[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11345579A - Cathode-ray tube device and deflecting yoke - Google Patents

Cathode-ray tube device and deflecting yoke

Info

Publication number
JPH11345579A
JPH11345579A JP7960099A JP7960099A JPH11345579A JP H11345579 A JPH11345579 A JP H11345579A JP 7960099 A JP7960099 A JP 7960099A JP 7960099 A JP7960099 A JP 7960099A JP H11345579 A JPH11345579 A JP H11345579A
Authority
JP
Japan
Prior art keywords
yoke
deflection
neck
screen
tube axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7960099A
Other languages
Japanese (ja)
Inventor
Yutaka Fukuda
豊 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP7960099A priority Critical patent/JPH11345579A/en
Publication of JPH11345579A publication Critical patent/JPH11345579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce deflection power without degrading convergence quality in a cathode-ray tube device having a pyramid-shaped funnel yoke part and a generally circular neck part. SOLUTION: A cathode-ray tube device in which the yoke part 12 of a funnel is almost pyramid-shaped is so designed that at least the extension wire part 22b of a deflecting yoke 16 located at the neck of a horizontal deflecting coil 1 is formed in a bendless shape such that it is wound in such a way that it is not wound and stacked in a direction almost away from an electron beam (e) as the number of turn increases but is wound and stacked roughly in the direction of tube axis along the outer surface of a neck part 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カラー受像管のな
どの陰極線管装置に係わり、特に偏向電力を有効に低減
出来る陰極線管装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode ray tube apparatus such as a color picture tube, and more particularly to a cathode ray tube apparatus capable of effectively reducing deflection power.

【0002】[0002]

【従来の技術】陰極線管の一例としてカラー受像管につ
いて説明する。このカラー受像管は、内面に蛍光体スク
リーンが形成されたパネルと、このパネルに連接した漏
斗状のファンネルと、このファンネルに連接した円筒状
のネックからなる真空外囲器を有する。またネック部か
らファンネルにかけて偏向ヨークが装着されており、フ
ァンネルはネック部との連接部から偏向ヨークの装着さ
れている部分までの径小部、いわゆるヨーク部を有す
る。
2. Description of the Related Art A color picture tube will be described as an example of a cathode ray tube. The color picture tube has a panel having a phosphor screen formed on an inner surface thereof, a funnel-shaped funnel connected to the panel, and a vacuum envelope including a cylindrical neck connected to the funnel. A deflection yoke is mounted from the neck to the funnel, and the funnel has a small-diameter portion from a connection with the neck to a portion where the deflection yoke is mounted, a so-called yoke.

【0003】パネル内面に形成された蛍光体スクリーン
は、赤、緑、青にそれぞれ発光する複数の蛍光体層より
なる。またネック部には、発光色に対応した複数の電子
ビームを放出する電子銃が配置されている。さらに電子
銃と蛍光体スクリーンの間のパネル内側に、フレームに
固定された色選別機能を有するシャドウマスクが配設さ
れ、電子銃から放出された電子ビームを整形して特定の
色の蛍光体層にビームスボットを投影する。
[0003] The phosphor screen formed on the inner surface of the panel includes a plurality of phosphor layers that emit red, green, and blue light, respectively. An electron gun that emits a plurality of electron beams corresponding to emission colors is disposed in the neck. Further, a shadow mask having a color selection function fixed to the frame is provided inside the panel between the electron gun and the phosphor screen, and the electron beam emitted from the electron gun is shaped to form a phosphor layer of a specific color. Project the beamsbot.

【0004】この様なカラー受像管は、電子銃を同一水
平面上を通る一列配置の3電子ビームを放出するインラ
イン型とし、この電子銃から放出される一列配置の3電
子ビームを水平および垂直方向に偏向走査する偏向ヨー
クを、水平偏向磁界を略ピンクッション形、垂直偏向磁
界を略バレル形とすることで、格別の補正手段を要する
ことなく、画面全体にわたり一列配置の3電子ビームを
集中させるセルフコンバーゼンス・インライン型カラー
陰極線管が広く実用化されている。
In such a color picture tube, an electron gun is of an in-line type which emits three electron beams arranged in a line in the same horizontal plane, and the three electron beams arranged in a line are emitted from the electron gun in horizontal and vertical directions. The deflection yoke for deflecting and scanning the horizontal deflection magnetic field has a substantially pincushion shape and the vertical deflection magnetic field has a substantially barrel shape, thereby concentrating three electron beams arranged in a line over the entire screen without requiring special correction means. Self-convergence in-line type color cathode ray tubes are widely used.

【0005】この様なカラー受像管においては、偏向ヨ
ークが大きな電力消費源であり、省電力化のためには、
陰極線管においても、消費電力の低減、すなわちこの偏
向ヨークの消費電力を低減することが重要である。一
方、陰極線管の性能を上げようとすると、偏向電力の増
大を招く。例えば、スクリーン輝度を上げるためには、
最終的に電子ビームを加速する陽極電圧を上げなければ
ならない。また高解像度化に対応するためには、偏向周
波数を上げなければならず、いずれも偏向電力が増大す
る方向である。偏向電力の低減には、陰極線管のネック
径を小さくし、偏向ヨークの装着されるヨ一ク部外径を
小さくして、偏向磁界の作用空問を小さくし、電子ビー
ムに対し偏向磁界が効率良く作用するようにする方法が
有効である。
[0005] In such a color picture tube, the deflection yoke is a large power consumption source.
Also in the cathode ray tube, it is important to reduce the power consumption, that is, the power consumption of the deflection yoke. On the other hand, an attempt to improve the performance of the cathode ray tube causes an increase in deflection power. For example, to increase the screen brightness,
Finally, the anode voltage for accelerating the electron beam must be increased. Further, in order to cope with higher resolution, the deflection frequency must be increased, and the deflection power tends to increase in any case. To reduce the deflection power, the diameter of the neck of the cathode ray tube is reduced, the outer diameter of the yoke where the deflection yoke is mounted is reduced, the working space of the deflection magnetic field is reduced, and the deflection magnetic field with respect to the electron beam is reduced. A method that works efficiently is effective.

【0006】しかし従来の陰極線管では、電子ビームが
偏向ヨークの装着されるヨーク部内面に近接して通過す
るため、ネック径やヨーク部外径をさらに小さくする
と、図10(a)に示すように、最大偏向角をとる蛍光
体スクリーン101の対角部に向かう電子銃102から
の電子ビームeがヨーク部103の内壁に衝突し、図1
0(b)に示すように、蛍光体スクリーン101上に電
子ビームの衝突しない部分104(ネックシャドウ)が
できてしまう。
However, in the conventional cathode ray tube, since the electron beam passes close to the inner surface of the yoke on which the deflection yoke is mounted, if the neck diameter and the outer diameter of the yoke are further reduced, as shown in FIG. At the same time, the electron beam e from the electron gun 102 toward the diagonal part of the phosphor screen 101 having the maximum deflection angle collides with the inner wall of the yoke part 103, and FIG.
As shown in FIG. 0B, a portion 104 (neck shadow) where the electron beam does not collide is formed on the phosphor screen 101.

【0007】従って従来の陰極線管では、ネック107
径やヨ一ク部103外径を小さくして偏向電力を低減さ
せることは困難であった。この問題を解決する手段とし
て、特公昭48−34349号公報には、蛍光体スクリ
ーン上に矩形状のラスターを描く場合、偏向ヨークの装
着されるヨーク部内側における電子ビームの通過領域も
ほぼ矩形状になるとの考えから、図11に示すように、
偏向ヨークの装着されるファンネル106のヨーク部1
03をネック107側からパネル108のスクリーン1
01方向(F−F線〜B−B線)に円形から次第にほぼ
矩形状に変化する形状にしたものが示されている。この
様に偏向ヨークの装着されるヨーク部103を角錐状に
形成すると、偏向ヨークの長軸及び短軸方向の径を小さ
くできるため、偏向ヨークの水平、垂直偏向コイルを電
子ビームに近づけて効率良く偏向し、偏向電力を低減す
ることができる。
Therefore, in the conventional cathode ray tube, the neck 107
It was difficult to reduce the deflection power by reducing the diameter or the outer diameter of the yoke portion 103. As a means for solving this problem, Japanese Patent Publication No. 48-34349 discloses that when a rectangular raster is drawn on a phosphor screen, the electron beam passage area inside the yoke portion on which the deflection yoke is mounted is also substantially rectangular. As shown in FIG. 11,
Yoke part 1 of funnel 106 to which deflection yoke is mounted
03 is the screen 1 of the panel 108 from the neck 107 side
A shape that gradually changes from a circular shape to a substantially rectangular shape in the 01 direction (line FF to line BB) is shown. When the yoke portion 103 on which the deflection yoke is mounted is formed in a pyramid shape, the diameters of the deflection yoke in the major axis and the minor axis directions can be reduced. Good deflection is achieved, and deflection power can be reduced.

