according to ASTM-D1003.
The optical properties at 0 ° C. were measured.
【0027】平均粒子径;ゴム含有アクリル系多段階重
合体(B)のラテックスを重合中あるいは重合後にサン
プリングし、固形分0.05%となるように水で希釈
し、分光光度計を用いて波長500nmでの吸光度を測
定した。この値と、透過型電子顕微鏡写真よりラテック
ス粒子径を計測したサンプルについて同様に吸光度を測
定して作成した検量線とを用い、ラテックス中での平均
粒子径を求めた。Average particle diameter: A latex of the rubber-containing acrylic multi-stage polymer (B) is sampled during or after the polymerization, diluted with water to a solid content of 0.05%, and analyzed using a spectrophotometer. The absorbance at a wavelength of 500 nm was measured. The average particle diameter in the latex was determined using this value and a calibration curve prepared by measuring absorbance in the same manner for a sample in which the latex particle diameter was measured from a transmission electron micrograph.
【0028】電子顕微鏡写真観察;得られた樹脂組成物
試験片を−135℃に冷却後、0.1μm以下の厚さに
切削した。この切片を、四酸化ルテニウム蒸気中15分
間染色して試料を作成し、透過型電子顕微鏡(使用機
器:日立透過型電子顕微鏡H−7100FA)写真を撮
影した。この写真を用いて、染色部bの粒子径を50個
測定し、これらの平均値を求めて染色部bの平均粒子径
とした。Observation with an electron microscope photograph: The obtained resin composition test piece was cooled to -135 ° C and cut into a thickness of 0.1 µm or less. The section was stained in ruthenium tetroxide vapor for 15 minutes to prepare a sample, and a photograph was taken with a transmission electron microscope (device used: Hitachi transmission electron microscope H-7100FA). Using this photograph, 50 particle diameters of the dyed portion b were measured, and the average value thereof was obtained as the average particle size of the dyed portion b.
【0029】曲げ弾性率;ASTM−D790に準じて
測定した。Flexural modulus was measured according to ASTM-D790.
【0030】耐溶剤性;任意の楕円曲線と同じ曲率を有
する曲面を持った治具を作成し、その曲面の部分と試験
片の厚さから歪0.7%となる変形量を試験片に与える
位置に試験片を固定し、イソプロピルアルコールを塗布
してクラックが発生するまでの時間を測定した。Solvent resistance: A jig having a curved surface having the same curvature as an arbitrary elliptic curve was prepared, and a deformation amount of 0.7% strain was applied to the test piece from the curved surface portion and the thickness of the test piece. The test piece was fixed at the given position, isopropyl alcohol was applied, and the time until cracks were generated was measured.
【0031】また、実施例中に用いた略称を以下に示
す。メタクリル酸メチル(MMA)、アクリル酸メチル
(MA)、アクリル酸n−ブチル(BA)、スチレン
(St)、メタクリル酸アリル(ALMA)、n−オク
チルメルカプタン(n−OM)、N−ラウロイルザルコ
シン酸ナトリウム(LSS)、過硫酸カリウム(KP
S)The abbreviations used in the examples are shown below. Methyl methacrylate (MMA), methyl acrylate (MA), n-butyl acrylate (BA), styrene (St), allyl methacrylate (ALMA), n-octyl mercaptan (n-OM), N-lauroyl sarcosine Sodium (LSS), potassium persulfate (KP
S)
【0032】実施例1 (第1段の重合)75リットルの還流冷却器付き反応容
器に、イオン交換水32400g、LSS172.8g
を投入し、70rpmの回転数で攪拌しながら窒素雰囲
気下で70℃に昇温した後、MMA2800g、MA1
10g、ALMA8.73gからなる単量体混合物(以
下、これをM1−1と称す)を投入し、ついでKPS
2.91gを投入して、10分保持した。次に、KPS
6.8gを投入後、MMA6600g、MA200g、
ALMA20.4gからなる単量体混合物(以下、これ
をM1−2と称す)を50分かけて連続的に添加し、添
加終了後30分間保持してラテックスを得た。 (第2段の重合)このラテックスの存在下に、KPS
3.15gを投入後、BA5150g、St1150
g、ALMA189gからなる単量体混合物(以下、こ
れをM2と称す)を120分かけて連続的に添加し、添
加終了後180分間保持した。 (第3段の重合)上記第2段終了後に得られたラテック
スの存在下に、KPS5.6gを投入後、MMA550
0g、MA100g、n−OM16.8gからなる単量
体混合物(以下、これをM3と称す)を30分かけて連
続的に添加し、添加終了後60分間保持して三段階重合
体ラテックスを得た。重合中および重合終了時のサンプ
リングにより得られたラテックスの平均粒子径を求めた
ところ、第1段の粒子径が94nm、第2段の粒子径が
102nm、第3段の粒子径が110nmであった。Example 1 (First-stage polymerization) In a 75-liter reaction vessel equipped with a reflux condenser, 32400 g of ion-exchanged water and 172.8 g of LSS were added.
