[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1147982A - Solid wire for welding - Google Patents

Solid wire for welding

Info

Publication number
JPH1147982A
JPH1147982A JP9201264A JP20126497A JPH1147982A JP H1147982 A JPH1147982 A JP H1147982A JP 9201264 A JP9201264 A JP 9201264A JP 20126497 A JP20126497 A JP 20126497A JP H1147982 A JPH1147982 A JP H1147982A
Authority
JP
Japan
Prior art keywords
amount
spatter
welding
bead
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9201264A
Other languages
Japanese (ja)
Inventor
Hitoshi Nishimura
仁志 西村
Mitsunori Akaishi
三徳 赤石
Takeshi Fujikawa
武志 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9201264A priority Critical patent/JPH1147982A/en
Publication of JPH1147982A publication Critical patent/JPH1147982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease generation of spatter by specifying Fe as main component and adding specific amounts of As, Mn, Ti and Al. SOLUTION: The constitution is that Fe is specified as main component and, by weight, 0.2-0.5% (Ti+Al), 0.8-3.5 Al/Ti, <=2.7% (Si+Mn), and >=9% 4(Si+Mn)+5(Ti+Al)} are included. The action of Ti controls arc length, and when the amount of Ti is too small the amount of spatter owing to short circuit increases, and when the amount of Ti is too much the droplet becomes too big and the amount of big grained spatter increases. Al has not only an effect on the action of Ti, but also has a relation to the viscosity of droplet and weld bead. When the amount of Al is too much, the breakaway of droplet becomes unsmooth, and when the amount of Al is too small the viscosity of bead becomes low and the shape of bead of horizontal fillet becomes deteriorated. In addition to the action of Ti and Al, Si and Mn, similar to Al, have relation to the viscosity of droplet and weld bead. Thus, arc becomes stable and an excellent result of welding in the shape of bead is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アーク安定性に優
れ、特にスパッタの低減を図ることができる溶接用ソリ
ッドワイヤに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid wire for welding which has excellent arc stability and can reduce spatter.

【0002】[0002]

【従来の技術】一般的にガスシールドアーク溶接に用い
られる溶接用ソリッドワイヤは、炭素(C)が0.05
%、硅素(Si)が0.70%、マンガン(Mn)が
1.60%、アルミニウム(Al)が0.002%、チ
タン(Ti)が0.18%で残部が鉄(Fe)および不
可避の不純物である溶接用ソリッドワイヤであって、従
来よりスパッタの低減が最大の課題である。そこで、ス
パッタ発生量が約半分のフラックス入りワイヤやシール
ドガスにアルゴンと炭酸ガスの混合ガスを用いたマグ溶
接法がスパッタ低減のため一部で実用されている。
2. Description of the Related Art A welding solid wire generally used for gas shielded arc welding contains 0.05% carbon (C).
%, Silicon (Si) 0.70%, manganese (Mn) 1.60%, aluminum (Al) 0.002%, titanium (Ti) 0.18%, the balance being iron (Fe) and inevitable It is a solid wire for welding which is an impurity of which the reduction of spatter is the biggest problem. Therefore, a mag welding method using a mixed gas of argon and carbon dioxide gas as a flux-cored wire or a shielding gas in which the amount of spatter generated is about half has been practically used to reduce spatter.

【0003】[0003]

【発明が解決しようとする課題】ところが、ソリッドワ
イヤを用いた炭酸ガスアーク溶接に比し、ガス費やワイ
ヤ費が高いため、スパッタ低減を希望している市場全て
に採用されているとは言い難いのが現状である。
However, since gas cost and wire cost are higher than carbon dioxide arc welding using solid wire, it cannot be said that it is adopted in all markets where reduction of spatter is desired. is the current situation.

