[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11350989A - Suction controller of engine - Google Patents

Suction controller of engine

Info

Publication number
JPH11350989A
JPH11350989A JP10163506A JP16350698A JPH11350989A JP H11350989 A JPH11350989 A JP H11350989A JP 10163506 A JP10163506 A JP 10163506A JP 16350698 A JP16350698 A JP 16350698A JP H11350989 A JPH11350989 A JP H11350989A
Authority
JP
Japan
Prior art keywords
intake
valve
fuel
closing
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10163506A
Other languages
Japanese (ja)
Inventor
Keisuke Fujiwara
啓介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10163506A priority Critical patent/JPH11350989A/en
Publication of JPH11350989A publication Critical patent/JPH11350989A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve decrease in intake noise and improvement in accuracy in controlling fuel injection in the delayed close mirror cycle of the engine. SOLUTION: During the delayed close mirror cycle operation, two inlet valves 3A, 3B for each cylinder are as follows. The inlet valve 3A is opened near the suction top dead center and shuts near the suction bottom dead center. The inlet valve 3B is opened near the suction bottom dead center, and shuts after the suction bottom dead center during the compression stroke. Further, this is constructed in such a way that he fuel is injected only to the inlet port on the side of the inlet valve 3A. As a result, intake air flows in only from the inlet valve 3A into the cylinder during the intake stroke. A part of the intake air in the cylinder flows backward only to the inlet valve 3B during the compression stroke. Accordingly, collision of intake airs with a different flow direction is avoided and the intake noise is prevented. Moreover, the fuel injection accuracy improves preventing the wall flow from flowing backward.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遅閉じミラーサイ
クルでの吸気制御が可能なエンジンに関し、特に、吸気
騒音,燃料噴射性能を改善する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine capable of controlling intake air in a late closing Miller cycle, and more particularly to a technique for improving intake noise and fuel injection performance.

【0002】[0002]

【従来の技術】スロットル弁によって吸入空気量を制御
するエンジンでは、スロットル弁の絞り損失を伴い、こ
れにより、燃費を悪化させている。これを改善するた
め、吸気弁の閉時期を制御して吸気を大気圧状態で取り
入れつつ吸入空気量を制御するようにしたミラーサイク
ルエンジンが知られており、このものでは、前記スロッ
トル弁の絞り損失解消に加えて有効圧縮比を減少させ、
膨張比は通常通りに確保できること等により熱効率を十
分に高めることができ、かつ、燃焼室温度の低下により
NOx低減も図れるなどの利点を有する。なお、ミラー
サイクルエンジンには、吸気弁の閉時期の制御によっ
て、吸気下死点前に吸気系とシリンダとを遮断する早閉
じミラーサイクルと、吸気下死点後に吸気系とシリンダ
とを遮断する遅閉じミラーサイクルとがある。
2. Description of the Related Art In an engine in which the amount of intake air is controlled by a throttle valve, throttle loss of the throttle valve is involved, thereby deteriorating fuel economy. In order to improve this, there is known a Miller cycle engine in which the closing timing of an intake valve is controlled to control the amount of intake air while taking in intake air at atmospheric pressure. In addition to eliminating losses, reduce the effective compression ratio,
There are advantages that the thermal efficiency can be sufficiently increased by, for example, ensuring the expansion ratio as usual, and that NOx can be reduced by lowering the temperature of the combustion chamber. The Miller cycle engine has an early closing Miller cycle that shuts off the intake system and the cylinder before the intake bottom dead center by controlling the closing timing of the intake valve, and shuts off the intake system and the cylinder after the intake bottom dead center. There is a late closing Miller cycle.

【0003】[0003]

【発明が解決しようとする課題】前記遅閉じミラーサイ
クルは、早閉じミラーサイクルでは吸気弁の閉時期制御
が困難な高回転時にも制御が可能であり、また、早閉じ
ミラーサイクルでは吸気弁の吸気下死点前のピストンス
ピードが低速なときに吸気弁が閉じるため、シリングへ
の吸気流入速度が小さく、シリンダ内での燃料の混合性
が低いのに対し、遅閉じミラーサイクルでは、ピストン
下降行程で吸気流入速度を十分に高められると同時にピ
ストン上昇行程で十分な攪拌が行われるため、燃料の混
合性も優れているという利点がある。
The late-closing Miller cycle can be controlled even at a high rotation where it is difficult to control the closing timing of the intake valve in the early closing Miller cycle. The intake valve closes when the piston speed before intake bottom dead center is low, so the intake flow speed to the silling is low and the fuel mixability in the cylinder is low, whereas in the slow closing Miller cycle, the piston descends Since the intake flow rate can be sufficiently increased in the stroke and sufficient agitation is performed in the piston ascent stroke, there is an advantage that the mixing property of the fuel is excellent.