And heated to 70 ° C. in a nitrogen atmosphere while stirring at a rotation speed of 70 rpm.
A monomer mixture consisting of 10 g and 8.73 g of ALMA (hereinafter referred to as M1-1) was charged, and then KPS
2.91 g was charged and held for 10 minutes. Next, KPS
After charging 6.8 g, MMA 6600 g, MA 200 g,
A monomer mixture consisting of 20.4 g of ALMA (hereinafter referred to as M1-2) was continuously added over 50 minutes, and the mixture was kept for 30 minutes after completion of the addition to obtain a latex. (Second stage polymerization) In the presence of this latex, KPS
After charging 3.15 g, BA5150 g, St1150
g, and a monomer mixture consisting of 189 g of ALMA (hereinafter referred to as M2) was continuously added over 120 minutes, and the mixture was kept for 180 minutes after the completion of the addition. (Third Stage Polymerization) In the presence of the latex obtained after the completion of the second stage, 5.6 g of KPS was added, and then MMA550 was added.
A monomer mixture consisting of 0 g, 100 g of MA and 16.8 g of n-OM (hereinafter referred to as M3) was continuously added over 30 minutes, and after completion of the addition, the mixture was maintained for 60 minutes to obtain a three-stage polymer latex. Was. The average particle diameter of the latex obtained by sampling during and at the end of the polymerization was determined to be 94 nm for the first stage, 102 nm for the second stage, and 110 nm for the third stage. Was.
【0033】このようにして得られた三段階重合体ラテ
ックスをステンレス製容器に入れ、−30℃の冷凍庫中
で凍結し、70℃で融解させた後、瀘別して重合体を分
離した。さらに70℃温水で水洗脱水を3回繰り返した
後、80℃で20時間乾燥した。得られた三段階重合体
の粉体と、熱可塑性アクリル樹脂ペレット(メタクリル
酸メチル98重量%とアクリル酸メチル2重量%との共
重合体、重量平均分子量110000)とを1対1の割
合で混合し、ペレット押出機(VSK型40m/mベン
ト式押出機:中央機械製作所製)で250℃でペレット
化後、射出成形機(N70A型射出成形機:日本製鋼所
製)を用いて成形温度250℃、金型温度50℃の条件
で所定の試験片を作製し、物性測定を行った。得られた
試験片の評価結果を表1に示す。The thus obtained three-stage polymer latex was placed in a stainless steel container, frozen in a freezer at −30 ° C., thawed at 70 ° C., and filtered to separate a polymer. Further, washing and dehydration were repeated three times with warm water at 70 ° C., followed by drying at 80 ° C. for 20 hours. The obtained three-stage polymer powder and thermoplastic acrylic resin pellets (copolymer of 98% by weight of methyl methacrylate and 2% by weight of methyl acrylate, weight average molecular weight 110,000) are in a ratio of 1: 1. After mixing and pelletizing at 250 ° C. with a pellet extruder (VSK type 40 m / m vent type extruder: manufactured by Chuo Kikai Seisakusho), the molding temperature is determined using an injection molding machine (N70A type injection molding machine: manufactured by Nippon Steel Works). A predetermined test piece was prepared under the conditions of 250 ° C. and a mold temperature of 50 ° C., and physical properties were measured. Table 1 shows the evaluation results of the obtained test pieces.