【0004】このため、安価なソリッドワイヤで炭酸ガ
スを用い、スパッタ量がフラックス入りワイヤや、シー
ルドガスにアルゴンと炭酸ガスの混合ガスを用いたマグ
溶接と同程度、すなわち、従来の約半分のスパッタに低
減することが課題であった。本発明は前記従来の欠点を
解消することを目的とする。
For this reason, carbon dioxide gas is used as an inexpensive solid wire, and the amount of spatter is about the same as that of a flux-cored wire or a mag welding using a mixed gas of argon and carbon dioxide as a shielding gas, that is, about half of the conventional one. The problem was to reduce to sputtering. An object of the present invention is to eliminate the above-mentioned conventional disadvantages.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明は鉄(Fe)を主成分とし、Si,Mn,T
i,Alを添加したワイヤであって、重量%で、Ti+
Alが0.2%〜0.5%、Al/Tiが0.8〜3.
5、Si+Mnが2.7%以下、4(Si+Mn)+5
(Ti+Al)が9%以上含む構成としたものである。
In order to achieve this object, the present invention comprises iron (Fe) as a main component, Si, Mn, T
i, a wire to which Al is added, and the
Al is 0.2% to 0.5%, and Al / Ti is 0.8 to 3%.
5, Si + Mn is 2.7% or less, 4 (Si + Mn) +5
(Ti + Al) contains 9% or more.

【0006】[0006]

【発明の実施の形態】上記の構成にしたのは、アーク
長、溶滴やビードの粘性を制御すると考えられる元素で
あるTi,Mn,Al,Siについて注目し、種々成分
を変え、(表1)に示す溶接用ワイヤNo.1〜29を
(表2)に示す条件で溶接試験を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The above construction is based on the fact that elements such as Ti, Mn, Al, and Si, which are considered to control the arc length, droplet and bead viscosity, are focused on, and various components are changed. The welding wire No. shown in 1). 1 to 29 were subjected to welding tests under the conditions shown in (Table 2).

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【表2】 [Table 2]

【0009】図1にTiとAlを変化させたときの結果
を、図2に(Ti+Al)と(Si+Mn)を変化させ
たときの結果を示す。そして、脱酸元素であるTi,A
l,Mn,Siの量を調整することにより溶接の改善、
特にスパッタ発生量を低減できることがわかった。
FIG. 1 shows the results when Ti and Al are changed, and FIG. 2 shows the results when (Ti + Al) and (Si + Mn) are changed. And Ti, A which is a deoxidizing element
Improving welding by adjusting the amount of l, Mn, Si,
In particular, it has been found that the amount of spatter generation can be reduced.

【0010】また、図1の横軸はTiの含有量(重量
%)、縦軸はAlの含有量(重量%)を示し、図中の線
Iは(Ti+Al)の含有量が0.2重量%であるこ
と、線IIは(Ti+Al)の含有量が0.5重量%であ
ること、線IIIはAl/Tiが3.5重量%であるこ
と、線IVはAl/Tiが0.8重量%であることを示
す。図1のTiの含有量を記載している横軸を下方とし
たときに、線Iより下方は(Ti+Al)の含有量が少
ないためビード形状が悪く、線IIより上方は(Ti+A
l)の含有量が多いため大粒スパッタが多く、線IIIよ
り上方はAl/Tiの値が大きいためアークが不安定に
なり、線IVより下方はAl/Tiの値が小さいためスパ
ッタが多い。これら線I〜IVで囲まれた範囲ではスパッ
タが少なく目的とする良好な結果が得られた(参考例と
従来例を除く本発明No)。
The abscissa of FIG. 1 shows the content of Ti (% by weight), and the ordinate shows the content of Al (% by weight). Line I in the figure indicates that the content of (Ti + Al) is 0.2%. %, The content of (Ti + Al) is 0.5% by weight, the value of Al / Ti is 3.5% by weight, and the value of Al / Ti is 0.2%. 8% by weight. When the abscissa axis of FIG. 1 in which the Ti content is described is set to the lower side, the bead shape is poor below the line I because the content of (Ti + Al) is small, and the upper part of the line II is (Ti + A) above the line II.
Since the content of l) is large, the amount of large-grain spatter is large, the arc becomes unstable above the line III because the Al / Ti value is large, and the spatter is large below the line IV because the Al / Ti value is small. In the range surrounded by these lines I to IV, the desired good result was obtained with less spatter (the present invention No except for the reference example and the conventional example).