【0008】しかし、ヨーク部を正確な矩形断面の角錐
状に形成すると、大気圧荷重によりフラットなヨーク部
の水平軸近傍および垂直軸近傍に歪みが生じるため、真
空外囲器の大気圧強度を低下させ、安全性が損なわれ
る。また現在は外光の映り込みや画像の見やすさなどが
要求されており、パネル面のフラット化が必須となって
いるが、陰極線管のパネル面をフラット化すると外囲器
強度が低下するため、ヨーク部を角錐状としたファンネ
ルを用い、安全上必要な外囲器強度を確保するには新し
い技術が必要となる。これらを解決するため出願人は、
特願平9−220345号において、パネル外面形状が
スクリーン対角有効寸法の2倍以上の平坦度をもつ陰極
線管について、ヨーク部形状と外囲器強度の関係を定義
し、またこの陰極線管に使用される偏向ヨークのコア形
状についても、管軸に垂直な一断面の形状を非円形と
し、特願平10−65737号(平成10年3月16日
出願)において最適形状を明確にした。
However, if the yoke portion is formed in a pyramid shape having an accurate rectangular cross section, distortion occurs near the horizontal axis and near the vertical axis of the flat yoke portion due to the atmospheric pressure load, so that the atmospheric pressure strength of the vacuum envelope is reduced. And safety is impaired. Currently, there is a demand for external light reflection and image legibility, and flat panel surfaces are essential.However, flattening the cathode ray tube panel surface reduces the strength of the envelope. Using a funnel with a yoke portion in the shape of a pyramid, a new technology is required to secure the strength of the envelope necessary for safety. To solve these, the applicant
In Japanese Patent Application No. 9-220345, the relationship between the shape of the yoke and the strength of the envelope is defined for a cathode ray tube whose panel outer surface shape has a flatness that is at least twice the screen diagonal effective dimension. Regarding the core shape of the deflection yoke to be used, the shape of one cross section perpendicular to the tube axis was made non-circular, and the optimum shape was clarified in Japanese Patent Application No. 10-65737 (filed on March 16, 1998).

【0009】[0009]

【発明が解決しようとする課題】図8(a)に従来のフ
ァンネルのヨーク部103に円錐状偏向ヨーク105を
装着した構造を示し、図8(b)にこの偏向ヨークで形
成される水平偏向磁界分布MF1 を示す。従来の偏向磁
界分布MF1 の偏向重心をcとする。図8(c)のよう
に、ファンネルのヨーク部201をほぼ角錐状にし、偏
向ヨーク202をその角錐形状に沿って形成すると、水
平偏向コイル203のスクリーン側端203aの管軸Z
との距離寸法D2 が、図8(a)の円錐状偏向ヨークに
おける水平偏向コイル110の寸法D1 に比べて小さ
く、より電子ビームに近付くため、図8(d)に示すよ
うに、水平偏向磁界分布MF2 の重心がスクリーン側に
移動する。
FIG. 8A shows a structure in which a conical deflection yoke 105 is mounted on a yoke 103 of a conventional funnel, and FIG. 8B shows a horizontal deflection formed by this deflection yoke. 4 shows a magnetic field distribution MF1. Let c be the center of gravity of the conventional deflection magnetic field distribution MF1. As shown in FIG. 8C, when the funnel yoke portion 201 is formed in a substantially pyramid shape and the deflection yoke 202 is formed along the pyramid shape, the tube axis Z of the screen-side end 203a of the horizontal deflection coil 203 is formed.
8A is smaller than the dimension D1 of the horizontal deflection coil 110 in the conical deflection yoke in FIG. 8A and closer to the electron beam, so that the horizontal deflection magnetic field as shown in FIG. The center of gravity of the distribution MF2 moves to the screen side.

【0010】このため、図9にインライン・セルフコン
バーゼンス・システムの不一致度をスクリーン上のラス
ター(両サイドビーム)204、205で表すと、不一
致度の1つであるトリレンマ(Tr=XH −YH +PQ
V )が正方向に増大し、コンバーゼンス品位が悪化す
る。
[0010] For this reason, when the degree of inconsistency of the inline self-convergence system is represented by rasters (both side beams) 204 and 205 on the screen in FIG. 9, one of the inconsistencies is a trilemma (Tr = XH-YH + PQ).
V) increases in the positive direction, and the convergence quality deteriorates.

【0011】これを補正する手段として、第1に水平偏
向コイル203のスクリーン側を管軸方向ネック側へ後
退させることが考えられるが、偏向感度が低下するた
め、実用的ではない。
As a means for correcting this, it is conceivable to first retreat the screen side of the horizontal deflection coil 203 to the neck side in the tube axis direction, but this is not practical because the deflection sensitivity is lowered.

【0012】第2に水平偏向コイル203のネック側を
管軸方向ネック側へ伸ばす方法が考えられるが、図8
(c)に示したように従来のネック側渡り線部206が
巻き数増加に伴って電子ビームからほぼ遠ざかる半径方
向に巻き積もらされたいわゆるべンドアップ形のコイル
では、ネック側方向への反磁界の漏洩が大きいため、伸
ばす必要量が大きく、構造的に実用的にはならなかっ
た。
A second method is to extend the neck side of the horizontal deflection coil 203 to the neck side in the tube axis direction.
As shown in (c), in a conventional so-called bend-up type coil in which the neck-side bridging portion 206 is wound in the radial direction almost away from the electron beam as the number of turns increases, the demagnetizing field in the neck-side direction Because of the large leakage, the amount of elongation was large, and the structure was not practical.

【0013】本発明は、この課題を解決するためになさ
れたものであり、角錐化されたファンネルヨーク部と概
ね円形のネック部を有する陰極線管装置に対し、コンバ
ーゼンス品位を悪化させること無く偏向電力をより低減
した陰極線管装置および偏向ヨークを提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problem, and it is an object of the present invention to provide a cathode ray tube device having a pyramidized funnel yoke portion and a generally circular neck portion without deteriorating the convergence quality. It is an object of the present invention to provide a cathode ray tube device and a deflection yoke in which the number is further reduced.

【0014】[0014]

【課題を解決するための手段】本発明は上記問題を解決
するために、ファンネルのヨーク部が略角錐状の陰極線
管装置において、偏向ヨークの少なくとも水平偏向コイ
ルのネック側渡り線部を、巻き数増加に伴って電子ビー
ムから略遠ざかる方向に巻き積もらせず、ネック外面に
沿って略管軸方向へ巻き積もるように巻き回されたいわ
ゆるべンドレス形状とすることを特徴とする陰極線管装
置を用いる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a cathode ray tube device in which a funnel yoke has a substantially pyramid shape. A cathode ray tube device characterized by having a so-called bendless shape wound so as to be wound substantially in the tube axis direction along the neck outer surface without being wound in a direction substantially away from the electron beam with an increase in the number. Used.

【0015】本発明は、少なくとも蛍光体スクリーンを
内面に有するパネル部と前記スクリーンに対向して配置
される電子銃を内側に有するネック部と前記ネック部の
スクリーン側に連接されるヨーク部とからなり、前記パ
ネル部の外面形状は前記スクリーン中央に対する前記ス
クリーン対角端の管軸方向の前記ネック部側への落差を
もとに円近似するとき、前記円近似のパネル外面形状の
曲率半径が前記スクリーン対角有効寸法の2倍以上の平
坦度であり、かつ管軸に垂直な断面において管軸とヨー
ク部外面の間隔をヨーク部外径とするとき、前記ヨーク
部の管軸に垂直な任意の断面の内少なくとも1つの断面
が前記スクリーンの垂直軸方向と水平軸方向の間に最大
となるヨーク部外径を有する非円形状をなす真空外囲器
と、前記ヨーク部から前記ネック部にかけて前記真空外
囲器の外側に配置され、前記電子銃から放出される電子
ビームを水平及び垂直方向に偏向する水平及び垂直偏向
コイルと管軸に垂直な断面が非円形状の高透磁率のコア
部を少なくとも有する偏向ヨークとから少なくとも構成
される陰極線管装置において、前記偏向ヨークの水平偏
向コイルが前記管軸に沿う平行線部とこの平行線部をつ
なぎ前記管軸に垂直な方向に沿って前記スクリーン側と
前記ネック部側に配置された渡り線部とからなり、前記
ネック部側の渡り線部が前記ネック部外面に沿って前記
管軸方向に巻き積もるように巻回されていることを特徴
とする陰極線管装置を得るものである。
According to the present invention, at least a panel portion having a phosphor screen on an inner surface, a neck portion having an electron gun disposed inside facing the screen and a yoke portion connected to the screen side of the neck portion are provided. When the outer shape of the panel portion is approximated by a circle based on a drop of the diagonal end of the screen with respect to the center of the screen toward the neck portion in the tube axis direction, the radius of curvature of the outer shape of the panel approximated by the circle is When the flatness is at least twice the screen diagonal effective dimension and the space between the tube axis and the outer surface of the yoke portion is a yoke portion outer diameter in a cross section perpendicular to the tube axis, the yoke portion is perpendicular to the tube axis. A non-circular vacuum envelope having at least one cross section of any cross section having a maximum yoke outside diameter between a vertical axis direction and a horizontal axis direction of the screen; and the yoke section A horizontal and vertical deflection coil that is disposed outside the vacuum envelope from the neck to the neck and deflects the electron beam emitted from the electron gun in the horizontal and vertical directions, and has a non-circular cross section perpendicular to the tube axis. In a cathode ray tube device comprising at least a deflection yoke having at least a core part having high magnetic permeability, a horizontal deflection coil of the deflection yoke connects a parallel line portion along the tube axis with the parallel line portion and is perpendicular to the tube axis. And a crossover portion arranged on the screen side and the neck portion side along a predetermined direction, and the crossover portion on the neck portion side is wound along the outer surface of the neck portion in the tube axis direction. A cathode ray tube device characterized by being rotated.