【0034】ここで得られた試験片を用い、電子顕微鏡
写真により染色部の形状を観察・測定したところ、四酸
化ルテニウムで染色されない円形状の部分(非染色部
a)の外周部を四酸化ルテニウムで染色された部分(染
色部b)が断続的に複数個の粒子状物となって囲み、さ
らに非染色部a中に四酸化ルテニウムで染色された部分
(染色部c)がミクロ分散していた。また染色部bの粒
子状物1個あたりの平均粒子径が25nmであった。こ
の時の電子顕微鏡写真に基づく樹脂組成物の島構造の模
式図を図1に示す。Using the test piece obtained here, the shape of the stained part was observed and measured by an electron micrograph, and the outer periphery of the circular part (unstained part a) not stained with ruthenium tetroxide was treated with tetroxide. The part stained with ruthenium (stained part b) is intermittently surrounded by a plurality of particles, and the part stained with ruthenium tetroxide (stained part c) is micro-dispersed in the unstained part a. I was In addition, the average particle size per particle of the dyed portion b was 25 nm. FIG. 1 is a schematic view of the island structure of the resin composition based on the electron micrograph at this time.
【0035】実施例2〜4 実施例1で得られた三段階重合体の粉末を用い、実施例
1と同様にして熱可塑性アクリル樹脂との配合割合を変
化させて試験片を作製した。これ以外は実施例1と同様
に操作して評価した。その結果を表1に示す。Examples 2 to 4 Using the powder of the three-stage polymer obtained in Example 1, a test piece was prepared in the same manner as in Example 1 except that the mixing ratio with the thermoplastic acrylic resin was changed. Except for this, evaluation was performed by operating in the same manner as in Example 1. Table 1 shows the results.
【0036】実施例5 実施例1において、使用する乳化剤の量をLSS12
9.6gに変えた以外は実施例1と全く同様に操作して
評価した。結果を表1に示す。実施例1と同様にして第
2段まで重合したラテックスを用いて平均粒子径を測定
したところ、126nmであった。実施例1と同様にし
て作製した試験片を用いて、電子顕微鏡写真により染色
部の形状を観察・測定したところ、実施例1と同様の状
況であり、染色部の粒子状物1個あたりの平均粒子径が
19nmであった。Example 5 In Example 1, the amount of the emulsifier used was changed to LSS12.
The operation was evaluated in exactly the same manner as in Example 1 except that the amount was changed to 9.6 g. Table 1 shows the results. When the average particle diameter was measured using the latex polymerized to the second stage in the same manner as in Example 1, it was 126 nm. Using a test piece prepared in the same manner as in Example 1, the shape of the stained portion was observed and measured by an electron micrograph. The situation was the same as in Example 1, and the per-particle content of the stained portion was one. The average particle size was 19 nm.
【0037】実施例6〜8 実施例5で得られた多段階重合体の粉末を用い、実施例
1と同様の熱可塑性アクリル樹脂との配合割合を変化さ
せて試験片を作製した。これ以外は実施例5と同様に操
作して評価した。その結果を表1に示す。Examples 6 to 8 Using the powder of the multi-stage polymer obtained in Example 5, test pieces were prepared by changing the mixing ratio with the thermoplastic acrylic resin as in Example 1. Except for this, the operation was performed in the same manner as in Example 5, and the evaluation was performed. Table 1 shows the results.
【0038】実施例9 実施例1において、(M1−1)をMMA2550g、
MA50g、ALMA7.8g、(M1−2)をMMA
10100g、MA250g、ALMA31.05g、
(M−2)をBA3550g、St770g、ALMA
129.6g、(M3)をMMA4200g、MA12
0g、n−OM12.96gの組成に変え、それぞれの
重合開始剤にKPSを(M1−1)の重合時は2.6
g、(M1−2)の重合時は10.35g、(M2)の
重合時は2.16g、(M3)の重合時は4.32gを
それぞれ用いた以外は実施例1と同様に操作して評価し
た。得られた結果を表1に示す。実施例1と同様にして
第2段まで重合したラテックスを用いて平均粒子径を測
定したところ、103nmであった。実施例1と同様に
して作製した試験片を用いて、電子顕微鏡写真により染
色部の形状を観察・測定したところ、実施例1と同様の
状況であり、染色部の粒子状物1個あたりの平均粒子径
は22nmであった。Example 9 In Example 1, (M1-1) was replaced with 2550 g of MMA,
MA 50g, ALMA 7.8g, (M1-2) MMA
10100 g, MA 250 g, ALMA 31.05 g,
(M-2) BA3550g, St770g, ALMA
129.6 g, (M3) MMA 4200 g, MA12
0 g and the composition of n-OM 12.96 g, and KPS was added to each polymerization initiator at the time of polymerization of (M1-1) to 2.6.
g, 10.35 g for the polymerization of (M1-2), 2.16 g for the polymerization of (M2), and 4.32 g for the polymerization of (M3). Was evaluated. Table 1 shows the obtained results. When the average particle diameter was measured using the latex polymerized to the second stage in the same manner as in Example 1, it was 103 nm. Using a test piece prepared in the same manner as in Example 1, the shape of the stained portion was observed and measured by an electron micrograph. The situation was the same as in Example 1, and the per-particle content of the stained portion was one. The average particle size was 22 nm.