【0011】なお、TiおよびAlの働きは明確ではな
いが、Tiについてはアーク長を制御すると考えられ、
少なすぎると短絡によるスパッタ量が増大し、多すぎる
と溶滴が大きくなりすぎるため大粒のスパッタ量が増大
する。
Although the function of Ti and Al is not clear, it is considered that the arc length of Ti is controlled.
If the amount is too small, the amount of spatter due to a short circuit increases.

【0012】また、Alについては前記Tiの働きに影
響を与えるだけでなく、溶滴やビードの粘性に関係して
いると考えられる。多すぎると溶滴の離脱がスムーズで
なくなり、アーク不安定によるスパッタが増大し、少な
すぎると粘性が低くなり水平すみ肉のビード形状が悪化
する。このように、図1からTi+Alが0.2〜0.
5重量%、Al/Tiが0.8〜3.5重量%の範囲が
良好な溶接結果が得られたことが分る。
It is considered that Al not only affects the function of Ti, but also relates to the viscosity of droplets and beads. If the amount is too large, the detachment of the droplets will not be smooth, and the spatter due to arc instability will increase. If the amount is too small, the viscosity will decrease and the bead shape of the horizontal fillet will deteriorate. Thus, from FIG.
It can be seen that good welding results were obtained in the range of 5% by weight and Al / Ti in the range of 0.8 to 3.5% by weight.

【0013】つぎに、図2の横軸は(Si+Mn)の含
有量(重量%)、縦軸は(Ti+Al)の含有量(重量
%)を示し、線Vは(Ti+Al)が0.2重量%であ
ること、線VIは(Ti+Al)が0.5重量%であるこ
と、線VIIは(Si+Mn)が2.7重量%であるこ
と、線VIIIは4(Mn+Si)+5(Ti+Al)が9
重量%であることを示す。図2の(Si+Mn)の含有
量を記載している横軸を下方としたときに、線Vより下
方は(Ti+Al)の含有量が少ないためビード形状が
悪く、線VIより上方は(Ti+Al)の含有量が多いた
め大粒スパッタが多く、線VIIより右側は(Si+M
n)の含有量が多いためスパッタが多く、線VIIIより左
側は4(Si+Mn)+5(Ti+Al)の値が小さい
ためビード形状が悪い。これら線V〜VIIIで囲まれた範
囲ではスパッタが少なく良好な結果が得られた(参考例
と従来例を除く本発明No)。
Next, the horizontal axis of FIG. 2 shows the content (% by weight) of (Si + Mn), and the vertical axis shows the content (% by weight) of (Ti + Al). %, (VI + 0.5% by weight), (Line VII) = (Si + Mn) 2.7% by weight, and (Line VIII) 4 (Mn + Si) + 5 (Ti + Al) = 9%.
% By weight. When the horizontal axis indicating the content of (Si + Mn) in FIG. 2 is set downward, the bead shape is poor below the line V because the content of (Ti + Al) is small, and above the line VI is (Ti + Al). Is large, large spatters are large, and the right side of line VII is (Si + M
Since the content of n) is large, spattering is large, and the value of 4 (Si + Mn) +5 (Ti + Al) on the left side of the line VIII is small, so that the bead shape is poor. In the range surrounded by these lines V to VIII, good results were obtained with less spatter (No. of the present invention except for the reference example and the conventional example).

【0014】なお、Si,Mn,Ti,Alの相互作用
は明確ではないが、前述のTi、Alの働きに加え、S
i、MnはAlと同様、溶滴やビードの粘性に関係して
いるものと考えられ、適量でなく少なすぎると粘性が低
くなり水平すみ肉のビード形状が悪化すると同時にスパ
ッタが増大し、多すぎるとスパッタが増大する。
The interaction between Si, Mn, Ti and Al is not clear, but in addition to the above-mentioned functions of Ti and Al,
i and Mn are considered to be related to the viscosity of the droplet or the bead as in the case of Al. If the amount is not an appropriate amount and is too small, the viscosity becomes low and the bead shape of the horizontal fillet deteriorates, and at the same time spatter increases. If too much, spatter increases.