【0004】前記遅閉じミラーサイクルを行うエンジン
としては、例えば特開平7−102982号公報に開示
されたようなものがある。このものでは、気筒毎に2つ
の吸気弁を備え、これら吸気弁を吸気下死点より十分遅
らせて閉じることにより遅閉じミラーサイクル運転を行
っている。しかしながら、前記従来の遅閉じミラーサイ
クルでの吸気制御では、一度シリンダに吸入された吸気
がピストン上昇行程に入って吸気ポートに吹き返される
が、吸気の慣性力で吸入方向に流れる吸気と前記吹き返
された吸気とが衝突し、これが吸気管を振動させると共
に吸気騒音を発生する。
An engine for performing the above-mentioned delayed closing mirror cycle is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-102982. In this engine, two intake valves are provided for each cylinder, and the intake valves are closed sufficiently later than the intake bottom dead center to perform a late closing mirror cycle operation. However, in the intake control in the conventional slow-closing Miller cycle, the intake air once taken into the cylinder enters the piston ascent stroke and is blown back to the intake port. The intake air collides with the intake air, which vibrates the intake pipe and generates intake noise.

【0005】また、吸気ポートに燃料噴射するエンジン
では、吸入空気の流速に応じて燃料の液滴,壁流が吸気
ポートからシリンダ内に輸送されるが、遅閉じミラーサ
イクルの場合、前記ピストン上昇時に吸気ポートに吹き
返された空気により、吸気ポート開口部付近のシリンダ
内の燃料、特に壁流分の多くが吸気ポートに逆流してし
まい、シリンダ内の燃料量,混合比の制御が困難にな
る。また、吸気ポート内の残留燃料量が増大し、その結
果、特にアイドル回転速度制御時等でエンジン回転速度
が周期的に継続して変動する場合、残留燃料量の変動量
が大きくなるため、空燃比の変動量が大きくなって燃費
が悪化してしまうことがあった。
[0005] In an engine that injects fuel into the intake port, fuel droplets and wall flow are transported from the intake port into the cylinder in accordance with the flow rate of the intake air. The air that is sometimes blown back to the intake port causes the fuel in the cylinder near the intake port opening, particularly the wall flow, to flow back to the intake port, making it difficult to control the fuel amount and the mixing ratio in the cylinder. . In addition, when the amount of residual fuel in the intake port increases, and as a result, especially when the engine rotational speed continuously fluctuates, for example, at the time of idling rotational speed control, the amount of fluctuation of the residual fuel amount increases, and In some cases, the fluctuation amount of the fuel ratio becomes large and the fuel efficiency deteriorates.

【0006】本発明は、このような従来の課題に着目し
てなされたもので、遅閉じミラーサイクルにおける吸気
の流れを工夫することにより、吸気管の振動や吸気騒音
を低減することを目的とし、更に、シリンダ内の燃料
量,混合比の制御精度を高め、燃費を改善することを目
的とする。
The present invention has been made in view of such conventional problems, and has as its object to reduce intake pipe vibrations and intake noise by devising the flow of intake air in a late closing mirror cycle. It is another object of the present invention to improve the control accuracy of the fuel amount and the mixing ratio in the cylinder and improve the fuel efficiency.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に係
る発明は、気筒毎に2つの吸気弁と、これら吸気弁をそ
れぞれ設定された開閉時期に開閉するように駆動する吸
気弁駆動手段とを備え、かつ、遅閉じミラーサイクルで
運転する条件で、一方の吸気弁を吸気下死点近傍で閉弁
し、他方の吸気弁を前記一方の吸気弁の閉弁と略同時に
開弁し、吸気下死点後に閉弁するように開閉時期を設定
する開閉時期設定手段を備えたことを特徴とする。
According to the present invention, there is provided an intake valve driving means for driving two intake valves for each cylinder and opening and closing these intake valves at respective set opening / closing timings. And, under the condition of operating in a late closing Miller cycle, one intake valve is closed near the bottom dead center of the intake, and the other intake valve is opened almost simultaneously with the closing of the one intake valve. Opening and closing timing setting means for setting the opening and closing timing so as to close the valve after the intake bottom dead center.

【0008】請求項1に係る発明によると、遅閉じミラ
ーサイクルで運転する条件では、気筒毎の2つの吸気弁
の中、吸気下死点近傍に至るまでは一方の吸気弁のみが
開弁し、該吸気弁のみを介して吸気がシリンダ内に流入
する。次いで、前記一方の吸気弁の閉弁と略同時に他方
の吸気弁が開弁し吸気下死点後に閉弁するまでの間は、
シリンダ内の吸気が該他方の吸気弁のみから逆流する。
According to the first aspect of the present invention, under the condition of operating in the slow closing Miller cycle, only one of the two intake valves of each cylinder is opened until the vicinity of the intake bottom dead center is reached. The intake air flows into the cylinder only through the intake valve. Next, while the other intake valve is opened almost at the same time as the closing of the one intake valve and closed after intake bottom dead center,
The intake air in the cylinder flows backward only from the other intake valve.