【0039】実施例10〜12 実施例9で得られた多段階重合体の粉末を用い、実施例
1と同様の熱可塑性アクリル樹脂との配合割合を変化さ
せて実施例1と同様にして試験片を作製した。これ以外
は実施例9と同様に操作して評価した。その結果を表1
に示す。Examples 10 to 12 Using the multistage polymer powder obtained in Example 9 and changing the blending ratio with the thermoplastic acrylic resin as in Example 1, a test was conducted in the same manner as in Example 1. Pieces were made. Except for this, operation was performed in the same manner as in Example 9 to evaluate the results. Table 1 shows the results.
Shown in
【0040】実施例13 75リットル還流冷却器付き反応容器に、イオン交換水
32400g、LSS86.4gを投入し、70rpm
の回転数で攪拌しながら窒素雰囲気下で70℃に昇温し
た後、MMA21168g、MA432g、n−OM5
4gからなる単量体混合物のうち、2160gを投入
し、次いでKPS2.16gを投入して、20分間保持
した。次にKPS8.64gを添加後、単量体混合物の
うち8640gを40分間かけて連続的に添加し、添加
終了後60分間保持した。さらに、KPS10.8gを
添加し、単量体混合物の残り10854gを50分間か
けて連続的に添加し、添加終了後1時間保持し、熱可塑
性アクリル樹脂エマルジョンを得た。得られた熱可塑性
アクリル樹脂エマルジョンと、実施例1で得られた三段
階重合体ラテックスを1対1の割合で混合し、実施例1
と同様に凍結、融解、瀘別、洗浄、乾燥を行った。得ら
れた粉体と、実施例1と同様の熱可塑性アクリル樹脂と
を1対1の割合で混合し、実施例1と同条件にてペレッ
ト化・射出成形により試験片を作製し、物性測定を行っ
た。得られた試験片の評価結果を表2に示す。Example 13 A reaction vessel equipped with a 75-liter reflux condenser was charged with 32400 g of ion-exchanged water and 86.4 g of LSS, and was charged at 70 rpm.
After the temperature was raised to 70 ° C. under a nitrogen atmosphere while stirring at a rotation speed of MMA, 21168 g of MA, 432 g of MA, n-OM5
Of the 4 g of the monomer mixture, 2160 g were charged, and then 2.16 g of KPS were charged and held for 20 minutes. Next, after adding 8.64 g of KPS, 8640 g of the monomer mixture was continuously added over 40 minutes, and held for 60 minutes after the addition was completed. Further, 10.8 g of KPS was added, and the remaining 10854 g of the monomer mixture was continuously added over 50 minutes. After the completion of the addition, the mixture was kept for 1 hour to obtain a thermoplastic acrylic resin emulsion. The obtained thermoplastic acrylic resin emulsion and the three-stage polymer latex obtained in Example 1 were mixed at a ratio of 1: 1.
In the same manner as described above, freezing, thawing, filtration, washing and drying were performed. The obtained powder and the same thermoplastic acrylic resin as in Example 1 were mixed at a ratio of 1 to 1, and a test piece was prepared by pelletization and injection molding under the same conditions as in Example 1 to measure physical properties. Was done. Table 2 shows the evaluation results of the obtained test pieces.