【0015】このように、表1の本発明No4、7、
8、9、10、12、15、16、19、20、23、
24、25はスパッタ発生量、アーク安定性、ビード形
状において良好な結果が得られた。なお、参考例No1
は(Ti+Al)の量が少ないためビード形状が悪かっ
た。No2、3および5はAl/Tiの値が小さいため
スパッタが多かった。No6、11はAl/Tiの値が
大きいためアーク不安定となりスパッタが多かった。N
o13、27、28は(Ti+Al)の量が多いため大
粒スパッタ量が多かった。No14、18、22は4
(Si+Mn)+5(Ti+Al)の量が少なかったた
めビード形状が悪かった。No17、21、26は(S
i+Mn)の量が多いためスパッタが多かった。
As described above, the present invention Nos. 4 and 7 in Table 1
8, 9, 10, 12, 15, 16, 19, 20, 23,
In Nos. 24 and 25, good results were obtained in spatter generation amount, arc stability and bead shape. Reference Example No. 1
Was poor in bead shape because the amount of (Ti + Al) was small. Nos. 2, 3 and 5 had high spatters due to small Al / Ti values. In Nos. 6 and 11, the arc was unstable because of a large Al / Ti value, and the spatter was large. N
In o13, 27 and 28, the amount of large grains was large due to the large amount of (Ti + Al). No. 14, 18, 22 is 4
The bead shape was poor because the amount of (Si + Mn) +5 (Ti + Al) was small. Nos. 17, 21, and 26 are (S
Since the amount of (i + Mn) was large, spatter was large.

【0016】[0016]

【発明の効果】以上のように本発明の溶接用ソリッドワ
イヤは、これを用いたガスシールドアーク溶接におい
て、スパッタが少なく、アークが安定し、ビード形状に
優れた溶接結果を得ることができる優れた効果を奏する
ものである。
As described above, the solid wire for welding according to the present invention is excellent in that it is possible to obtain a welding result with less spatter, stable arc and excellent bead shape in gas shielded arc welding using the same. It has the effect that it has.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における溶接用ソリッドワ
イヤのTi−Al特性図
FIG. 1 is a Ti-Al characteristic diagram of a solid wire for welding according to an embodiment of the present invention.

【図2】同実施の形態における(Ti+Al)−(Si
+Mn)特性図
FIG. 2 shows (Ti + Al)-(Si) in the embodiment.
+ Mn) Characteristic diagram

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄(Fe)を主成分とし、硅素(S
i),マンガン(Mn),チタン(Ti),アルミニウ
ム(Al)を添加した溶接用ソリッドワイヤであって、
重量%で、Ti+Alが0.2%〜0.5%、Al/T
iが0.8〜3.5、Si+Mnが2.7%以下、4
(Si+Mn)+5(Ti+Al)が9%以上含む溶接
用ソリッドワイヤ。
An iron (Fe) as a main component and a silicon (S)
i) a solid wire for welding to which manganese (Mn), titanium (Ti), and aluminum (Al) are added;
0.2% to 0.5% of Ti + Al by weight, Al / T
i is 0.8 to 3.5, Si + Mn is 2.7% or less, 4
Solid wire for welding containing (Si + Mn) +5 (Ti + Al) 9% or more.
JP9201264A 1997-07-28 1997-07-28 Solid wire for welding Pending JPH1147982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9201264A JPH1147982A (en) 1997-07-28 1997-07-28 Solid wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9201264A JPH1147982A (en) 1997-07-28 1997-07-28 Solid wire for welding

Publications (1)

Publication Number Publication Date
JPH1147982A true JPH1147982A (en) 1999-02-23

Family

ID=16438074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9201264A Pending JPH1147982A (en) 1997-07-28 1997-07-28 Solid wire for welding

Country Status (1)

Country Link
JP (1) JPH1147982A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586685A (en) * 2012-03-01 2012-07-18 南京钢铁股份有限公司 Smelting process of steel for high-titanium alloy welding wire
WO2018124591A1 (en) * 2016-12-28 2018-07-05 고려용접봉 주식회사 Solid wire having reduced slag
KR20180116177A (en) * 2018-10-12 2018-10-24 고려용접봉 주식회사 A solid wire having reduced slag