【0009】ここで、前記他方の吸気弁は吸気下死点近
傍まで閉じているので、該他方の吸気弁に連なる吸気ポ
ートにはシリンダ方向への吸気流が生じておらず、した
がって、前記シリンダから逆流する吸気は、他方の吸気
弁からスムーズに流出し、吸気流同士の衝突による吸気
管の振動や吸気騒音の発生を防止できる。また、請求項
2に係る発明は、前記遅閉じミラーサイクルで運転する
条件で、前記閉時期が吸気下死点前に設定される一方の
吸気弁に連なる吸気ポート側のみに燃料噴射することを
特徴とする。
Here, since the other intake valve is closed up to near the intake bottom dead center, no intake air flows in the cylinder direction at the intake port connected to the other intake valve. The intake air flowing backward from the intake air flows out of the other intake valve smoothly, and the vibration of the intake pipe and the generation of intake noise due to the collision of the intake air flows can be prevented. The invention according to claim 2 is characterized in that, under the condition of operating in the late closing Miller cycle, the fuel is injected only to the intake port side connected to one intake valve whose closing timing is set before the intake bottom dead center. Features.

【0010】請求項2に係る発明によると、遅閉じミラ
ーサイクルで運転する条件で、前記一方の吸気弁に連な
る一方の吸気ポート側のみに噴射された燃料は、該一方
の吸気弁のみが開弁している間に、前記一方の吸気ポー
トのみから吸気流により、シリンダ内に流入する。ここ
で、前記一方の吸気ポートのみが開通しているため、2
つの吸気ポートを開通した場合に比較して吸気の流速が
早いので、燃料は効率良くシリンダ内に流入し、該一方
の吸気ポート内に残留する燃料量を少なくすることがで
きる。
According to the second aspect of the present invention, under the condition of operating in the slow closing Miller cycle, the fuel injected only to the one intake port side connected to the one intake valve opens only the one intake valve. While the valve is being opened, the air flows into the cylinder by the intake air flow only from the one intake port. Here, since only the one intake port is open, 2
Since the flow rate of the intake air is faster than when one of the intake ports is opened, the fuel can efficiently flow into the cylinder, and the amount of fuel remaining in the one intake port can be reduced.

【0011】次いで、吸気下死点近傍で前記一方の吸気
弁が閉じ、略同時に他方の吸気弁が開弁すると、前記し
たようにシリンダ内の吸気は他方の吸気弁から該他方の
吸気弁に連なる他方の吸気ポート内に逆流する。このと
き、前記一方の吸気弁は閉じているので、前記一方の吸
気ポートからの燃料の逆流は無く、また、前記他方の吸
気弁に連なる他方の吸気ポート側には燃料が噴射されて
いないので、該他方の吸気ポートには燃料の壁流が無
く、したがって壁流の逆流も無く、シリンダ内の吸気中
に浮遊する粒径の小さな液滴分及び気化分の一部のみが
他方の吸気ポートに逆流するだけであるので、逆流燃料
量が大幅に減少する。
Next, when the one intake valve closes near the intake bottom dead center and the other intake valve opens almost simultaneously, the intake air in the cylinder is transferred from the other intake valve to the other intake valve as described above. Backflow into the other intake port of the series. At this time, since the one intake valve is closed, there is no reverse flow of fuel from the one intake port, and no fuel is injected into the other intake port connected to the other intake valve. There is no wall flow of fuel at the other intake port, so there is no backflow of the wall flow, and only a part of small droplets and vaporized particles having a small particle diameter floating in the intake air in the cylinder is supplied to the other intake port. , The amount of backflow fuel is greatly reduced.

【0012】このように、吸気ポートへの燃料の逆流を
十分に抑制できるため、シリンダ内の燃料量,混合比の
制御を高精度に行うことができ、また、最終的な吸気ポ
ートの残留燃料量(平衡残留燃料量) を十分少なくする
ことができるため、アイドル回転速度制御時などの空燃
比制御精度が向上し、燃費を改善できる。また、請求項
3に係る発明は、前記遅閉じミラーサイクルで運転する
条件で、前記一方の吸気弁の閉時期より前に燃料噴射を
終了させることを特徴とする。
As described above, since the backflow of the fuel to the intake port can be sufficiently suppressed, the control of the fuel amount and the mixing ratio in the cylinder can be performed with high accuracy. Since the amount (equilibrium residual fuel amount) can be sufficiently reduced, the air-fuel ratio control accuracy at the time of idle speed control and the like can be improved, and the fuel efficiency can be improved. The invention according to claim 3 is characterized in that the fuel injection is terminated before the closing timing of the one intake valve under the condition of operating in the late closing Miller cycle.