【0041】比較例1 第1段の重合を、75リットル還流冷却器付き反応容器
に、イオン交換水32400g、LSS10.8g、ス
テアリン酸ナトリウム86.4gを投入し、70rpm
の回転数で攪拌しながら窒素雰囲気下で70℃に昇温し
た後、MMA7182g、MA378g、ALMA1
8.9gからなる単量体混合物を投入した。次いでKP
S7.56gを投入して、重合による発熱ピーク発生
後、80℃で30分間保持して重合し、(M2)の組成
および量をBA7970g、St1750g、ALMA
194.4gとし、(M3)の組成および量をMMA4
104g、MA216g、n−OM8.64gに変え、
それぞれの重合開始剤にKPSを(M2)の重合時は
9.72g、(M3)の重合時は4.32gをそれぞれ
用いた以外は実施例1と同様にして三段階重合体のラテ
ックスおよび粉体を得、評価した。評価結果を表3に示
す。実施例1と同様にして第2段まで重合したラテック
スを用いて平均粒子径を測定したところ、223nmで
あった。実施例1と同様にして作製した試験片を用い
て、電子顕微鏡写真により染色部bの直径を測定したと
ころ、染色部が非染色部を層状に覆っており、染色部の
平均粒子径は225nmであった。この時の電子顕微鏡
写真に基づく樹脂組成物の島構造の模式図を図2に示
す。COMPARATIVE EXAMPLE 1 In the first-stage polymerization, 32400 g of ion-exchanged water, 10.8 g of LSS and 86.4 g of sodium stearate were charged into a reaction vessel equipped with a 75-liter reflux condenser, and 70 rpm.
After the temperature was raised to 70 ° C. under a nitrogen atmosphere while stirring at a rotation speed of 7,878 g of MMA, 378 g of MA, and ALMA1
A monomer mixture consisting of 8.9 g was charged. Then KP
S7.56 g was added, and after the generation of an exothermic peak due to the polymerization, polymerization was carried out at 80 ° C. for 30 minutes.
194.4 g, and the composition and amount of (M3) were changed to MMA4
Change to 104g, MA216g, n-OM 8.64g,
Latex and powder of a three-stage polymer were prepared in the same manner as in Example 1 except that KPS was used as the polymerization initiator in the same manner as in Example 1 except that 9.72 g was used for the polymerization of (M2) and 4.32 g was used for the polymerization of (M3). The body was obtained and evaluated. Table 3 shows the evaluation results. When the average particle diameter was measured using the latex polymerized to the second stage in the same manner as in Example 1, it was 223 nm. Using a test piece prepared in the same manner as in Example 1, the diameter of the stained portion b was measured by an electron micrograph. Met. FIG. 2 is a schematic view of the island structure of the resin composition based on the electron micrograph at this time.
【0042】比較例2〜4 比較例1で得られた多段階重合体の粉末を用い、熱可塑
性アクリル樹脂(A)との配合割合を変化させて実施例
1と同様にして試験片を作製した。これ以外は実施例1
と同様に操作して評価した。その結果を表3に示す。Comparative Examples 2 to 4 Test pieces were prepared in the same manner as in Example 1 except that the mixing ratio with the thermoplastic acrylic resin (A) was changed using the multi-stage polymer powder obtained in Comparative Example 1. did. Other than this, Example 1
The operation was performed in the same manner as described above. Table 3 shows the results.
【0043】比較例5 (第1段の重合)75リットルの還流冷却器付き反応容
器に、イオン交換水32400g、LSS453.6g
を投入し、70rpmの回転数で攪拌しながら窒素雰囲
気下で70℃に昇温した後、BA5346g、St11
34g、ALMA97.2gからなる単量体混合物を投
入し、ついでKPS6.48gを投入して、60分保持
した。次に、KPS6.48gを投入し、BA5346
g、St1134g、ALMA97.2gからなる単量
体混合物を60分かけて連続的に添加し、添加終了後6
0分間保持しラテックスを得た。 (第2段の重合)上記ラテックスの存在下に、KPS
8.64gを投入し、MMA8121.6g、MA51
8.4g、n−OM25.92gからなる単量体混合物
を60分かけて連続的に添加し、添加終了後60分間保
持して二段階重合体ラテックスを得た。重合中および重
合終了時のサンプリングにより得られたラテックスの平
均粒子径を求めたところ、最内部の軟質層である第1段
が69nm、最外部の硬質層である第2段が81nmで
あった。このようにして得られたラテックスをステンレ
ス製容器に入れ、−30℃の冷凍庫中で凍結し、70℃
で融解させた後、瀘別して重合体を分離した。さらに7
0℃温水で水洗脱水を3回繰り返した後、80℃で20
時間乾燥した。得られたゴム含有アクリル系多段階重合
体の粉体と、実施例1と同様の熱可塑性アクリル樹脂と
を1対1の割合で混合し、ペレット押出機(VSK型4
0m/mベント式押出機:中央機械製作所製)で250
℃でペレット化後、射出成形機(N70A型射出成形
機:日本製鋼所製)を用いて成形温度250℃、金型温
度50℃の条件で所定の試験片を作製し、物性測定を行
った。得られた試験片の評価結果を表3に示す。ここで
得られた試験片を用い、電子顕微鏡写真により染色部の
形状を観察・測定したところ、第1段の楕円状粒子が観
察されるだけであり、ほぼ均一に染色された部分の平均
粒子径は70nmであった。Comparative Example 5 (First Stage Polymerization) In a 75 liter reaction vessel equipped with a reflux condenser, 32400 g of ion-exchanged water and 453.6 g of LSS were added.