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289591A (en) * 1988-09-22 1990-03-29 Daido Steel Co Ltd Welding wire
JPH03204195A (en) * 1990-01-04 1991-09-05 Nippon Steel Corp Wire for gas shielded arc fillet welding
JPH03285791A (en) * 1990-03-30 1991-12-16 Kobe Steel Ltd Low spattering solid wire for carbon dioxide arc welding
JPH0747473A (en) * 1993-08-09 1995-02-21 Kobe Steel Ltd Carbonic acid gas pulse arc welding method
JPH0760482A (en) * 1993-08-30 1995-03-07 Daido Steel Co Ltd Welding wire for spheroidal graphite cast iron and steel
JPH07100687A (en) * 1993-09-30 1995-04-18 Kobe Steel Ltd Wire for arc welding
JPH07299583A (en) * 1994-05-10 1995-11-14 Kobe Steel Ltd Plated wire for gas shield arc welding
JPH07299582A (en) * 1994-05-06 1995-11-14 Kobe Steel Ltd Wire for gas shield arc welding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289591A (en) * 1988-09-22 1990-03-29 Daido Steel Co Ltd Welding wire
JPH03204195A (en) * 1990-01-04 1991-09-05 Nippon Steel Corp Wire for gas shielded arc fillet welding
JPH03285791A (en) * 1990-03-30 1991-12-16 Kobe Steel Ltd Low spattering solid wire for carbon dioxide arc welding
JPH0747473A (en) * 1993-08-09 1995-02-21 Kobe Steel Ltd Carbonic acid gas pulse arc welding method
JPH0760482A (en) * 1993-08-30 1995-03-07 Daido Steel Co Ltd Welding wire for spheroidal graphite cast iron and steel
JPH07100687A (en) * 1993-09-30 1995-04-18 Kobe Steel Ltd Wire for arc welding
JPH07299582A (en) * 1994-05-06 1995-11-14 Kobe Steel Ltd Wire for gas shield arc welding
JPH07299583A (en) * 1994-05-10 1995-11-14 Kobe Steel Ltd Plated wire for gas shield arc welding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586685A (en) * 2012-03-01 2012-07-18 南京钢铁股份有限公司 Smelting process of steel for high-titanium alloy welding wire
WO2018124591A1 (en) * 2016-12-28 2018-07-05 고려용접봉 주식회사 Solid wire having reduced slag
KR20180116177A (en) * 2018-10-12 2018-10-24 고려용접봉 주식회사 A solid wire having reduced slag

Similar Documents

Publication Publication Date Title
US4833296A (en) Consumable welding electrode and method of using same
US5369244A (en) Flux cored arc welding electrode
CN100462186C (en) Flux-cored wire for gas shielded arc welding
US20010008235A1 (en) Ultra low carbon metal-core weld wire
US20140014626A1 (en) Cored electrode for reducing diffusible hydrogen
US20140124482A1 (en) Modified flux system in cored electrode
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP2002103084A (en) Flux cored wire for gas shielded arc welding
US3911244A (en) Electrode composition and welding method for arc welding steel
JPH1147982A (en) Solid wire for welding
JP3017055B2 (en) Flux-cored wire for gas shielded arc welding
JP2002079395A (en) Wire for gas shielded arc welding
JPH02263593A (en) Wire for gas shielded arc welding
JP2001219291A (en) Weld zone of ferritic stainless steel and welding method
JP3148907B2 (en) Gas shielded arc welding method for galvanized steel sheet, its welding machine, galvanized steel product welded by the welding method and welding machine
JP3346888B2 (en) Gas metal arc welding wire for austenitic stainless steel
JPH08281478A (en) Titania flux cored wire for gas shielded arc welding
JP3345295B2 (en) Flux-cored wire for electrogas arc welding
JP2001321985A (en) Gas shielded arc welding wire for thin steel sheet and pulse mag welding method using the same
JP2599807B2 (en) Low spatter solid wire for carbon dioxide arc welding
JPH0246994A (en) Solid wire for gas shielded arc welding
JP2574071B2 (en) Gas shielded arc welding wire
JPH0466293A (en) Welding wire for cast iron
JP2588019B2 (en) Flux-cored wire for gas shielded arc welding
JP2001071145A (en) Method for welding ferritic stainless steel