【0013】請求項3に係る発明によると、前記一方の
吸気弁の閉弁後にも燃料を噴射すると、該閉弁後に噴射
された燃料はそのまま吸気ポート中に残留してしまうの
で、平衡残留燃料量が増大してしまう。そこで、前記一
方の吸気弁の閉時期より前に燃料噴射を終了させること
により、平衡残留燃料量を減少できる。
According to the third aspect of the present invention, when fuel is injected after the one intake valve is closed, the fuel injected after the closing of the one valve remains in the intake port as it is. The amount increases. Therefore, by ending the fuel injection before the closing timing of the one intake valve, the equilibrium residual fuel amount can be reduced.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態を図に
基づいて説明する。一実施の形態を示す図1及び図2に
おいて、エンジン1には、気筒毎に2つの吸気弁3A,
3B及び排気弁4A,4Bと、これらに対応した吸気ポ
ート5A,5B及び排気ポート6A,6Bとを備える。
前記吸気弁3A,3B及び排気弁4A,4Bは、弁駆動
装置2により開閉を電子制御される。ここで、弁駆動装
置2は、少なくとも2つの吸気弁3A,3Bについて
は、それぞれ独立して開閉を制御可能に構成されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 showing an embodiment, an engine 1 has two intake valves 3A,
3B and exhaust valves 4A and 4B, and corresponding intake ports 5A and 5B and exhaust ports 6A and 6B.
The opening and closing of the intake valves 3A and 3B and the exhaust valves 4A and 4B are electronically controlled by a valve driving device 2. Here, the valve drive device 2 is configured to be able to independently control the opening and closing of at least two intake valves 3A and 3B.

【0015】前記2つの吸気ポート5A,5Bの分岐点
近傍には燃料噴射弁7が装着され、該燃料噴射弁7は、
2つの吸気ポート5A,5Bに向けてそれぞれ燃料噴射
する2つの噴孔7a,7bを有し、これら2つの噴孔7
a,7bから同時に燃料噴射させる場合と、噴孔7aの
みから燃料噴射させる場合(図示ハッチング参照) とを
切り換え自由に構成されている。
A fuel injection valve 7 is mounted near a branch point between the two intake ports 5A and 5B.
It has two injection holes 7a and 7b for injecting fuel toward the two intake ports 5A and 5B, respectively.
The fuel injection can be freely switched between a case where fuel injection is performed simultaneously from a and 7b and a case where fuel injection is performed only from the injection hole 7a (see hatching in the figure).

【0016】燃焼室8には点火栓9及び点火コイル10が
装着されている。また、機関本体には各気筒の基準クラ
ンク角で基準信号を出力すると共に、微小クランク角毎
に単位角信号を出力するクランク角センサ11、吸入空気
流量を検出するエアフロメータ12、冷却水温度を検出す
る水温センサ13などが装着される。が装着されている。
An ignition plug 9 and an ignition coil 10 are mounted in the combustion chamber 8. In addition, the engine body outputs a reference signal at a reference crank angle of each cylinder, a crank angle sensor 11 that outputs a unit angle signal for each minute crank angle, an air flow meter 12 that detects an intake air flow rate, and a cooling water temperature. A water temperature sensor 13 to be detected is mounted. Is installed.

【0017】前記各種センサからの信号はコントロール
ユニット14に出力され、コントロールユニット14は、こ
れらの検出信号に基づいて前記燃料噴射弁7に燃料噴射
信号を出力して燃料噴射制御を行い、前記点火コイル10
に点火信号を出力して点火制御を行い、更に、前記弁駆
動装置2に弁駆動信号を出力して吸気弁3A,3B及び
排気弁4A,4Bの開閉を制御する。
Signals from the various sensors are output to a control unit 14. The control unit 14 outputs a fuel injection signal to the fuel injection valve 7 based on these detection signals to perform fuel injection control, and Coil 10
To control the opening and closing of the intake valves 3A and 3B and the exhaust valves 4A and 4B by outputting a valve drive signal to the valve drive device 2.