And heated to 70 ° C. under a nitrogen atmosphere while stirring at a rotation speed of 70 rpm, and then BA5346 g, St11
A monomer mixture consisting of 34 g and 97.2 g of ALMA was charged, and then 6.48 g of KPS was charged and maintained for 60 minutes. Next, 6.48 g of KPS was charged and BA5346 was added.
g, St1134 g, and ALMA 97.2 g were continuously added over 60 minutes.
It was held for 0 minutes to obtain a latex. (Second stage polymerization) In the presence of the latex, KPS
8.64 g was charged, and MMA8121.6 g, MA51
A monomer mixture consisting of 8.4 g and 25.92 g of n-OM was continuously added over 60 minutes, and after completion of the addition, the mixture was maintained for 60 minutes to obtain a two-stage polymer latex. When the average particle size of the latex obtained by sampling during and after the polymerization was determined, the first stage as the innermost soft layer was 69 nm, and the second stage as the outermost hard layer was 81 nm. . The latex thus obtained was put in a stainless steel container, frozen in a freezer at -30 ° C, and
After melting, the polymer was separated by filtration. 7 more
After repeating washing and dehydration three times with hot water at 0 ° C.,
Dried for hours. The obtained rubber-containing acrylic multi-stage polymer powder and the same thermoplastic acrylic resin as in Example 1 were mixed at a ratio of 1: 1, and a pellet extruder (VSK type 4) was used.
0m / m vent type extruder: manufactured by Chuo Kikai Seisakusho)
After pelletization at ℃, a predetermined test piece was prepared using an injection molding machine (N70A type injection molding machine: manufactured by Nippon Steel Works) at a molding temperature of 250 ° C and a mold temperature of 50 ° C, and physical properties were measured. . Table 3 shows the evaluation results of the obtained test pieces. Using the test piece obtained here, the shape of the stained part was observed and measured by an electron micrograph, and only the first-stage elliptical particles were observed, and the average particles in the almost uniformly dyed part were observed. The diameter was 70 nm.
【0044】比較例6〜8 比較例5で得られた二段階重合体の粉末を用い、実施例
1と同様の熱可塑性アクリル樹脂との配合割合を変化さ
せて試験片を作製した。これ以外は比較例5と同様に操
作して評価した。その結果を表3に示す。Comparative Examples 6 to 8 Using the two-stage polymer powder obtained in Comparative Example 5, test pieces were prepared by changing the blending ratio with the thermoplastic acrylic resin as in Example 1. Except for this, operation was performed in the same manner as in Comparative Example 5, and the evaluation was performed. Table 3 shows the results.
【0045】比較例9 多段階重合体を全く用いずに、実施例1と同様の熱可塑
性アクリル樹脂のみを用いて試験片を作成し、評価し
た。その結果を表4に示す。Comparative Example 9 A test piece was prepared using only the same thermoplastic acrylic resin as in Example 1 without using any multi-stage polymer, and evaluated. Table 4 shows the results.
【0046】[0046]
【表1】 [Table 1]
【0047】[0047]
【表2】 [Table 2]
【0048】[0048]
【表3】 [Table 3]
【0049】[0049]
【表4】 [Table 4]
【0050】[0050]
【発明の効果】本発明によれば、従来のアクリル樹脂の
持つ光学特性、機械的物性や成形加工性を維持し、か
つ、耐溶剤性、特に一定の歪を受ける環境下での耐溶剤
性が改良されたアクリル系樹脂組成物を提供することが
できる。According to the present invention, the optical properties, mechanical properties and moldability of conventional acrylic resins are maintained, and solvent resistance, especially in an environment where a certain strain is applied. Can provide an improved acrylic resin composition.