【0016】また、本発明は、前記ネック部側の渡り線
部が前記ネック部外面に沿って単層に巻回されているこ
とを特徴とする陰極線管装置を得るものである。
The present invention also provides a cathode ray tube device wherein the crossover portion on the neck portion side is wound in a single layer along the outer surface of the neck portion.

【0017】また、本発明は、前記外囲器のヨーク部外
面および前記偏向ヨークのコア部内面の管軸に垂直な断
面形状がほぼ矩形状の非円形であり、前記偏向コイルが
前記ヨーク部と前記コア部間に配置され、前記非円形に
成形されてなることを特徴とする陰極線管装置を得るも
のである。
Further, according to the present invention, the cross section of the outer surface of the yoke portion of the envelope and the inner surface of the core portion of the deflection yoke perpendicular to the tube axis is substantially rectangular and non-circular, and the deflection coil is formed of the yoke portion. And a cathode ray tube device which is arranged between the core portion and the non-circular shape and is formed in the non-circular shape.

【0018】さらに本発明は、蛍光体スクリーンの形成
されたパネル部と偏向ヨークの装着されるほぼ角錐形状
のヨーク部と電子銃の配置されるネック部とを管軸に沿
って配置した陰極線管に装着される前記偏向ヨークであ
って、前記偏向ヨークが水平偏向磁界を発生するサドル
型水平偏向コイルと、垂直偏向磁界を発生するサドル型
垂直偏向コイルと、これらのコイルを囲むコア部とから
なり、前記水平偏向コイルは一対の平行線部とこの平行
線部をつなぐ前記蛍光体スクリーン側の渡り線部と前記
ネック部側の渡り線部とからなるループコイルで形成さ
れ、前記ネック部側の渡り線部が前記ネック部外面に沿
って前記管軸方向に巻き積もるように巻かれていること
を特徴とする偏向ヨークである。
Further, the present invention provides a cathode ray tube in which a panel on which a phosphor screen is formed, a substantially pyramid-shaped yoke on which a deflection yoke is mounted, and a neck on which an electron gun is arranged are arranged along a tube axis. Wherein the deflection yoke generates a horizontal deflection magnetic field, a saddle-type horizontal deflection coil, a saddle-type vertical deflection coil that generates a vertical deflection magnetic field, and a core portion surrounding these coils. The horizontal deflection coil is formed of a loop coil including a pair of parallel wire portions, a crossover wire portion on the phosphor screen side connecting the parallel wire portions, and a crossover wire portion on the neck portion side. Is wound around the neck portion so as to be wound in the tube axis direction along the outer surface of the neck portion.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態に係わる陰極
線管外囲器の外面形状は、図1および図2に示すよう
に、スクリーン中央9aに対するスクリーン対角端9d
の管軸(Z軸)方向のネック部11側への落差dをもと
に円近似してパネル7外面の平坦度を示した時、その曲
率半径がスクリーン9の対角有効寸法の2倍以上の平坦
度を有し、ファンネルのヨーク部12を角錐化した陰極
線管装置に適用され、さらに偏向ヨーク16のコア部4
内径が、スクリーン9の垂直軸方向および水平軸方向の
間に最大となる、非円形状の偏向ヨークを採用した陰極
線管装置に適用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIGS. 1 and 2, a cathode ray tube envelope according to an embodiment of the present invention has a screen diagonal end 9d with respect to a screen center 9a.
When the flatness of the outer surface of the panel 7 is shown by circular approximation based on the drop d toward the neck portion 11 in the tube axis (Z-axis) direction, the radius of curvature is twice the diagonal effective dimension of the screen 9. The present invention is applied to a cathode ray tube device having the above flatness and a funnel yoke portion 12 having a pyramid shape.
The present invention is applied to a cathode ray tube device employing a non-circular deflection yoke whose inner diameter becomes maximum between the vertical axis direction and the horizontal axis direction of the screen 9.

【0020】すなわち本発明の偏向ヨーク16を装着す
るのに最適な陰極線管外囲器は、図1に示すように、内
面に蛍光体スクリーン9の形成されたパネル部14と、
断面径小のヨーク部12をもつファンネル部13と、ヨ
ーク部12のパネル部14とは反対側のネック側端部1
7に連接され,電子銃5を内蔵するネック部11とから
なる。
That is, the most suitable cathode ray tube envelope for mounting the deflection yoke 16 of the present invention is, as shown in FIG. 1, a panel portion 14 having a phosphor screen 9 formed on an inner surface thereof.
A funnel part 13 having a yoke part 12 having a small cross-sectional diameter, and a neck-side end part 1 of the yoke part 12 opposite to the panel part 14.
7 and a neck portion 11 in which the electron gun 5 is built.

【0021】さらに外囲器内に蛍光体スクリーン9と対
面するシャドウマスク10が組み込まれる。
Further, a shadow mask 10 facing the phosphor screen 9 is incorporated in the envelope.

【0022】図3に一例として管軸上の偏向基準位置2
0(図1参照)の管軸に垂直なヨーク部12の断面を示
す。
FIG. 3 shows an example of a deflection reference position 2 on the tube axis.
2 shows a cross section of the yoke portion 12 perpendicular to the tube axis 0 (see FIG. 1).

【0023】上記断面において管軸Zからスクリーンの
水平方向の軸H、垂直方向の軸V、対角方向の軸Dでそ
れぞれ管軸からヨーク部外面までの距離(外径)をL
A、SA、DAとすると、角錐状ヨーク部12ではLA
及びSAがDAより小さくなり、結果として水平、垂直
軸近傍の偏向コイルを電子ビームに近づけて偏向電力を
低減することができる。ここで最大径となる対角軸方向
距離DAはスクリーンの対角軸方向であるが、厳密に一
致しないこともある。
In the above cross section, the distance (outer diameter) from the tube axis to the outer surface of the yoke portion from the tube axis Z to the horizontal axis H, vertical axis V, and diagonal axis D of the screen is L.
Assuming that A, SA, and DA, the pyramid-shaped yoke 12 has LA
And SA are smaller than DA, and as a result, the deflection coils near the horizontal and vertical axes can be brought closer to the electron beam to reduce the deflection power. Here, the diagonal axis direction distance DA having the maximum diameter is in the diagonal axis direction of the screen, but may not exactly match.

【0024】上述の3軸以外の形状は、水平軸上に中心
を持ち半径Rhの円弧と垂直軸上に中心を持ち半径Rv
の円弧と対角軸上近傍に中心を持ち半径Rdの円弧でつ
ないだ形状とする。その他に種種の数式を用いて略矩形
状の断面を作ってもよい。
The shapes other than the three axes described above include an arc having a center on the horizontal axis and a radius Rh and a center having a center on the vertical axis and a radius Rv.
And a shape centered near the diagonal axis and connected by an arc of radius Rd. In addition, a substantially rectangular cross section may be created using various mathematical expressions.

【0025】以上のようにヨーク部の横断面は、矩形の
長辺L、短辺Sよりもふくらみのある略矩形形状の非円
形形状であり、一例としてたる型断面を有している。
As described above, the cross section of the yoke portion is a substantially rectangular non-circular shape having a bulge larger than the long side L and the short side S of the rectangle, and has a mold cross section as an example.

【0026】ヨーク部断面形状を矩形状に近づけるほ
ど、真空外囲器としての強度は劣化し、偏向電力は低減
する。そこで矩形度を表す指標として (LA+SA)/(2DA)………(1) を設定する。通常の円錐状ヨーク部であれば、LA、S
AはDAに等しいから、前記値は1である。
As the cross-sectional shape of the yoke portion approaches the rectangular shape, the strength as the vacuum envelope decreases, and the deflection power decreases. Therefore, (LA + SA) / (2DA) (1) is set as an index indicating the degree of rectangularity. If it is a normal conical yoke, LA, S
The value is 1 because A is equal to DA.

【0027】ヨーク部を角錐化する場合、DAは最外電
子ビーム軌道との余白確保からほぼ一定であるが、L
A、SAは小さくなり、前記値は小さくなる。完全に角
錐化した場合は、矩形状のアスペクト比をM:N(水平
軸方向長さと垂直軸方向長さの比)とすると、 (M+N)/(2(M2 +N2 1/2 )………(2) となる。
When the yoke portion is formed into a pyramid, DA is almost constant from the margin of the outermost electron beam trajectory.
A and SA become smaller, and the value becomes smaller. When the pyramid is completely formed, if the rectangular aspect ratio is M: N (the ratio of the length in the horizontal axis direction to the length in the vertical axis direction), (M + N) / (2 (M 2 + N 2 ) 1/2 ) ... (2)

【0028】前記指標はヨーク部の水平、垂直方向外径
の縮小分を合わせた形であるが、シミュレーション解析
結果では、水平方向のみを矩形化した場合でも、垂直方
向のみを矩形化した場合でもほぼ同様の偏向電力低減効
果があり、LA、SAのいずれかを重視すべき必要は無
く、前記指標で問題は無い。
The above-mentioned index is a form in which the reduction of the outer diameter in the horizontal and vertical directions of the yoke part is combined. According to the simulation analysis results, it is possible to obtain a rectangular shape only in the horizontal direction or a rectangular shape only in the vertical direction. There is almost the same effect of reducing the deflection power, there is no need to attach importance to either LA or SA, and there is no problem with the index.

【0029】また、管軸位置の違いによるヨーク部矩形
化の効果も解析し、結果として図1に示したように偏向
基準位置20(通常リファレンスラインと称する)から
偏向ヨーク16のスクリーン側端16aのヨーク部12
領域の矩形化が重要であることを見出した。
Also, the effect of the yoke section rectangularization due to the difference in the tube axis position was analyzed, and as a result, as shown in FIG. 1, the screen end 16a of the deflection yoke 16 was moved from the deflection reference position 20 (generally referred to as a reference line). Yoke part 12
It has been found that the rectangularization of the area is important.

【0030】ここで偏向基準位置20とは、図4
(a)、(b)に示すように管軸を挟んだスクリーン対
角両端9dと管軸上のある点Oとを直線を結んだ場合
に、2直線が成す角度が陰極線管規定の最大偏向角θで
あるような管軸上位置で、偏向の中心となる位置であ
る。
Here, the deflection reference position 20 corresponds to FIG.
As shown in (a) and (b), when a straight line is formed between the screen diagonal ends 9d sandwiching the tube axis and a point O on the tube axis, the angle formed by the two straight lines is the maximum deflection defined by the cathode ray tube. The position on the tube axis, which is the angle θ, is the position that is the center of deflection.

【0031】図1は、偏向ヨーク16による電子ビーム
eのスクリーン対角端9dへ偏向される電子ビーム軌道
の一例を示している。この場合、偏向磁界中心が偏向基
準位置20よりネック部側端部17に近付くと、磁界が
ネック側で強まるために、電子ビームeが早く偏向され
ヨーク部12の内壁に衝突する。逆に偏向基準位置20
よりスクリーン9側であれば、電子ビームeとヨーク部
12内壁の余裕が増えることになり、その分だけ偏向ヨ
ーク16のネック側端16bを延長して更に偏向電力を
低減することができる。
FIG. 1 shows an example of an electron beam trajectory in which an electron beam e is deflected by a deflection yoke 16 to a screen diagonal end 9d. In this case, when the center of the deflection magnetic field is closer to the neck side end portion 17 than the deflection reference position 20, the magnetic field is strengthened on the neck side, so that the electron beam e is quickly deflected and collides with the inner wall of the yoke portion 12. Conversely, the deflection reference position 20
On the screen 9 side, the margin between the electron beam e and the inner wall of the yoke part 12 increases, and the deflection power can be further reduced by extending the neck side end 16b of the deflection yoke 16 accordingly.

【0032】また、ネック径の異なる陰極線管において
も、ヨーク部形状の差は概ね偏向基準位置20までであ
り、それよりスクリーン側のヨーク部形状はほぼ同一と
なるため、解析結果は概ね同一である。
Even in cathode ray tubes having different neck diameters, the difference in the shape of the yoke is substantially up to the deflection reference position 20, and the shape of the yoke on the screen side is substantially the same, so that the analysis results are substantially the same. is there.

【0033】本発明の偏向ヨーク16は図1および図2
に示したように、朝顔型の筒状の合成樹脂でなるセパレ
ータ2の両壁で固定された水平、垂直コイル1、3およ
び高透磁率の筒状コア4で組立てられ、漏洩磁界の少な
いサドル−サドル型である。セパレータ2の内面に水平
偏向コイル1が取り付けられ、セパレータ2の外面に垂
直偏向コイル3が取り付けられる。コア4はその外側を
取り囲んで固定配置され、偏向磁界に対する磁心または
帰磁路を構成している。
The deflection yoke 16 of the present invention is shown in FIGS.
As shown in the figure, the saddle which is assembled by the horizontal and vertical coils 1 and 3 and the cylindrical core 4 having high magnetic permeability fixed on both walls of the bosh-shaped cylindrical synthetic resin separator 2 and has a small leakage magnetic field. -It is a saddle type. The horizontal deflection coil 1 is mounted on the inner surface of the separator 2, and the vertical deflection coil 3 is mounted on the outer surface of the separator 2. The core 4 is fixedly arranged so as to surround the outside, and forms a magnetic core or a return path for the deflection magnetic field.

【0034】図1に示したように、外囲器の管軸に沿う
外面形状はファンネル部13からネック部11にかけ
て、スクリーン側のファンネル部13で外方に凸、その
ヨーク部12で凹の略S字曲線をしており、ファンネル
部13のヨーク部12の境界18が同曲線の変曲点とな
っている。
As shown in FIG. 1, the shape of the outer surface along the tube axis of the envelope extends from the funnel portion 13 to the neck portion 11 so as to protrude outward at the funnel portion 13 on the screen side and to be concave at the yoke portion 12. It has a substantially S-shaped curve, and the boundary 18 of the yoke portion 12 of the funnel portion 13 is an inflection point of the curve.

【0035】偏向ヨーク16はそのパネル7側の端縁1
6aがこの変曲点18の近傍に位置するように装着さ
れ、実質上のファンネルのヨーク部12は、少なくとも
ネック部11との連接部17から偏向ヨーク端部16a
までとなる。
The deflection yoke 16 has an edge 1 on the panel 7 side.
6a is mounted near the inflection point 18, and the substantial funnel yoke 12 is connected to the deflection yoke end 16a at least from the connection 17 with the neck 11.
Up to.

【0036】次に偏向電力の低減効果について説明す
る。
Next, the effect of reducing the deflection power will be described.

【0037】図5(a)は、前記矩形度の指標値に対す
る偏向電力の低減度合いを示したものである。ここでは
偏向ヨークの仕様を固定し、ヨーク部が矩形化された分
だけ偏向コイル、コアを近づけて計算した。偏向電力に
ついては、水平偏向電力を用いた。図5(a)より指標
値が概ね0.86より小さくなると急激に軽減効果が現
れ、円錐状ヨーク部に対して約10〜30%の電力削減
となる。逆に0.86以上では、軽減効果は10%以下
に過ぎなくなる。
FIG. 5A shows the degree of reduction in the deflection power with respect to the index value of the rectangularity. Here, the calculation was performed with the specifications of the deflection yoke fixed and the deflection coil and core as close to each other as the rectangular yoke portion. As the deflection power, the horizontal deflection power was used. As shown in FIG. 5A, when the index value becomes smaller than approximately 0.86, the effect of abrupt reduction appears, and the power is reduced by about 10 to 30% with respect to the conical yoke. Conversely, if it is 0.86 or more, the reduction effect is only 10% or less.

【0038】以上をまとめると、偏向電力の低減と真空
応力・強度の確保を両立できる方法として、偏向ヨーク
の偏向により走査される略矩形のスクリーンのアスペク
ト比をM:Nとして、偏向基準位置(リファレンスライ
ン)での、管軸に垂直な断面で垂直方向ヨーク部外径を
SA、水平軸方向ヨーク部外径をLA、最大ヨーク部外
径をDAとするとき、 (M+N)/(2(M2 + N2 ) 1/2 ) < (SA+LA) /(2DA) ≦ 0.86 ………(3) となるようにヨーク部形状を構成する。
Summarizing the above, as a method for achieving both reduction of deflection power and securing of vacuum stress and strength, an aspect ratio of a substantially rectangular screen scanned by deflection of a deflection yoke is set to M: N, and a deflection reference position ( When the outer diameter of the vertical yoke portion is SA, the outer diameter of the horizontal yoke portion is LA, and the maximum outer diameter of the yoke portion is DA in the cross section perpendicular to the tube axis at the reference line, (M + N) / (2 ( M 2 + N 2) 1/2) constitutes <a (SA + LA) / (2DA ) ≦ 0.86 ......... (3) and so as to yoke portion shape.

【0039】またこのとき、図3に示したように、偏向
基準位置での管軸に垂直な断面のヨーク部12外面形状
断面を、辺がややふくらみのある略矩形状とし、この矩
形形状を垂直軸上に中心を持つ半径Rvの円弧と、水平
軸上に中心をもつ半径Rhの円弧と、最大外径となる点
と管軸を結ぶ直線上に中心をもつ半径Rdの円弧で近似
したとき、RhまたはRvが900mm以下となるよう
にヨーク部形状を構成する。
At this time, as shown in FIG. 3, the cross section of the outer surface of the yoke portion 12 which is perpendicular to the tube axis at the deflection reference position has a substantially rectangular shape with slightly bulging sides. It was approximated by an arc of radius Rv centered on the vertical axis, an arc of radius Rh centered on the horizontal axis, and an arc of radius Rd centered on a straight line connecting the point of maximum outer diameter and the pipe axis. At this time, the shape of the yoke is configured so that Rh or Rv is 900 mm or less.

【0040】以上のことはスクリーンのアスペクト比
4:3以外にも16:9や3:4などにも適用可能であ
る。
The above is applicable to 16: 9, 3: 4, etc. other than the screen aspect ratio of 4: 3.

【0041】また偏向ヨークの場合は、コイル線積も考
慮し、コアの矩形度の指標が決定される。矩形度の指標
値は、概ね0.90以下にしないと有効でないことが分
かった。図7に示すように偏向ヨークの一部を構成する
水平偏向コイル1は管軸に沿って延在する平行線部21
とこれらをつなぐ渡り線部22a、22bとからなる。
この渡り線部22a、22bは、管軸を横切る方向すな
わち管軸を回るように配置される。渡り線部22a、2
2bは、スクリーン側の渡り線部22aとネック部側の
渡り線部22bからなり、後者はネック部外面に沿って
管軸方向に巻き積もるように延在する。
In the case of the deflection yoke, the index of the rectangularity of the core is determined in consideration of the coil product. It has been found that the index value of the rectangularity is not effective unless it is approximately 0.90 or less. As shown in FIG. 7, the horizontal deflection coil 1 forming a part of the deflection yoke has a parallel line portion 21 extending along the tube axis.
And crossover lines 22a and 22b connecting them.
The crossover portions 22a and 22b are arranged in a direction crossing the tube axis, that is, around the tube axis. Crossover 22a, 2
2b is composed of a crossover portion 22a on the screen side and a crossover portion 22b on the neck side, and the latter extends so as to be wound in the tube axis direction along the outer surface of the neck portion.

【0042】図6に偏向ヨークのコアの形状を示す。す
なちわ(a)はコア4のスクリーン側の端部4a、
(b)は同じくネック側の端部4bを示している。コア
4の内径(管軸に垂直な断面における管軸からコア内面
までの距離)は外囲器のネック部上およびその連接部で
は,ネック部およびヨーク部形状に合わせてほぼ同形の
円形状であるが、管軸に沿ってスクリーン側に近付くに
したがって管軸に垂直な断面でのコア4の最大内径DB
に対してコア長軸、短軸方向外径LB、SBが徐々に小
さくなるように変化し、管軸に垂直な断面での形状が略
矩形状(非円形状)となっている。この図の例ではスク
リーンのアスペクト比M:N(水平対垂直)は4:3で
ある。
FIG. 6 shows the shape of the core of the deflection yoke. That is, (a) is an end 4a on the screen side of the core 4,
(B) similarly shows the end 4b on the neck side. The inner diameter of the core 4 (the distance from the tube axis to the inner surface of the core in a cross section perpendicular to the tube axis) is substantially the same circular shape on the neck portion of the envelope and its connecting portion in accordance with the shape of the neck portion and the yoke portion. However, the maximum inner diameter DB of the core 4 in a cross section perpendicular to the tube axis as approaching the screen side along the tube axis.
In contrast, the outer diameters LB and SB in the core long axis and short axis directions gradually change, and the cross section perpendicular to the tube axis has a substantially rectangular shape (non-circular shape). In the example of this figure, the screen aspect ratio M: N (horizontal to vertical) is 4: 3.

【0043】すなわち、ネック部の管軸に垂直な断面の
外形は円形であり、ヨーク部4は、ネック部との連接部
分からパネル側にかけて非円形形状を変化するから、こ
れに沿う偏向ヨークのコア4の管軸に垂直な少なくとも
1つの断面は、ネック部でほぼ円形で、ヨーク部上でア
スペクト比M:Nのスクリーンの水平軸方向および垂直
軸V方向の間に最大となるコア内径を有する非円形状を
なし、前記偏向ヨークの垂直軸方向コア内径をSB、水
平軸方向コア内径をLB、最大コア内径をDBとする
と、 (M+N)/( 2( M2 + N2 ) 1/2 ) < (SB+LB) /(2DB) ≦ 0.90 ………(4) になるように定められる。
That is, the outer shape of the cross section perpendicular to the tube axis of the neck portion is circular, and the yoke portion 4 changes its non-circular shape from the portion connected to the neck portion to the panel side. At least one cross section perpendicular to the tube axis of the core 4 is substantially circular at the neck, and has a maximum core inner diameter between the horizontal axis direction and the vertical axis V direction of the screen having the aspect ratio M: N on the yoke portion. forms a non-circular shape having a vertical axis core inner diameter of the deflection yoke SB, when the horizontal axis core inner diameter LB, a maximum core inner diameter and DB, (M + N) / (2 (M 2 + N 2) 1 / 2 ) <(SB + LB) / (2DB) ≦ 0.90 (4)

【0044】このように構成された陰極線管装置では、
図8(c)のように従来の水平偏向コイルのネック側渡
り線部206を、巻き数増加に伴って電子ビームから略
遠ざかる方向に巻き積もらせた偏向ヨークを用いると、
図8(d)のように水平偏向の磁界重心が相対的にスク
リーン側へ移動するため、図9に示すコンバーゼンスの
トリレンマ(Tr)が正方向に増大し、前記問題点を生
じる。
In the cathode ray tube device configured as described above,
As shown in FIG. 8C, when a deflection yoke in which the neck-side crossover portion 206 of the conventional horizontal deflection coil is wound in a direction substantially away from the electron beam with an increase in the number of turns is used.
As shown in FIG. 8D, the center of gravity of the magnetic field for horizontal deflection relatively moves to the screen side, so that the convergence trilemma (Tr) shown in FIG. 9 increases in the positive direction, and the above-described problem occurs.

【0045】この問題点を解決するために、図8(e)
に示す前記本発明のように水平偏向コイル1の巻線の渡
り線部22bをネック側を管軸に沿って巻き積もらせる
ベンドレス手段を用いれば、ネック側方向への逆磁界の
漏洩が減少するため、図8(f)のように偏向磁界分布
MF3 の偏向重心M0 がネック側方向へ移動し、正のト
リレンマを補正することが出来る。また、ネック側方向
への逆磁界自体が減少することで、図8(c)のように
渡り線部206を電子ビームから遠ざかる半径方向に巻
き積もらせるベンドアップ形状に比べて偏向効率が向上
し、偏向電力を低減することができる。
In order to solve this problem, FIG.
If the bendless means for winding the crossover portion 22b of the winding of the horizontal deflection coil 1 around the neck side along the tube axis as in the present invention is used, the leakage of the reverse magnetic field in the neck side direction is reduced. Therefore, as shown in FIG. 8 (f), the deflection center of gravity M0 of the deflection magnetic field distribution MF3 moves toward the neck side, and the positive trilemma can be corrected. Also, the reduction in the reverse magnetic field itself in the neck side direction improves the deflection efficiency as compared with the bend-up shape in which the crossover portion 206 is wound in the radial direction away from the electron beam as shown in FIG. 8C. , The deflection power can be reduced.

【0046】なお、従来のファンネルのヨーク部が略円
錐状の受像管装置でも、水平偏向コイルのネック側渡り
線部110a(図8(a))を、ベンドレス形状とする
ことが考えられるが、ネック側方向へ逆磁界の漏洩が減
少するため、偏向感度は向上するものの、偏向重心のネ
ック側への後退により真空外囲器内面に電子ビームが衝
突し、図10(b)に示したような、いわゆるネックシ
ャドウ104が発生してしまうため、結果的にコイル全
体をスクリーン側へ移動せざるをえず、特にネック側渡
り線部110aをべンドレス形状とする利点は無かっ
た。
Although the yoke of the conventional funnel has a substantially conical picture tube device, the neck-side crossover portion 110a (FIG. 8A) of the horizontal deflection coil may be bent. Although the leakage of the reverse magnetic field is reduced toward the neck side, the deflection sensitivity is improved, but the electron beam collides with the inner surface of the vacuum envelope due to the retreat of the deflection center of gravity toward the neck side, as shown in FIG. However, since the so-called neck shadow 104 is generated, the entire coil has to be moved to the screen side as a result, and there is no advantage that the neck-side crossover portion 110a is formed in a dress shape.

【0047】本発明は、ファンネルのヨーク部を略角錐
化した真空外囲器と、非円形状の偏向ヨークのコアを具
備した陰極線管装置において、少なくとも水平偏向コイ
ルのネック側渡り線部を、べンドレス形状とすること
で、初めて従来達成不可能だった偏向感度とコンバーゼ
ンスの両立を達成することが出来るものである。
According to the present invention, in a cathode ray tube device provided with a vacuum envelope in which a yoke portion of a funnel is formed into a substantially pyramid shape and a non-circular deflection yoke core, at least a crossover portion on the neck side of a horizontal deflection coil is provided. By adopting a bendless shape, it is possible for the first time to achieve a balance between deflection sensitivity and convergence, which could not be achieved conventionally.

【0048】[0048]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1および図2は本発明の実施例による陰
極線管装置の偏向ヨークなどの配置を示したものであ
る。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show the arrangement of a deflection yoke and the like of a cathode ray tube device according to an embodiment of the present invention.

【0049】内面に蛍光体スクリーン9が形成されたパ
ネル7と、このパネル7に連接する漏斗状のファンネル
部13と、このファンネルに連接する円筒状のネック部
11とからなるからなる真空外囲器15を有する。また
ネック部11からファンネル部13にかけて非円形状の
コア4を有する偏向ヨーク16が装着されており、ファ
ンネルは、ネック部11との連接部17から偏向ヨーク
16の装着される位置16aまでの径小部、いわゆるヨ
ーク部12を有する。このヨーク部12もやはり非円形
状に形成されている。パネル7内面に形成された蛍光体
スクリーン9は、赤、緑、青にそれぞれ発光する複数の
蛍光体層よりなり、またネック部11には、発光色に対
応した複数の電子ビームを放出する電子銃5が配置され
ている。さらに電子銃5と蛍光体スクリーン9との間の
パネル7の内側に、フレーム8に固定された色選別機能
を有するシャドウマスク10が配設され、電子銃5から
放出された電子ビームeを整形し、特定の色の蛍光体層
にビームスポットを投影する。
A vacuum envelope comprising a panel 7 having a phosphor screen 9 formed on the inner surface thereof, a funnel-shaped funnel 13 connected to the panel 7, and a cylindrical neck 11 connected to the funnel. It has a vessel 15. A deflection yoke 16 having a non-circular core 4 is mounted from the neck portion 11 to the funnel portion 13, and the funnel has a diameter from a connection portion 17 with the neck portion 11 to a position 16 a where the deflection yoke 16 is mounted. It has a small part, a so-called yoke part 12. This yoke portion 12 is also formed in a non-circular shape. The phosphor screen 9 formed on the inner surface of the panel 7 includes a plurality of phosphor layers that emit red, green, and blue light, respectively, and the neck portion 11 has an electron beam that emits a plurality of electron beams corresponding to the emission colors. A gun 5 is arranged. Further, a shadow mask 10 having a color selection function fixed to the frame 8 is provided inside the panel 7 between the electron gun 5 and the phosphor screen 9, and shapes the electron beam e emitted from the electron gun 5. Then, a beam spot is projected on the phosphor layer of a specific color.

【0050】このカラー陰極線管において、電子銃5
は、従来と同じく一列配置の3電子ビームを放出するイ
ンライン型とし、この電子銃から放出される一列配置の
3電子ビームを、非円形状のコアを有する偏向ヨーク1
6の発生するピンクッション形の水平偏向磁界およびバ
レル形の垂直偏向磁界により偏向することで、格別の補
正手段を要することなく、画面全体にわたり集中させ
る。
In this color cathode ray tube, the electron gun 5
Is an in-line type that emits three electron beams arranged in a line as in the prior art. The three electron beams arranged in a line and emitted from the electron gun are used as a deflection yoke 1 having a non-circular core.
By deflecting by the pincushion-type horizontal deflection magnetic field and the barrel-type vertical deflection magnetic field generated by 6, the image is concentrated on the entire screen without requiring any special correction means.

【0051】特にこの陰極線管においては、上記偏向ヨ
ーク16が装着されるヨーク部12が略角錐状に構成さ
れている。ここに、偏向ヨーク16は、漏洩磁界の少な
いサドル−サドル型であり、筒状の合成樹脂のセパレー
タ2で垂直偏向コイル3、水平偏向コイル1およびコア
4を保持固定している。
In particular, in this cathode ray tube, the yoke portion 12 to which the deflection yoke 16 is mounted is formed in a substantially pyramid shape. Here, the deflection yoke 16 is a saddle-saddle type having a small leakage magnetic field, and holds and fixes the vertical deflection coil 3, the horizontal deflection coil 1, and the core 4 with a cylindrical synthetic resin separator 2.

【0052】図7に示したように、水平偏向コイル1は
水平軸方向に集中して巻き重ねられた管軸方向に延在す
る平行線部21とこの平行線部21をつなぐスクリーン
側の渡り線部22aとネック部側の渡り線部22bとか
らなるループ状に形成されている。このループが一対と
なり、30〜40巻かれ、外囲器の垂直軸方向にピンク
ッション磁界を形成するように配置される。ネック部側
の渡り線部22bは、ネック部外面に沿って巻き積もる
ように、管軸を横切る方向、すなわち管軸を回るように
巻き回され、従来のコイルのように曲げられない形状
(ベンドレス形状)となっている。
As shown in FIG. 7, the horizontal deflection coil 1 has a parallel line portion 21 which is concentrated and wound in the horizontal axis direction and extends in the tube axis direction, and a crossover on the screen connecting the parallel line portions 21. It is formed in a loop composed of the wire portion 22a and the crossover wire portion 22b on the neck portion side. These loops form a pair and are wound 30 to 40 times so as to form a pincushion magnetic field in the vertical axis direction of the envelope. The crossover portion 22b on the neck portion side is wound in a direction crossing the tube axis, that is, around the tube axis so as to be rolled up along the outer surface of the neck portion, and is not bent like a conventional coil (bendless shape). Shape).

【0053】また外囲器の管軸に沿う外面形状は、図1
に示したようにファンネル部13からネック部11にか
けてファンネル部13の径大部6で外方に凸、ヨーク部
12で凹の略S字曲線をしており、ファンネル部13の
径大部6とヨーク部12の境界18は同曲線の略変曲点
である。
The outer shape of the envelope along the tube axis is shown in FIG.
As shown in FIG. 5, the large diameter portion 6 of the funnel portion 13 has a substantially S-shaped curve projecting outward and the yoke portion 12 has a substantially S-shaped curve from the funnel portion 13 to the neck portion 11. The boundary 18 between the and the yoke portion 12 is a substantially inflection point of the same curve.

【0054】以下、偏向電力の低減効果について説明す
る。図5(b)に外囲器のヨーク部外径の管軸に沿った
変位を示す。ネック部との連接部ではほぼ円形状であ
る。垂直軸方向ヨーク部外径をSA、水平軸方向ヨーク
部外径をLA、対角軸方向ヨーク部外径をDAとする
時、 SA/DA=LA/DA=1.0 である。
Hereinafter, the effect of reducing the deflection power will be described. FIG. 5B shows the displacement of the outer diameter of the yoke portion of the envelope along the tube axis. The connection portion with the neck portion has a substantially circular shape. When the outer diameter of the yoke portion in the vertical axis direction is SA, the outer diameter of the yoke portion in the horizontal axis direction is LA, and the outer diameter of the yoke portion in the diagonal axis direction is DA, SA / DA = LA / DA = 1.0.

【0055】スクリーン側に近づくに従って対角軸方向
外径DAに対して長軸、短軸方向外径LA、SAが徐々
に小さくなるように変化し、管軸に垂直な断面での形状
が略矩形状(非円形状)となる。矩形度の指標値は、概
ね0.86に形成されている。
As approaching the screen side, the major axis and minor axis outer diameters LA and SA are gradually reduced with respect to the diagonal axis outer diameter DA, and the cross section perpendicular to the tube axis is substantially shaped. It has a rectangular shape (non-circular shape). The index value of the rectangularity is formed to be approximately 0.86.

【0056】さらに偏向ヨークの場合は、コイル線積も
考慮し、コアの矩形度の指標が決定される。このように
して矩形度の指標値は、概ね0.88に設定されてい
る。
Further, in the case of the deflection yoke, the index of the rectangularity of the core is determined in consideration of the coil product. In this way, the index value of the rectangularity is set to approximately 0.88.

【0057】図6に本発明の実施例のコア部の形状を示
す。コア4は、ネック部との連接部では図6(b)のよ
うにファンネルのヨーク部の形状に合わせてほぼ同形の
円形状とする。コア4のネック端の垂直軸方向コア内径
をSBN、水平軸方向コア内径をLBN、対角軸方向コア内
径をDBNとする時、 SBN/DBNk =LBN/DBN=1.0 である。
FIG. 6 shows the shape of the core portion according to the embodiment of the present invention. The core 4 has substantially the same circular shape as the shape of the yoke portion of the funnel at the connecting portion with the neck portion as shown in FIG. 6B. When the vertical core diameter at the neck end of the core 4 is SBN, the horizontal core diameter is LBN, and the diagonal core diameter is DBN, SBN / DBNk = LBN / DBN = 1.0.

【0058】コア4は、スクリーン側に近づくに従っ
て、図6(a)に示したように対角軸方向内径DBに対
して長軸、短軸方向内径LB,SBが徐々に小さくなる
ように変化し、管軸に垂直な断面での形状が略矩形状
(非円形状)となっている。なお本実施例では、スクリ
ーンのアスペク卜比M:N=4:3としている。
As shown in FIG. 6 (a), the core 4 changes so that the long axis and short axis inner diameters LB and SB gradually become smaller with respect to the diagonal axis inner diameter DB as shown in FIG. The cross section perpendicular to the tube axis has a substantially rectangular shape (non-circular shape). In this embodiment, the aspect ratio of the screen is set to M: N = 4: 3.

【0059】さらにコア4のスクリーン側開口部におい
て、DB=48.2mm.LB=44.7mm、SB=
39.8mmであり、 (LB+SB)/(2DB)=O.88 としている。偏向電力は、円錐状のヨーク部を持つ陰極
線管に対して約18%ほど低減することができた。
Further, at the opening of the core 4 on the screen side, DB = 48.2 mm. LB = 44.7 mm, SB =
39.8 mm, (LB + SB) / (2DB) = O. 88. The deflection power could be reduced by about 18% with respect to a cathode ray tube having a conical yoke.

【0060】しかし、ここでコア4のスクリーン側内径
の一断面におけるLB:SB(長軸方向距離と短軸方向
の距離の比)がスクリーンのアスペクト比M:N(スク
リーンの長軸方向距離と短軸方向の距離の比)にほぼ等
しく4:3となるため、図8(c)に示すように偏向ヨ
ークのスクリーン側では、円錐形の偏向ヨーク(図8
(a))に比べ、水平偏向磁界が垂直偏向磁界より電子
ビームに近づき、コンバーゼンス品位の指標であるトリ
レンマが正に強くなり、コンバーゼンスが悪化するの
で、これを補正するために、図8(e)に示すように水
平偏向コイル1のネック部側の渡り線部22bを巻き数
増加に伴って、電子ビームから略遠ざかる方向に巻き積
もらせず、ネック部外面に沿って略管軸方向へ巻き積も
るように巻き回したいわゆるべンドレス形状とした。
However, here, LB: SB (the ratio of the distance in the long axis direction to the distance in the short axis direction) in one section of the inner diameter of the core 4 on the screen side is the aspect ratio M: N of the screen (the distance between the long axis direction of the screen and the long axis distance). Since the ratio is approximately equal to 4: 3 in the short-axis direction, the conical deflection yoke (FIG. 8) is provided on the screen side of the deflection yoke as shown in FIG.
Compared with (a), the horizontal deflection magnetic field approaches the electron beam more than the vertical deflection magnetic field, and the trilemma, which is an index of the convergence quality, becomes positive and the convergence deteriorates. To correct this, FIG. As shown in ()), the crossover portion 22b on the neck portion side of the horizontal deflection coil 1 is not wound around in the direction substantially away from the electron beam as the number of windings increases, but is wound substantially in the tube axis direction along the outer surface of the neck portion. A so-called bendless shape wound so as to be stacked.

【0061】これによりネック部側方向への逆磁界の漏
洩を減少させることで、図8(f)のように、水平偏向
磁界MF3 の重心M0 がネック部側へ移動し、トリレン
マは負の方向に変化し、良好なコンバーゼンス品位を確
保することが出来た。
By reducing the leakage of the reverse magnetic field in the direction toward the neck, the center of gravity M0 of the horizontal deflection magnetic field MF3 moves toward the neck, as shown in FIG. To ensure good convergence.

【0062】[0062]

【発明の効果】以上説明したように、本発明による構成
によって、コンバーゼンス品位を悪化させること無く偏
向電力を有効に低減して、高周波偏向の要求を満たす陰
極線管装置および偏向ヨークとすることができる。
As described above, according to the configuration of the present invention, the deflection power can be effectively reduced without deteriorating the convergence quality, and the cathode ray tube device and the deflection yoke satisfying the requirement of high frequency deflection can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す一部断面略図。FIG. 1 is a schematic partial cross-sectional view showing an embodiment of the present invention.

【図2】本発明の一実施の形態おけるとくに偏向ヨーク
形状を示す一部断面図。
FIG. 2 is a partial cross-sectional view particularly showing a deflection yoke shape according to the embodiment of the present invention.

【図3】本発明の一実施の形態におけるファンネルのヨ
ーク部の管軸に垂直に切った断面図。
FIG. 3 is a cross-sectional view of the funnel yoke portion perpendicular to the tube axis according to the embodiment of the present invention.

【図4】本発明の一実施の形態における偏向中心を説明
するもので、(a)は縦断面図、(b)は平面図。
4A and 4B are views for explaining a deflection center in one embodiment of the present invention, wherein FIG. 4A is a longitudinal sectional view and FIG. 4B is a plan view.

【図5】(a)はヨーク部形状に対する偏向電力の関係
を示す特性図、(b)はヨーク部の形状を示す曲線図。
5A is a characteristic diagram showing the relationship between the deflection power and the shape of the yoke, and FIG. 5B is a curve diagram showing the shape of the yoke.

【図6】(a)、(b)は偏向ヨークのコア部の断面
図。
FIGS. 6A and 6B are cross-sectional views of a core part of a deflection yoke.

【図7】本発明の一実施の形態の偏向ヨークの水平偏向
コイルを示す斜視図。
FIG. 7 is a perspective view showing a horizontal deflection coil of the deflection yoke according to the embodiment of the present invention.

【図8】(a)乃至(f)は従来装置と本発明の構造お
よび特性を比較して示す図。
FIGS. 8A to 8F are diagrams showing a comparison between the structure and characteristics of a conventional device and the present invention.

【図9】ミスコンバーゼンスのトリレンマ(Tr)を示
す図。
FIG. 9 is a diagram showing a misconvergence trilemma (Tr).

【図10】従来の陰極線管装置の外囲器を説明するもの
で、(a)は断面図、(b)は平面図。
10A and 10B are views for explaining an envelope of a conventional cathode ray tube device, wherein FIG. 10A is a cross-sectional view and FIG. 10B is a plan view.

【図11】従来の陰極線管装置の外囲器を説明するもの
で、(a)は側面図、(b)乃至(f)は(a)をB−
B線乃至F−F線に沿って切断した断面図。
11 (a) is a side view, and FIGS. 11 (b) to 11 (f) are diagrams illustrating (a) B-
Sectional drawing cut | disconnected along the B line or the FF line.

【符号の説明】[Explanation of symbols]

1:水平偏向コイル 2:セパレータ 3:垂直偏向コイル 4:コア部 5:電子銃 9:蛍光体スクリーン 11:ネック部 12:ヨーク部 14:パネル部 15:真空外囲器 16:偏向ヨーク 21:平行線部 22a:スクリーン側渡り線部 22b:ネック部側渡り線部 1: Horizontal deflection coil 2: Separator 3: Vertical deflection coil 4: Core section 5: Electron gun 9: Phosphor screen 11: Neck section 12: Yoke section 14: Panel section 15: Vacuum envelope 16: Deflection yoke 21: Parallel line portion 22a: Screen side crossover portion 22b: Neck portion side crossover portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも蛍光体スクリーンを内面に有
するパネル部と前記スクリーンに対向して配置される電
子銃を内側に有するネック部と前記ネック部のスクリー
ン側に連接されるヨーク部とからなり、前記パネル部の
外面形状は前記スクリーン中央に対する前記スクリーン
対角端の管軸方向の前記ネック部側への落差をもとに円
近似するとき、前記円近似のパネル外面形状の曲率半径
が前記スクリーン対角有効寸法の2倍以上の平坦度であ
り、かつ管軸に垂直な断面において管軸とヨーク部外面
の間隔をヨーク部外径とするとき、前記ヨーク部の管軸
に垂直な任意の断面の内少なくとも1つの断面が前記ス
クリーンの垂直軸方向と水平軸方向の間に最大となるヨ
ーク部外径を有する非円形状をなす真空外囲器と、前記
ヨーク部から前記ネック部にかけて前記真空外囲器の外
側に配置され、前記電子銃から放出される電子ビームを
水平および垂直方向に偏向する水平および垂直偏向コイ
ルと管軸に垂直な断面において内面が非円形状の高透磁
率のコア部を少なくとも有する偏向ヨークとから少なく
とも構成される陰極線管装置において、 前記偏向ヨークの水平偏向コイルが前記管軸に沿う平行
線部とこの平行線部をつなぎ前記管軸方向を横切る方向
に沿って前記スクリーン側と前記ネック部側に配置され
た渡り線部とからなり、前記ネック部側の渡り線部が前
記ネック部外面に沿って前記管軸方向に巻き積もるよう
に巻かれていることを特徴とする陰極線管装置。
1. A display device comprising: a panel portion having at least a phosphor screen on an inner surface; a neck portion having an electron gun disposed inside facing the screen; and a yoke portion connected to the screen side of the neck portion. When the outer shape of the panel portion approximates a circle based on a drop of the diagonal end of the screen with respect to the center of the screen toward the neck portion in the tube axis direction with respect to the center of the screen, the radius of curvature of the outer shape of the panel approximates the circle. When the flatness is at least twice the diagonal effective dimension and the space between the tube axis and the outer surface of the yoke portion is the yoke portion outer diameter in a cross section perpendicular to the tube axis, any yoke portion perpendicular to the tube axis. A non-circular vacuum envelope having at least one cross section having a maximum yoke outside diameter between a vertical axis direction and a horizontal axis direction of the screen; and A horizontal and vertical deflecting coil, which is disposed outside the vacuum envelope over a hook portion and deflects an electron beam emitted from the electron gun in horizontal and vertical directions, and has a non-circular inner surface in a cross section perpendicular to the tube axis. A deflection yoke having at least a core part having a high magnetic permeability, wherein a horizontal deflection coil of the deflection yoke connects a parallel line portion along the tube axis to the parallel line portion and the tube axis direction. A crossover portion arranged on the screen side and the neck portion side along a direction crossing the crossover portion, such that the crossover portion on the neck portion side is wound in the tube axis direction along the outer surface of the neck portion. A cathode ray tube device characterized by being wound.
【請求項2】 前記ネック部側の渡り線部が前記ネック
部外面に沿って単層に巻回されていることを特徴とする
請求項1記載の陰極線管装置。
2. The cathode ray tube device according to claim 1, wherein the crossover portion on the neck portion side is wound in a single layer along the outer surface of the neck portion.
【請求項3】 前記外囲器のヨーク部外面および前記偏
向ヨークのコア部内面の管軸に垂直な断面形状がほぼ矩
形状の非円形であり、前記偏向コイルが前記ヨーク部と
前記コア部間に配置され、非円形に成形されてなること
を特徴とする請求項1記載の陰極線管装置。
3. The non-circular cross section of the outer surface of the yoke portion of the envelope and the inner surface of the core portion of the deflection yoke perpendicular to the tube axis is substantially rectangular and non-circular, and the deflection coil includes the yoke portion and the core portion. 2. The cathode ray tube device according to claim 1, wherein the cathode ray tube device is arranged between the members and formed into a non-circular shape.
【請求項4】 蛍光体スクリーンの形成されたパネル部
と偏向ヨークの装着されるほぼ角錐形状のヨーク部と電
子銃の配置されるネック部とが管軸に沿って配置された
陰極線管に装着される前記偏向ヨークであって、前記偏
向ヨークが水平偏向磁界を発生するサドル型水平偏向コ
イルと、垂直偏向磁界を発生するサドル型垂直偏向コイ
ルと、これらのコイルを囲むコア部とからなり、前記水
平偏向コイルは一対の平行線部とこの平行線部をつなぐ
前記蛍光体スクリーン側の渡り線部と前記ネック部側の
渡り線部とからなるループコイルで形成され、前記ネッ
ク部側の渡り線部が前記ネック部外面に沿って前記管軸
方向に巻き積もるように巻かれれていることを特徴とす
る偏向ヨーク。
4. A cathode ray tube in which a panel on which a phosphor screen is formed, a substantially pyramid-shaped yoke on which a deflection yoke is mounted, and a neck on which an electron gun is disposed are mounted along a tube axis. The deflection yoke, wherein the deflection yoke comprises a saddle-type horizontal deflection coil for generating a horizontal deflection magnetic field, a saddle-type vertical deflection coil for generating a vertical deflection magnetic field, and a core portion surrounding these coils, The horizontal deflection coil is formed by a loop coil including a pair of parallel line portions, a crossover portion on the phosphor screen side connecting the parallel line portions, and a crossover portion on the neck portion side, and the crossover on the neck portion side. A deflection yoke, wherein a wire portion is wound so as to be wound in the tube axis direction along the outer surface of the neck portion.
JP7960099A 1998-03-31 1999-03-24 Cathode-ray tube device and deflecting yoke Pending JPH11345579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7960099A JPH11345579A (en) 1998-03-31 1999-03-24 Cathode-ray tube device and deflecting yoke

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8624098 1998-03-31
JP10-86240 1998-03-31
JP7960099A JPH11345579A (en) 1998-03-31 1999-03-24 Cathode-ray tube device and deflecting yoke

Publications (1)

Publication Number Publication Date
JPH11345579A true JPH11345579A (en) 1999-12-14

Family

ID=26420618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7960099A Pending JPH11345579A (en) 1998-03-31 1999-03-24 Cathode-ray tube device and deflecting yoke

Country Status (1)

Country Link
JP (1) JPH11345579A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405211B1 (en) * 2001-06-27 2003-11-12 삼성전기주식회사 Apparatus for deflection yoke
WO2002045117A3 (en) * 2000-11-29 2004-02-19 Koninkl Philips Electronics Nv Picture display device with reduced deflection power
KR100439638B1 (en) * 2001-08-27 2004-07-12 가부시끼가이샤 도시바 Deflection yoke apparatus
KR100468135B1 (en) * 2000-07-21 2005-01-26 가부시끼가이샤 도시바 Deflection yoke and cathode ray tube apparatus having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468135B1 (en) * 2000-07-21 2005-01-26 가부시끼가이샤 도시바 Deflection yoke and cathode ray tube apparatus having the same
WO2002045117A3 (en) * 2000-11-29 2004-02-19 Koninkl Philips Electronics Nv Picture display device with reduced deflection power
KR100405211B1 (en) * 2001-06-27 2003-11-12 삼성전기주식회사 Apparatus for deflection yoke
KR100439638B1 (en) * 2001-08-27 2004-07-12 가부시끼가이샤 도시바 Deflection yoke apparatus

Similar Documents

Publication Publication Date Title
JP3442975B2 (en) Cathode ray tube device
EP0886297B1 (en) Cathode ray tube
JPH09306388A (en) Cathode ray tube
US5506469A (en) Display tube with deflection unit comprising field deflection coils of the semi-saddle type
US4464643A (en) Device for displaying television pictures and deflection unit therefor
US4524340A (en) Device for displaying television pictures
US6404117B1 (en) Cathode-ray tube device comprising a deflection yoke with a non-circular core having specified dimensional relationships
US6307313B1 (en) Cathode ray tube apparatus
US6307314B1 (en) Cathode ray tube with deflection yoke including non-circular separator
JPH11149887A (en) Cathode-ray tube device
JP3376274B2 (en) Cathode ray tube device
JPH10154472A (en) Cathode-ray tube apparatus
JPH07272642A (en) Display tube
JPH11345579A (en) Cathode-ray tube device and deflecting yoke
JPS59134530A (en) Television image display unit
KR100463718B1 (en) Color cathode ray tube apparatus
US6373202B1 (en) Color cathode ray tube
US20020008458A1 (en) Deflection yoke and cathode ray tube apparatus provided with the same
JPH11273590A (en) Cathode-ray tube apparatus
US6911885B2 (en) Winding frame and deflection yoke
EP1441379A1 (en) Deflection yoke and cathode ray tube apparatus comprising deflection yoke
KR100814873B1 (en) Deflection apparatus for cathode ray tube
JPH08195177A (en) Deflecting device for color picture tube
KR20000073384A (en) Cathode-ray tube
JPH09237591A (en) Deflection yoke device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

RD04 Notification of resignation of power of attorney

Effective date: 20060407

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Effective date: 20081028

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317