【0018】前記弁駆動装置2の構成を図3に示す。図
3において弁駆動装置2は、シリンダヘッド上に設けら
れる非磁性材料製のハウジング21と、吸気弁3A,3B
(又は排気弁4A,4B、以下吸気弁3Aで代表する)
のステム31に一体に設けられてハウジング21内に移動自
由に収納されるアーマチュア22と、該アーマチュア22を
吸引して吸気弁3Aを閉弁作動させる電磁力を発揮可能
なようにアーマチュア22の上面に対向する位置でハウジ
ング21内に固定配置される閉弁用電磁石23と、該アーマ
チュア22を吸引して吸気弁3Aを開弁作動させる電磁力
を発揮可能なようにアーマチュア22の下面に対向する位
置でハウジング21内に固定配置される開弁用電磁石24
と、吸気弁3Aの閉弁方向に向けてアーマチュア22を付
勢する閉弁側戻しバネ25と、吸気弁3Aの開弁方向に向
けてアーマチュア22を付勢する開弁側戻しバネ26と、を
備えて構成される。そして、閉弁用電磁石23と開弁用電
磁石24とを共に消磁したときに、吸気弁3は全開位置と
閉弁位置との間の略中央位置にあるように、閉弁側戻し
バネ25と開弁側戻しバネ26とのバネ力が設定され、閉弁
用電磁石23のみを励磁したときに吸気弁3Aは閉弁し、
開弁用電磁石24のみを励磁したときに吸気弁3Aは開弁
(全開) するように駆動される。該弁駆動装置2が吸気
弁駆動手段を構成する。
FIG. 3 shows the structure of the valve driving device 2. In FIG. 3, a valve driving device 2 includes a housing 21 made of a non-magnetic material provided on a cylinder head, and intake valves 3A and 3B.
(Or exhaust valves 4A, 4B, hereinafter represented by intake valves 3A)
An armature 22 provided integrally with the stem 31 and freely housed in the housing 21, and an upper surface of the armature 22 so as to exert an electromagnetic force for sucking the armature 22 and closing the intake valve 3A. A valve-closing electromagnet 23 fixedly disposed in the housing 21 at a position facing the armature 22 and a lower surface of the armature 22 so as to exert an electromagnetic force for attracting the armature 22 and opening the intake valve 3A. Valve-opening electromagnet 24 fixedly arranged in the housing 21 at the position
A valve-closing-side return spring 25 that urges the armature 22 toward the valve closing direction of the intake valve 3A, a valve-opening-side return spring 26 that urges the armature 22 toward the valve opening direction of the intake valve 3A, It is comprised including. When both the valve-closing electromagnet 23 and the valve-opening electromagnet 24 are demagnetized, the valve-closing-side return spring 25 and the valve-closing-side return spring 25 are moved so that the intake valve 3 is located substantially at the center between the fully open position and the valve-closing position. When the spring force with the valve-opening side return spring 26 is set and only the valve-closing electromagnet 23 is excited, the intake valve 3A closes,
When only the valve opening electromagnet 24 is excited, the intake valve 3A is driven to open (fully open). The valve driving device 2 constitutes intake valve driving means.

【0019】前記弁駆動装置2による吸気弁3A,3B
及び排気弁4A,4Bの開閉時期は、エンジン1の運転
状態に基づいて設定された目標開閉時期となるように制
御されるが、特に、遅閉じミラーサイクルを実行する部
分負荷領域(の少なくとも一部の領域) では、図4に示
すように、一方の吸気弁3Aは吸気上死点近傍で開弁し
て吸気下死点近傍で閉弁し、他方の吸気弁3Bは前記一
方の吸気弁3Aの閉時期と略同時に開弁し、吸気下死点
後の目標吸入空気量に見合って設定される時期に閉弁す
るように制御される。したがって、前記弁駆動装置2を
介して吸気弁3A,3Bの開閉時期を制御するコントロ
ールユニット12が、本発明における開閉時期設定手段の
機能をソフトウエア的に備える。
Intake valves 3A, 3B by the valve drive device 2
The opening / closing timing of the exhaust valves 4A and 4B is controlled to be a target opening / closing timing set based on the operating state of the engine 1. 4), as shown in FIG. 4, one intake valve 3A opens near the intake top dead center and closes near the intake bottom dead center, and the other intake valve 3B closes the one intake valve. The valve is opened almost at the same time as the closing timing of 3A, and is controlled to close at a timing set according to the target intake air amount after the intake bottom dead center. Therefore, the control unit 12 for controlling the opening / closing timing of the intake valves 3A, 3B via the valve driving device 2 has the function of the opening / closing timing setting means in the present invention in software.

【0020】次に、前記遅閉じミラーサイクル実行時に
おける作用を、図5,図6を参照して説明する。吸気上
死点近傍で一方の吸気弁3Aが開弁するが、他方の吸気
弁3Bは閉弁状態に維持される。したがって、吸入空気
は一方の吸気ポート5Aのみを通ってシリンダ内に流入
する。また、燃料噴射弁7の一方の噴孔7aのみが開弁
されて燃料が前記一方の吸気ポート5Aのみに噴射され
る。噴射された燃料は図5に示すように、一部は気化
し、一部は液滴状となり、一部は吸気ポート5A壁に付
着した壁流分となって、それぞれ吸入空気流に乗って若
しくは引きづられてシリンダ内に流入する。
Next, the operation during the execution of the late closing mirror cycle will be described with reference to FIGS. One intake valve 3A opens near the intake top dead center, while the other intake valve 3B is kept closed. Therefore, the intake air flows into the cylinder through only one intake port 5A. Further, only one injection hole 7a of the fuel injection valve 7 is opened, and fuel is injected only into the one intake port 5A. As shown in FIG. 5, a part of the injected fuel is vaporized, a part of the fuel becomes a droplet, and a part of the fuel becomes a wall flow attached to the wall of the intake port 5A. Or it is dragged and flows into the cylinder.

【0021】ここで、吸入空気は一方の吸気ポート5A
のみから流入するので、2つの吸気ポートから同時に流
入する場合に比較して流速が十分大きく、そのため、燃
料は効率良くシリンダ内に流入する。次いで、図5に示
すように、吸気下死点近傍で前記一方の吸気弁3Aが閉
じ、略同時に他方の吸気弁3Bが開弁する。そして、該
吸気弁3Bが吸気下死点後の設定された時期に閉弁する
までの間は、ピストンの上昇によってシリンダ内の吸気
は吸気弁3Bから吸気ポート5B内に逆流する。ここ
で、吸気弁3Bは吸気下死点近傍まで閉じているため、
吸気ポート5B内にはシリンダ方向への吸気流を生じて
おらず、したがって、前記シリンダから逆流する吸気は
シリンダ方向への吸気流と衝突すること無くスムースに
吸気ポート3Bから流出するので、吸気管の振動や吸気
騒音の発生を防止できる。
Here, the intake air is supplied to one intake port 5A.
Since the fuel flows only from the two intake ports, the flow velocity is sufficiently large as compared with the case where the fuel flows from the two intake ports at the same time. Therefore, the fuel efficiently flows into the cylinder. Next, as shown in FIG. 5, the one intake valve 3A closes near the intake bottom dead center, and the other intake valve 3B opens almost simultaneously. Until the intake valve 3B closes at a set time after the intake bottom dead center, the intake air in the cylinder flows backward from the intake valve 3B into the intake port 5B due to the rise of the piston. Here, since the intake valve 3B is closed to near the intake bottom dead center,
No intake air flow in the cylinder direction is generated in the intake port 5B. Therefore, the intake air flowing backward from the cylinder flows out of the intake port 3B smoothly without colliding with the intake air flow in the cylinder direction. Vibration and intake noise can be prevented.

【0022】また、上記ピストン上昇行程で吸気弁3A
は閉じているので、吸気ポート3Aからの燃料の逆流は
無く、シリンダ内の吸気が吸気弁3Bに向かって逆流す
るが、該吸気弁3B側には燃料が噴射されていないの
で、吸気ポート5Bには燃料の壁流が無く、したがって
壁流の逆流も無い。前記逆流する空気に対して相対速度
を以て動く粒径約20μm以上の大きな液滴は、実質的に
吸気ポート3Bまで逆流せず、粒径約20μm未満の液滴
分と気化分の一部のみが吸気ポート3Bに逆流する。こ
のように、壁流の逆流が無くなることにより、シリンダ
内の燃料量,混合比の制御を高精度に行えると共に、平
衡残留燃料量を大幅に減少できる結果、過渡時やアイド
ル回転速度制御時などの空燃比制御精度も向上し、燃費
も改善できる。
In addition, the intake valve 3A
Is closed, there is no backflow of fuel from the intake port 3A, and intake air in the cylinder flows backward toward the intake valve 3B. However, since no fuel is injected into the intake valve 3B side, the intake port 5B Has no fuel wall flow and therefore no wall flow backflow. Large droplets having a particle size of about 20 μm or more that move at a relative speed with respect to the backflowing air do not substantially flow back to the intake port 3B, and only the droplets having a particle size of less than about 20 μm and a part of the vaporized portion are removed. It flows backward to the intake port 3B. In this way, by eliminating the backflow of the wall flow, the amount of fuel in the cylinder and the mixing ratio can be controlled with high precision, and the amount of equilibrium residual fuel can be greatly reduced. The air-fuel ratio control accuracy is improved, and the fuel efficiency can be improved.

【0023】これを、従来の2つの吸気弁を同一のタイ
ミングで開閉して遅閉じミラーサイクルを実行する場合
に比較すると、従来ではピストン下降中に2つの吸気ポ
ートが開通して、これら2つの吸気ポートを介してシリ
ンダ内に吸気が流入し、ピストン上昇後は、シリンダ内
の吸気が2つの吸気ポートに逆流するので、2つの吸気
ポートにおいて、シリンダ方向に流入しようとする吸気
とシリンダから吸気ポートに逆流する吸気とが衝突し
て、吸気管を振動させ、吸気騒音を発生する。
Compared with the conventional case where the two intake valves are opened and closed at the same timing to execute the delayed closing Miller cycle, conventionally, the two intake ports are opened while the piston descends, and these two intake ports are opened. After the intake air flows into the cylinder via the intake port, and after the piston rises, the intake air in the cylinder flows back to the two intake ports. The intake air that flows backward to the port collides, causing the intake pipe to vibrate and generate intake noise.

【0024】また、図7に本実施の形態との比較で示す
ように、該従来例では、シリンダ内に2つの吸気ポート
を介して吸気を流入するため、シリンダ内への吸気の流
速が小さく、吸気ポートに燃料が残留しやすい。一方、
ピストン上昇後は、シリンダ内の燃料の中、壁流分,粒
径の小さな(約20μm未満) 液滴分,気化分が2つの吸
気ポートへ逆流するため、壁流燃料が逆流する分逆流燃
料量が大幅に増大してシリンダ内の燃料量,混合比の制
御精度が低下し、また、最終的に吸気ポートに残留する
平衡残留燃料量が増大するため、アイドル回転速度制御
時などの空燃比制御精度が低下し、燃費も悪化する。
In addition, as shown in FIG. 7 in comparison with the present embodiment, in the conventional example, since the intake air flows into the cylinder through two intake ports, the flow velocity of the intake air into the cylinder is small. , Fuel tends to remain in the intake port. on the other hand,
After the piston rises, the wall flow, small droplets (less than about 20 μm) droplets, and vaporized gas flow back into the two intake ports in the fuel inside the cylinder, so that the wall flow fuel flows back and the backflow fuel The amount of fuel greatly increases and the control accuracy of the fuel amount and the mixture ratio in the cylinder decreases, and the amount of equilibrium residual fuel remaining in the intake port eventually increases. The control accuracy decreases, and the fuel efficiency also deteriorates.

【0025】このように、前記本実施の形態による遅閉
じミラーサイクル実行時は、吸気行程時と圧縮行程時と
で各吸気ポートを選択的に開通させることにより、吸気
管の振動,吸気騒音を低減できると共に、吸気ポートに
逆流する燃料量、特に壁流量を従来に比較して大幅に減
少できる結果、シリンダ内の燃料量,混合比を精度良く
制御することができ、また、吸気ポートの平衡残留燃料
量を大幅に減少できる結果、アイドル回転速度制御時な
どの空燃比制御精度も向上し、燃費も改善できるのであ
る。
As described above, when the late closing mirror cycle according to the present embodiment is executed, the intake ports are selectively opened during the intake stroke and the compression stroke, thereby reducing the vibration of the intake pipe and the intake noise. As a result, the amount of fuel flowing back to the intake port, particularly the wall flow rate, can be significantly reduced as compared with the conventional case, so that the amount of fuel in the cylinder and the mixing ratio can be accurately controlled, and the balance of the intake port can be improved. As a result, the amount of residual fuel can be significantly reduced, so that the air-fuel ratio control accuracy at the time of idle speed control and the like can be improved, and the fuel efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施の形態に係るシステム構成図。FIG. 1 is a system configuration diagram according to an embodiment.

【図2】同上システム構成図の一部横断面図。FIG. 2 is a partial cross-sectional view of the same system configuration diagram.

【図3】同上実施の形態における弁駆動装置の構成を示
す断面図。
FIG. 3 is a sectional view showing the configuration of the valve drive device according to the embodiment;

【図4】同上実施の形態における2つの吸気弁の開閉時
期特性を示す図。
FIG. 4 is a diagram showing open / close timing characteristics of two intake valves in the embodiment.

【図5】同上実施の形態の吸気行程時におけるシリンダ
内の様子を示す断面図。
FIG. 5 is a sectional view showing a state inside the cylinder during the intake stroke of the embodiment.

【図6】同上実施の形態の圧縮行程前期におけるシリン
ダ内の様子を示す断面図。
FIG. 6 is a cross-sectional view showing the inside of the cylinder in the first half of the compression stroke of the embodiment.

【図7】同上実施の形態における燃料量特性を従来例と
比較して示した図。
FIG. 7 is a view showing a fuel amount characteristic in the embodiment in comparison with a conventional example.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 弁駆動装置 3A,3B 吸気弁 4A,4B 排気弁 5A,5B 吸気ポート 6A,6B 排気ポート 7 燃料噴射弁 14 コントロールユニット DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Valve drive device 3A, 3B Intake valve 4A, 4B Exhaust valve 5A, 5B Intake port 6A, 6B Exhaust port 7 Fuel injection valve 14 Control unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】気筒毎に2つの吸気弁と、これら吸気弁を
それぞれ設定された開閉時期に開閉するように駆動する
吸気弁駆動手段とを備え、かつ、遅閉じミラーサイクル
で運転する条件で、一方の吸気弁を吸気下死点近傍で閉
弁し、他方の吸気弁を前記一方の吸気弁の閉弁と略同時
に開弁し、吸気下死点後に閉弁するように開閉時期を設
定する開閉時期設定手段を備えたことを特徴とするエン
ジンの吸気制御装置。
1. An air conditioner comprising: two intake valves for each cylinder; and intake valve driving means for driving the intake valves to open and close at respective set opening and closing timings, and operating under a slow-closed mirror cycle. The opening / closing timing is set so that one intake valve is closed near the bottom dead center of the intake and the other intake valve is opened almost simultaneously with the closing of the one intake valve, and is closed after the bottom dead center of the intake. An intake control device for an engine, comprising: an opening / closing timing setting unit that performs opening and closing timing.
【請求項2】前記遅閉じミラーサイクルで運転する条件
で、前記一方の吸気弁に連なる吸気ポート側のみに燃料
噴射することを特徴とする請求項1に記載のエンジンの
吸気制御装置。
2. An intake control system for an engine according to claim 1, wherein fuel is injected only into an intake port connected to said one intake valve under the condition of operating in the late closing Miller cycle.
【請求項3】前記遅閉じミラーサイクルで運転する条件
で、前記一方の吸気弁の閉時期より前に燃料噴射を終了
させることを特徴とする請求項2に記載のエンジンの吸
気制御装置。
3. The intake control system for an engine according to claim 2, wherein the fuel injection is terminated before the closing timing of the one intake valve under the condition of operating in the late closing Miller cycle.
JP10163506A 1998-06-11 1998-06-11 Suction controller of engine Pending JPH11350989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10163506A JPH11350989A (en) 1998-06-11 1998-06-11 Suction controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10163506A JPH11350989A (en) 1998-06-11 1998-06-11 Suction controller of engine

Publications (1)

Publication Number Publication Date
JPH11350989A true JPH11350989A (en) 1999-12-21

Family

ID=15775168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163506A Pending JPH11350989A (en) 1998-06-11 1998-06-11 Suction controller of engine

Country Status (1)

Country Link
JP (1) JPH11350989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199812A1 (en) 2013-06-11 2014-12-18 ヤンマー株式会社 Engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199812A1 (en) 2013-06-11 2014-12-18 ヤンマー株式会社 Engine
KR20160011662A (en) 2013-06-11 2016-02-01 얀마 가부시키가이샤 Engine
US10047664B2 (en) 2013-06-11 2018-08-14 Yanmar Co., Ltd. Engine

Similar Documents

Publication Publication Date Title
JP2001164965A (en) Engine control device
US5000133A (en) Two-cycle heat-insulating engine
EP1063407A1 (en) Internal combustion engine, control apparatus for an internal combustion engine, and its control method
JP4094195B2 (en) Engine intake air amount control device
JP3627601B2 (en) Engine intake air amount control device
JP3601386B2 (en) Engine intake air control system
JP2001271682A (en) Intake control device for engine
JPH11350989A (en) Suction controller of engine
JP3879227B2 (en) Mirror cycle engine intake / exhaust valve control system
JP3629971B2 (en) Variable valve engine start control device
JP2009002191A (en) Intake control device of internal combustion engine
JP2003138917A (en) Fuel gas supply method and apparatus for gas engine
JP2001159322A (en) Intake device for engine
US6065454A (en) Method and apparatus for active control of the combustion processes in an internal combustion engine
JP3598919B2 (en) Engine fuel pressure control device
JP2003201891A (en) Device of controlling early warming-up of catalyst of multiple cylinder internal combustion engine
JP2001159334A (en) Intake control device for engine
JP4352857B2 (en) Internal combustion engine
JP3684964B2 (en) Engine intake air amount control device
JPS614821A (en) Intake device for internal-combustion engine
JP2847314B2 (en) Variable control device for auxiliary combustion chamber on-off valve
JP3755359B2 (en) Engine torque control device
JP2001020766A (en) Valve driving system of internal combustion engine
JP2001159326A (en) Torque control device for engine
JPH07293257A (en) Intake device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003