【図1】本発明の実施態様における染色された樹脂組成
物の島構造を示す模式図である。FIG. 1 is a schematic view showing an island structure of a dyed resin composition according to an embodiment of the present invention.
【図2】比較例1における染色された樹脂組成物の島構
造を示す模式図である。FIG. 2 is a schematic diagram showing an island structure of a dyed resin composition in Comparative Example 1.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI (C08F 285/00 220:10 212:08 220:14) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI (C08F 285/00 220: 10 212: 08 220: 14)
Claims (3)
重量%およびこれと共重合可能な他の単量体0〜20重
量%からなる熱可塑性アクリル樹脂20〜96重量部
と、(B)乳化重合により得られるゴム含有アクリル系
多段階重合体80〜4重量部とからなる樹脂組成物であ
って、該樹脂組成物の四酸化ルテニウム染色した超薄切
片を透過型電子顕微鏡を用いて観察した際に、該樹脂組
成物が海島構造を有しており、海部分は四酸化ルテニウ
ムで染色されない連続相部分であり、島部分は染色され
た部分と染色されない部分とからなる非連続相部分であ
って、主として島部分が、四酸化ルテニウムで染色され
ない円形状部分の外周部を四酸化ルテニウムで染色され
た部分が断続的に複数個の粒子状物となって囲み、かつ
染色されない円形状部分中に四酸化ルテニウムで染色さ
れた部分がミクロ分散している構造であることを特徴と
するアクリル系樹脂組成物。(A) Methyl methacrylate 80-100
20 to 96 parts by weight of a thermoplastic acrylic resin composed of 0 to 20% by weight and another monomer copolymerizable therewith, and (B) a rubber-containing acrylic multi-stage polymer 80 to 80 obtained by emulsion polymerization. A resin composition consisting of 4 parts by weight, and when the ultrathin section of the resin composition stained with ruthenium tetroxide is observed using a transmission electron microscope, the resin composition has a sea-island structure. The sea portion is a continuous phase portion that is not stained with ruthenium tetroxide, and the island portion is a discontinuous phase portion that is composed of a stained portion and a non-stained portion, and mainly the island portion is not stained with ruthenium tetroxide. The part that is stained with ruthenium tetroxide intermittently surrounds the outer periphery of the circular part as a plurality of particulates, and the part that is stained with ruthenium tetroxide is a micro part in a circular part that is not stained. Acrylic resin composition which is a to that structure.
が、(1)最内層としてメタクリル酸メチル80〜9
9.99重量%、グラフト結合性単量体0.01〜0.
5重量%およびこれらと共重合可能な他の単量体0〜1
9.99重量%よりなる単量体混合物を重合して得られ
る第1段、(2)上記第1段で得られる重合体の存在
下、アクリル酸n−ブチル70〜89重量%、スチレン
10〜29重量%、グラフト結合性単量体1〜5重量%
よりなる単量体混合物を重合して得られる第2段重合
体、および(3)上記第1段および第2段で得られる重
合体の存在下、メタクリル酸メチル80〜100重量%
およびこれらと共重合可能な他の単量体0〜20重量%
よりなる単量体混合物を重合して得られる第3段からな
り、ゴム含有アクリル系多段階重合体(B)の第1段重
合体、第2段重合体、第3段重合体の割合がそれぞれ3
0〜70重量%、10〜40重量%、5〜50重量%で
あり、かつ第1段重合体と第2段重合体の重量比が、第
1段重合体/第2段重合体>1であることを特徴とする
請求項1に記載のアクリル系樹脂組成物。2. A rubber-containing acrylic multi-stage polymer (B)
But (1) methyl methacrylate 80 to 9 as the innermost layer
9.99% by weight, graft-linking monomer 0.01 to 0.1%
5% by weight and other monomers 0 to 1 copolymerizable therewith
1st stage obtained by polymerizing a monomer mixture consisting of 9.99% by weight; (2) 70-89% by weight of n-butyl acrylate and 10% of styrene in the presence of the polymer obtained in the above 1st stage. To 29% by weight, graft bonding monomer 1 to 5% by weight
In the presence of the second-stage polymer obtained by polymerizing a monomer mixture comprising: and (3) the polymers obtained in the first and second stages, 80 to 100% by weight of methyl methacrylate
And 0 to 20% by weight of another monomer copolymerizable therewith
Consisting of a third stage obtained by polymerizing a monomer mixture consisting of: a rubber-containing acrylic multi-stage polymer (B) having a ratio of the first-stage polymer, the second-stage polymer, and the third-stage polymer, 3 each
0 to 70% by weight, 10 to 40% by weight, 5 to 50% by weight, and the weight ratio of the first stage polymer to the second stage polymer is 1st stage polymer / 2nd stage polymer> 1 The acrylic resin composition according to claim 1, wherein
組成物からなる成形体。3. A molded article comprising the acrylic resin composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21997197A JP3720543B2 (en) | 1997-07-31 | 1997-07-31 | Acrylic resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21997197A JP3720543B2 (en) | 1997-07-31 | 1997-07-31 | Acrylic resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1149922A true JPH1149922A (en) | 1999-02-23 |
JP3720543B2 JP3720543B2 (en) | 2005-11-30 |
Family
ID=16743906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21997197A Expired - Lifetime JP3720543B2 (en) | 1997-07-31 | 1997-07-31 | Acrylic resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3720543B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000248142A (en) * | 1999-03-01 | 2000-09-12 | Mitsubishi Rayon Co Ltd | Resin composition |
JP2011088946A (en) * | 2009-10-20 | 2011-05-06 | Sumitomo Chemical Co Ltd | Acrylic resin film |
JP2021095548A (en) * | 2019-12-19 | 2021-06-24 | 株式会社カネカ | Polymer fine particle and resin composition |
-
1997
- 1997-07-31 JP JP21997197A patent/JP3720543B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000248142A (en) * | 1999-03-01 | 2000-09-12 | Mitsubishi Rayon Co Ltd | Resin composition |
JP2011088946A (en) * | 2009-10-20 | 2011-05-06 | Sumitomo Chemical Co Ltd | Acrylic resin film |
JP2021095548A (en) * | 2019-12-19 | 2021-06-24 | 株式会社カネカ | Polymer fine particle and resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP3720543B2 (en) | 2005-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100815995B1 (en) | Acrylate-Styrene- Acrylonitrile Grafted Copolymer with Excellent Impact Strength at Low and Room Temperature, Coloring, and Weatherability, and Thermoplastic Resin Composition Containing Same | |
US7195820B2 (en) | Core-shell polymers having hydrophilic shells for improved shell coverage and anti-blocking properties | |
RU2330716C2 (en) | Use of nuclear-shell type particles for modification of impact strength of poly(meth)acrylate molding compounds | |
KR101441314B1 (en) | Acrylate-Styrene-Acrylonitrile Graft Copolymer Having Excellent Impact-resistance, Weather-resistance, and Dyeability Property, and Method for Preparing The Same | |
US4452941A (en) | Thermoplastic acrylic resin composition | |
JP2726918B2 (en) | Impact resistant thermoplastic resin composition | |
JPS60229911A (en) | Impact-resistant plastic resin composition | |
JPH09216985A (en) | Methacrylate resin blend | |
JPH03199213A (en) | Acrylic polymer of multi-layer structure | |
JP3563166B2 (en) | Transparent thermoplastic resin composition | |
JPS5936646B2 (en) | Method for producing multilayer polymer composition | |
JP3720543B2 (en) | Acrylic resin composition | |
KR20020074220A (en) | Impact-resistant compositions based on thermoplastic methacrylic (co)polymer | |
JPH11502540A (en) | Polymer blends with improved colorability | |
JP4376524B2 (en) | Thermoplastic resin composition and molded body | |
JP2796595B2 (en) | Multilayer polymer and resin composition | |
JP2002060439A (en) | Copolymer having multilayer structure and methacrylic resin composition | |
JPS63132956A (en) | Impact-resistant resin composition | |
JP3602262B2 (en) | A multilayer acrylic polymer, a method for producing the same, a method for producing a methacrylic resin composition using the polymer, and a resin composition thereof. | |
KR100870199B1 (en) | Impact-reinforcing agent composition having multilayered structure, method for preparing the same, and thermoplastic composition comprising the same | |
JP3059201B2 (en) | Thermoplastic resin composition and multi-stage rigid polymer suitable for the same | |
JP3154893B2 (en) | Thermoplastic acrylic resin composition | |
JPS63120716A (en) | Production of impact-resistant resin | |
JP4685426B2 (en) | Impact resistant resin composition | |
JP2003026891A (en) | Thermoplastic resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050908 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080916 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130916 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |