[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11339805A - Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Info

Publication number
JPH11339805A
JPH11339805A JP10150127A JP15012798A JPH11339805A JP H11339805 A JPH11339805 A JP H11339805A JP 10150127 A JP10150127 A JP 10150127A JP 15012798 A JP15012798 A JP 15012798A JP H11339805 A JPH11339805 A JP H11339805A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10150127A
Other languages
Japanese (ja)
Inventor
Yasuyuki Takimoto
康幸 滝本
Eiji Endo
栄治 遠藤
Katsuharu Ikeda
克治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10150127A priority Critical patent/JPH11339805A/en
Publication of JPH11339805A publication Critical patent/JPH11339805A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material not reducing a discharge capacity when a voltage is applied at a high temperature by preparing a spinel lithium-manganese composite oxide constituted of Li, Mn, B, O, a bivalent metal element and a trivalent metal element at specific ratios while the bivalent metal element exists on Li side and the trivalent metal element exists on Mn side. SOLUTION: A spinal lithium-managenese composite oxide Li(x-a) Aa Mn(y-b) Bb O4 is prepared, where A is an element capable of generating bivalent metal ions, B is an element capable of generating trivalent metal ions, 0<x<=1.5, 1.8<=y<=2.2, 0<a<=0.3, 0<=b<=0.5, x>a, the element A replaces Lil existing at the site 8a, and the element B replaces Mn existing at the site 16d. The element Zn and/or Mg is preferably used of the element A, and the element Cr, Fe, Co or Ni is preferably used for the element B. A positive electrode active material for a nonaqueous electrolyte secondary battery having a high operating voltage, a high energy density and a long cycle life is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池の正極活物質に関する。
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム又はリチウムを吸蔵、放出でき
る化合物を負極とする非水電解質二次電池は、高エネル
ギ密度を有するものとして期待され、多くの研究が行わ
れている。近年この電池の正極活物質としてスピネル系
リチウムマンガン複合酸化物(LiMn24 )が検討
されている。この物質は、結晶学的には空間群Fd3m
に属し、Li:Mn:O=1:2:4である理想的結晶
ではリチウムは8aサイト、マンガンは16dサイトを
占めている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a compound capable of occluding and releasing lithium as a negative electrode is expected to have a high energy density, and much research has been conducted. In recent years, a spinel lithium manganese composite oxide (LiMn 2 O 4 ) has been studied as a positive electrode active material of this battery. This material crystallographically has the space group Fd3m
In an ideal crystal where Li: Mn: O = 1: 2: 4, lithium occupies the 8a site and manganese occupies the 16d site.

【0003】しかし、この物質を正極活物質として使用
する場合、充放電を繰り返すと放電容量が顕著に低下す
る問題があった。この原因としては、充放電にともなっ
てLiイオンが結晶内で移動することにより、結晶構造
が変形したり部分的破壊が起こるためと考えられる。
However, when this material is used as a positive electrode active material, there has been a problem that the discharge capacity is remarkably reduced when charge and discharge are repeated. It is considered that the cause of this is that the Li structure moves or partially breaks due to the movement of Li ions in the crystal during charge and discharge.

【0004】上記の問題点を解決するために、マンガン
の存在する16dサイトの一部にCr元素、Fe元素、
Co元素、Ni元素等を置換することで、結晶格子を安
定化させる方法が提案されている。しかし、この方法で
得られる正極活物質を用いて電池を作製しても、高温に
おいて電圧印加試験を行うと、LiMn24 を正極活
物質として用いた場合と同様に、マンガンが電気化学的
に電解液に溶解し、放電容量が大幅に低下する問題があ
り、実用化には至っていない。
[0004] In order to solve the above problems, Cr element, Fe element,
There has been proposed a method of stabilizing a crystal lattice by substituting a Co element, a Ni element, or the like. However, even when a battery is manufactured using the positive electrode active material obtained by this method, when a voltage application test is performed at a high temperature, manganese becomes electrochemically similar to the case where LiMn 2 O 4 is used as the positive electrode active material. However, there is a problem in that it is dissolved in an electrolytic solution and the discharge capacity is greatly reduced, and has not been put to practical use.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
を解決し、高い作動電圧でエネルギ密度が高く、サイク
ル寿命が長く、かつ高温で電圧印加しても放電容量の低
下のない非水電解質二次電池を得るための正極活物質、
及び該正極活物質を有する非水電解質二次電池を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and has a high operating voltage, a high energy density, a long cycle life, and a non-aqueous solution which does not decrease in discharge capacity even when voltage is applied at a high temperature. Positive electrode active material for obtaining an electrolyte secondary battery,
And a non-aqueous electrolyte secondary battery having the positive electrode active material.

【0006】[0006]

【課題を解決するための手段】本発明は、Li(x-a)
a Mn(y-b)b4 で表され(ただし、Aは2価金属
イオンとなりうる元素であり、Bは3価金属イオンとな
りうる元素であり、0<x≦1.5、1.8≦y≦2.
2、0<a≦0.3、0≦b≦0.5である。)、元素
Aはリチウムの存在する8aサイトに、元素Bはマンガ
ンの存在する16dサイトに存在するスピネル系リチウ
ムマンガン複合酸化物からなることを特徴とする非水電
解質二次電池用正極活物質、及び、該正極活物質を有す
る非水電解質二次電池、を提供する。
SUMMARY OF THE INVENTION The present invention provides Li (xa) A
is represented by a Mn (yb) B b O 4 ( provided that, A is an element which can be a divalent metal ion, B is an element capable of being a trivalent metal ion, 0 <x ≦ 1.5,1.8 ≦ y ≦ 2.
2, 0 <a ≦ 0.3 and 0 ≦ b ≦ 0.5. A) a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the element A is composed of a spinel lithium manganese composite oxide which is present at an 8a site where lithium is present and the element B is present at a 16d site where manganese is present And a non-aqueous electrolyte secondary battery having the positive electrode active material.

【0007】本発明者らは、上記の高温での電圧印加に
よる放電容量の低下という問題を解決するために検討を
重ねた結果、マンガンの存在する16dサイトの一部に
他の元素を置換するのも有効であるが、リチウムの存在
する8aサイトの一部に他の元素を置換することが特に
有効であることを見出し、本発明に至った。
The inventors of the present invention have conducted various studies to solve the above-mentioned problem of reduction in discharge capacity due to application of a voltage at a high temperature. As a result, a part of the 16d site where manganese is present is replaced with another element. Is effective, but it has been found that it is particularly effective to substitute a part of the 8a site where lithium is present with another element, leading to the present invention.

【0008】本発明で、Li(x-a)a Mn(y-b)b
4 において、Aで表される元素は2価の金属イオンと
なりうる元素であって8aサイトに入りうる元素であ
る。具体的にはZn、Mg、Cd、Cu等の元素が挙げ
られ、特にMg元素及び/又はZn元素が好ましい。こ
れらの元素の2価金属イオンの半径はLi+ のイオン半
径と近いためLi+ と置換しうると考えられる。
In the present invention, Li (xa) A a Mn (yb) B b
In O 4 , the element represented by A is an element that can be a divalent metal ion and can enter the 8a site. Specific examples include elements such as Zn, Mg, Cd, and Cu, and the Mg element and / or the Zn element are particularly preferable. Radius of divalent metal ions of these elements are considered to be replaced with Li + closer an ionic radius of Li +.

【0009】正極活物質として電圧印加された状態のリ
チウムマンガン複合酸化物は、電圧印加されていない状
態からリチウムが一部または全部抜けた状態になってい
る。したがって、前記酸化物はリチウムの存在する層に
おいて正電荷を有する元素の数が著しく減少するため、
電圧印加していない状態よりも不安定となり、特に高温
での電圧印加により性能が劣化すると思われる。本発明
では、前記酸化物におけるリチウムの存在する8aサイ
トに元素Aを一部置換することにより、電圧を印加した
状態でのリチウムの存在する層における正電荷の著しい
減少を抑止でき、そのため電圧印加に対する安定性、特
に高温での電圧印加に対する安定性が向上すると考えら
れる。
The lithium manganese composite oxide to which a voltage is applied as a positive electrode active material is in a state where lithium is partially or completely removed from a state where no voltage is applied. Therefore, the oxide has a significantly reduced number of positively charged elements in the layer where lithium is present,
It is considered that the state becomes more unstable than the state where no voltage is applied, and the performance is deteriorated particularly by the voltage application at a high temperature. In the present invention, by partially substituting the element A at the 8a site where lithium is present in the oxide, it is possible to suppress a significant decrease in the positive charge in the layer where lithium is present when a voltage is applied. It is considered that the stability to the temperature, particularly the stability to the voltage application at a high temperature is improved.

【0010】元素Aがリチウムの存在する8aサイトに
存在することは、粉末X線回折パターンのリートベルト
解析や、元素AのX線吸収スペクトルのEXAFS解析
から確かめることができる。すなわち、リートベルト解
析においては、計算結果の収束性から元素Aが8aサイ
トに存在するかどうか判断できる。またEXAFS解析
においては、第二近接ピークである元素AとMnとの間
の距離を計算し、その値が8aサイトと16dサイトと
の間の距離に近い場合、元素Aが8aサイトに存在する
という結論が得られる。
The existence of the element A at the 8a site where lithium is present can be confirmed by Rietveld analysis of the powder X-ray diffraction pattern and EXAFS analysis of the X-ray absorption spectrum of the element A. That is, in the Rietveld analysis, it can be determined whether or not the element A exists at the 8a site from the convergence of the calculation result. In the EXAFS analysis, the distance between the element A and Mn, which is the second close peak, is calculated, and when the value is close to the distance between the 8a site and the 16d site, the element A exists at the 8a site. Is obtained.

【0011】本発明におけるリチウムマンガン複合酸化
物Li(x-a)a Mn(y-b)b4 において0<a≦
0.3である。aの値が0.3を超えるとLiMn2
4 のスピネル構造を保てなくなるため、該酸化物を正極
活物質として有する二次電池の放電容量が極端に低下す
る。Aで表される元素の存在による高温での電圧印加に
対する安定性の効果を考慮すると、aは0.01以上で
あることが好ましく、0. 01≦a≦0. 15であると
さらに好ましい。
In the lithium manganese composite oxide Li (xa) A a Mn (yb) B b O 4 according to the present invention, 0 <a ≦
0.3. If the value of a exceeds 0.3, LiMn 2 O
Since the spinel structure of No. 4 cannot be maintained, the discharge capacity of a secondary battery having the oxide as a positive electrode active material is extremely reduced. In consideration of the effect of the stability of voltage application at a high temperature due to the presence of the element represented by A, a is preferably 0.01 or more, and more preferably 0.01 ≦ a ≦ 0.15.

【0012】本発明においてBで表される元素は3価の
金属イオンとなりうる元素であり、16dサイトに入り
うる元素である。具体的には、Al、Ti、V、Cr、
Fe、Co、Ni等の元素が挙げられ、特にCr元素、
Fe元素、Co元素及びNi元素からなる群から選ばれ
る1種以上であることが好ましい。Bで表される元素は
含まれなくても本発明の効果は得られるが、Bで表され
る元素がリチウムマンガン複合酸化物に固溶して16d
サイトに入ることにより、MnとOとの結合状態が強固
となり、高温での電圧印加によりMnが電気化学的に電
解液に溶解することを効果的に防止できるので、b>0
であることが好ましい。
In the present invention, the element represented by B is an element which can be a trivalent metal ion and can enter the 16d site. Specifically, Al, Ti, V, Cr,
Elements such as Fe, Co, and Ni are mentioned, and in particular, a Cr element,
It is preferably at least one selected from the group consisting of Fe element, Co element and Ni element. Although the effect of the present invention can be obtained even if the element represented by B is not contained, the element represented by B
By entering the site, the bonding state between Mn and O becomes strong, and Mn can be effectively prevented from electrochemically dissolving in the electrolytic solution by applying a voltage at a high temperature.
It is preferred that

【0013】本発明におけるリチウムマンガン複合酸化
物Li(x-a)a Mn(y-b)b4 において、0≦b
≦0.5である。bが0.5を超えると放電容量が極端
に低下する。より好ましくは0. 1≦b≦0. 3であ
る。
In the lithium manganese composite oxide Li (xa) A a Mn (yb) B b O 4 according to the present invention, 0 ≦ b
≦ 0.5. When b exceeds 0.5, the discharge capacity is extremely reduced. More preferably, 0.1 ≦ b ≦ 0.3.

【0014】上記酸化物において、x及びyの値は、0
<x≦1.5かつ1.8≦y≦2.2である。x及びy
がこの範囲を逸脱すると、LiMn24 のスピネル構
造を保てなくなる。xのより好ましい範囲は0.5≦x
≦1.2であり、yのより好ましい範囲は1.9≦y≦
2.1である。また、本発明においてx>aである。
In the above oxide, the values of x and y are 0
<X ≦ 1.5 and 1.8 ≦ y ≦ 2.2. x and y
Deviates from this range, the spinel structure of LiMn 2 O 4 cannot be maintained. The more preferable range of x is 0.5 ≦ x
≦ 1.2, and a more preferable range of y is 1.9 ≦ y ≦
2.1. In the present invention, x> a.

【0015】本発明におけるリチウムマンガン複合酸化
物Li(x-a)a Mn(y-b)b4 の製造方法は、出
発物質としては該酸化物を構成する金属元素の酸化物、
水酸化物、炭酸塩、硝酸塩、有機酸塩等を使用できる。
焼成雰囲気は酸素濃度が50%以上であることが好まし
く、特に70%以上が好ましい。酸素濃度50%以上で
焼成すると、焼成物を正極活物質として使用する電池は
高温で電圧印加をしても放電容量の低下がきわめて少な
い。この理由は明らかではないが、酸素濃度が高い雰囲
気中で焼成することにより、一般式Li(x-a)a Mn
(y-b)b4におけるAで表される元素、Bで表され
る元素及びMnと酸素との結合が強固になり、高温で電
圧印加してもMnが電解液に溶解することを抑制できる
ためと考えられる。
The method for producing the lithium-manganese composite oxide Li (xa) A a Mn (yb) B b O 4 according to the present invention comprises: as a starting material, an oxide of a metal element constituting the oxide;
Hydroxides, carbonates, nitrates, organic acid salts and the like can be used.
The firing atmosphere preferably has an oxygen concentration of 50% or more, particularly preferably 70% or more. When firing is performed at an oxygen concentration of 50% or more, the battery using the fired product as a positive electrode active material has a very small decrease in discharge capacity even when a voltage is applied at a high temperature. Although the reason for this is not clear, firing in an atmosphere having a high oxygen concentration yields the general formula Li (xa) A a Mn.
(yb) element represented by A in the B b O 4, becomes stronger the bond between the element and Mn and oxygen, represented by B, to suppress the Mn be energized at a high temperature is dissolved in the electrolyte It is considered possible.

【0016】また、焼成温度としては600〜1000
℃が好ましく、特に700〜900℃とすることが好ま
しい。600℃未満であると結晶成長が不充分であり、
充放電容量が小さくなりやすい。1000℃を超える
と、結晶が成長しすぎ、サイクル特性が劣化する傾向が
ある。
The firing temperature is 600 to 1000.
C is preferable, and particularly preferably 700 to 900C. When the temperature is lower than 600 ° C., crystal growth is insufficient,
The charge / discharge capacity tends to be small. When the temperature exceeds 1000 ° C., the crystals grow too much, and the cycle characteristics tend to deteriorate.

【0017】焼成時間は10〜50時間が好ましく、特
に15〜45時間とすることが好ましい。10時間未満
であると結晶成長が不充分で、充放電容量が小さくなり
やすい。50時間を超えると結晶が成長しすぎて、サイ
クル特性が劣化する傾向がある。より好ましくは20〜
40時間である。
The firing time is preferably from 10 to 50 hours, particularly preferably from 15 to 45 hours. If the time is less than 10 hours, the crystal growth is insufficient, and the charge / discharge capacity tends to be small. If the time exceeds 50 hours, the crystals grow too much, and the cycle characteristics tend to deteriorate. More preferably 20 to
40 hours.

【0018】また、均一に結晶成長させるように、適当
な焼成時間経過後に一旦焼成炉から取り出し、焼成物を
粉砕混合してから再度焼成する工程をいれることが好ま
しい。そして、焼成終了後は徐冷することが好ましい。
In order to uniformly grow the crystal, it is preferable to include a step of once taking out a proper firing time from the firing furnace, pulverizing and mixing the fired product, and firing again. Then, it is preferable to gradually cool after completion of the firing.

【0019】本発明の非水電解質二次電池の負極は、リ
チウム又はリチウムを吸蔵、放出できる物質である。リ
チウムを吸蔵、放出できる物質としてはリチウム合金、
黒鉛等の炭素材料等が挙げられる。
The negative electrode of the non-aqueous electrolyte secondary battery of the present invention is lithium or a substance capable of inserting and extracting lithium. Materials that can absorb and release lithium include lithium alloys,
Examples include carbon materials such as graphite.

【0020】また、非水電解質としては、LiBF4
LiPF6 、LiClO4 等のリチウム塩を炭酸エステ
ル等の非水溶媒に溶解した溶液を電解液として使用でき
る。また、高分子物質からなるマトリックスと前記電解
液とを含んでなるポリマー電解質を使用してもよい。
As the non-aqueous electrolyte, LiBF 4 ,
A solution in which a lithium salt such as LiPF 6 or LiClO 4 is dissolved in a non-aqueous solvent such as a carbonate ester can be used as the electrolytic solution. Further, a polymer electrolyte containing a matrix made of a polymer substance and the above-mentioned electrolytic solution may be used.

【0021】[0021]

【実施例】以下に実施例(例1〜4)及び比較例(例5
〜7)により本発明を具体的に説明するが、本発明はこ
れらに限定されない。
The following examples (Examples 1 to 4) and comparative examples (Example 5)
The present invention will be described in detail with reference to (7), but the present invention is not limited to these.

【0022】[例1]Li2 CO3 、MnCO3 、Fe
23 及びZnOをモル比で19:68:5:2となる
ようにボールミルで混合し、酸素70%窒素30%の雰
囲気中で800℃で2時間焼成後、取り出した。この焼
成物を粉砕した後、再び酸素100%の雰囲気にて85
0℃で20時間焼成し、その後24時間かけて室温まで
除冷し、焼成物を乳鉢で粉砕した。これを元素吸光法に
より分析した結果、Li0.95Zn0.05Mn1.7 Fe0.25
4 であった。
Example 1 Li 2 CO 3 , MnCO 3 , Fe
2 O 3 and ZnO were mixed in a ball mill at a molar ratio of 19: 68: 5: 2, fired at 800 ° C. for 2 hours in an atmosphere of 70% oxygen and 30% nitrogen, and then taken out. After pulverizing this calcined product, it is again 85% in an atmosphere of 100% oxygen.
The mixture was baked at 0 ° C. for 20 hours, then cooled to room temperature over 24 hours, and the baked product was ground in a mortar. As a result of analyzing this by an elemental absorption method, Li 0.95 Zn 0.05 Mn 1.7 Fe 0.25
O 4 .

【0023】上記粉砕物をX線回折測定し、得られた回
折パターンのリートベルト解析を行った。ただし解析に
あたりMn、Fe、ZnはX線回折における区別が困難
と考え、一括して元素Mとして扱った。その結果、8a
サイトにおける元素Mの占有率が約5%でありZnの添
加割合にほぼ等しいという計算結果が得られた。また、
この粉砕物のMn、Fe、Zn各元素のX線吸収スペク
トルのEXAFS解析を行ったところ、Mn、Feは1
6dサイトに、Znは8aサイトに存在するという解析
結果が得られた。
The pulverized product was subjected to X-ray diffraction measurement, and the obtained diffraction pattern was subjected to Rietveld analysis. However, in the analysis, Mn, Fe, and Zn were considered to be difficult to distinguish in X-ray diffraction, and were collectively treated as element M. As a result, 8a
The calculation result showed that the occupation ratio of the element M in the site was about 5%, which was almost equal to the addition ratio of Zn. Also,
EXAFS analysis of the X-ray absorption spectrum of each element of Mn, Fe, and Zn of this pulverized product showed that Mn and Fe were 1
The analysis result showed that Zn exists at the 6d site and Zn exists at the 8a site.

【0024】上記粉砕物を正極活物質として85重量部
に、導電材としてケッチェンブラックを10重量部と結
着剤としてポリフッ化ビニリデン樹脂5重量部を加え、
N−メチル−2−ピロリドンに分散させてスラリを形成
した。このスラリを厚さ30μmのアルミニウム箔に均
一に塗布して塗膜を形成し、180℃で乾燥させてから
ローラープレス機にて塗膜の厚さが100μmになるま
で圧延し、その後20mm×20mmの大きさに切断し
て正極とした。
85 parts by weight of the pulverized material as a positive electrode active material, 10 parts by weight of Ketjen black as a conductive material and 5 parts by weight of polyvinylidene fluoride resin as a binder were added.
A slurry was formed by dispersing in N-methyl-2-pyrrolidone. This slurry is uniformly applied to an aluminum foil having a thickness of 30 μm to form a coating film, dried at 180 ° C., and then rolled by a roller press until the thickness of the coating film becomes 100 μm, and then 20 mm × 20 mm To obtain a positive electrode.

【0025】次いで厚さ0.6mmの金属リチウム箔を
25mm×25mmの大きさに切断し、端部にニッケル
リードを圧着して負極とした。負極と正極とを正極の塗
布面が負極と向き合うように対向させ、間にセパレータ
として厚さ25μmのポリプロピレン製のマイクロポー
ラスフィルムを介在させて挟持板ではさみ、充分な電解
液で満たした容器中で電解液に浸して試料とした。この
状態で充放電電源を接続し、60℃のアルゴン雰囲気中
で電圧印加試験を行った。なお、電解液としては、炭酸
エチレンと炭酸プロピレンとの混合溶媒(体積比で1:
1)にLiPF6 を1mol/Lの濃度で溶解した溶液
を用いた。
Next, a metal lithium foil having a thickness of 0.6 mm was cut into a size of 25 mm × 25 mm, and a nickel lead was crimped to an end to obtain a negative electrode. In a container filled with a sufficient amount of electrolyte, a negative electrode and a positive electrode are opposed to each other such that the coated surface of the positive electrode faces the negative electrode, and a microporous film made of polypropylene having a thickness of 25 μm is interposed therebetween as a separator. Then, the sample was immersed in the electrolytic solution. In this state, a charge / discharge power supply was connected, and a voltage application test was performed in an argon atmosphere at 60 ° C. As the electrolytic solution, a mixed solvent of ethylene carbonate and propylene carbonate (volume ratio of 1:
In 1), a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L was used.

【0026】電圧印加試験の条件としては、充電電圧は
4.3Vまで、放電電圧は3.0Vまでとし、1mA/
cm2 の電流密度で定電流で充放電を行い、初期の放電
容量を測定した。次いで再び4.3Vに充電し、そのま
ま電圧4.3Vで1ヶ月印加し続けた。その後、3.0
Vまで放電して放電容量を測定し、初期値に対する放電
容量の維持率を調べた。結果を表1に示す。
The conditions of the voltage application test were as follows: charge voltage up to 4.3 V, discharge voltage up to 3.0 V, and 1 mA /
Charge / discharge was performed at a constant current at a current density of cm 2 , and the initial discharge capacity was measured. Next, the battery was charged again to 4.3 V, and the voltage was continuously applied at 4.3 V for one month. Then 3.0
The discharge capacity was measured by discharging to V, and the maintenance ratio of the discharge capacity with respect to the initial value was examined. Table 1 shows the results.

【0027】[例2]原料の混合比を変更した以外は例
1と同様にしてLi1.0 Zn0.1 Mn1.7 Fe0.24
を得た。この酸化物において、Znは8aサイト、Fe
は16dサイトに存在することを確認した。この酸化物
を正極活物質として用いた以外は例1と同様にして試料
を作製し、例1と同様にして電圧印加試験を行って放電
容量の維持率を調べた。結果を表1に示す。
[0027] [Example 2] except for changing the mixing ratio of the raw materials in the same manner as in Example 1 Li 1.0 Zn 0.1 Mn 1.7 Fe 0.2 O 4
I got In this oxide, Zn has an 8a site, Fe
Was confirmed to be at the 16d site. A sample was prepared in the same manner as in Example 1 except that this oxide was used as a positive electrode active material, and a voltage application test was performed in the same manner as in Example 1 to examine a discharge capacity retention ratio. Table 1 shows the results.

【0028】[例3]原料としてFe23 のかわりに
CoOを使用した以外は例1と同様にしてLi1.0 Zn
0.1 Mn1.7 Co0.24 を得た。この酸化物におい
て、Znは8aサイト、Coは16dサイトに存在する
ことを確認した。この酸化物を正極活物質として用いた
以外は例1と同様にして試料を作製し、例1と同様にし
て電圧印加試験を行って放電容量の維持率を調べた。結
果を表1に示す。
Example 3 Li 1.0 Zn was prepared in the same manner as in Example 1 except that CoO was used instead of Fe 2 O 3 as a raw material.
0.1 Mn 1.7 Co 0.2 O 4 was obtained. In this oxide, it was confirmed that Zn was present at the 8a site and Co was present at the 16d site. A sample was prepared in the same manner as in Example 1 except that this oxide was used as a positive electrode active material, and a voltage application test was performed in the same manner as in Example 1 to examine a discharge capacity retention ratio. Table 1 shows the results.

【0029】[例4]正極活物質の850℃における焼
成の雰囲気を酸素100%雰囲気ではなく空気とした以
外は例1と同様にしてLi1.0 Zn0.05Mn1.7 Fe
0.254 を得た。この酸化物において、Znは8aサイ
ト、Feは16dサイトに存在することを確認した。こ
の酸化物を正極活物質として用いた以外は例1と同様に
して試料を作製し、例1と同様にして電圧印加試験を行
って放電容量の維持率を調べた。結果を表1に示す。
Example 4 Li 1.0 Zn 0.05 Mn 1.7 Fe in the same manner as in Example 1 except that the atmosphere for firing the positive electrode active material at 850 ° C. was not 100% oxygen but air.
0.25 O 4 was obtained. In this oxide, it was confirmed that Zn was present at the 8a site and Fe was present at the 16d site. A sample was prepared in the same manner as in Example 1 except that this oxide was used as a positive electrode active material, and a voltage application test was performed in the same manner as in Example 1 to examine a discharge capacity retention ratio. Table 1 shows the results.

【0030】[例5]原料としてZnOを用いず原料の
混合比を変更し、例1と同様にしてLi1.0Mn1.9
0.14 を得た。この酸化物において、Feは16d
サイトに存在することを確認した。この酸化物を正極活
物質として用いた以外は例1と同様にして試料を作製
し、例1と同様にして電圧印加試験を行って放電容量の
維持率を調べた。結果を表1に示す。
Example 5 Li 1.0 Mn 1.9 F was used in the same manner as in Example 1 except that the mixing ratio of the raw materials was changed without using ZnO as the raw material.
e 0.1 O 4 was obtained. In this oxide, Fe is 16d
Confirmed that it exists on the site. A sample was prepared in the same manner as in Example 1 except that this oxide was used as a positive electrode active material, and a voltage application test was performed in the same manner as in Example 1 to examine a discharge capacity retention ratio. Table 1 shows the results.

【0031】[例6]原料としてFe23 及びZnO
を用いず原料の混合比を変更した以外は例1と同様にし
てLi1.0 Mn2.04 を得た。この酸化物を正極活物
質として用いた以外は例1と同様にして試料を作製し、
例1と同様にして電圧印加試験を行って放電容量の維持
率を調べた。結果を表1に示す。
Example 6 Fe 2 O 3 and ZnO as raw materials
Was used, and Li 1.0 Mn 2.0 O 4 was obtained in the same manner as in Example 1 except that the mixing ratio of the raw materials was changed. A sample was prepared in the same manner as in Example 1 except that this oxide was used as a positive electrode active material,
A voltage application test was performed in the same manner as in Example 1, and the maintenance ratio of the discharge capacity was examined. Table 1 shows the results.

【0032】[例7]Li2 CO3 、MnCO3 、Fe
23 及びZnOを使用し、例1と同様にしてLi0.6
Zn0.4 Mn1.7 Fe0.254 となるように混合比を調
節して合成し、これを正極活物質とした以外は例1と同
様にして試料を作製し、例1と同様にして初期の放電容
量を測定したところ、例1の約55%の容量しか得られ
なかった。そこでこの試料は電圧印加試験を行わず、正
極活物質をX線回折により調べたところ、正方晶スピネ
ルのZnMn24 に基づくと思われるピークがあっ
た。容量の大幅な低下は、この化合物の生成によるもの
と考えられる。
Example 7 Li 2 CO 3 , MnCO 3 , Fe
Using Li 2 O 3 and ZnO, Li 0.6
A sample was prepared in the same manner as in Example 1 except that the mixture was adjusted so that the composition became Zn 0.4 Mn 1.7 Fe 0.25 O 4, and this was used as the positive electrode active material. When the capacity was measured, only about 55% of the capacity of Example 1 was obtained. Therefore, when the positive electrode active material was examined by X-ray diffraction without performing a voltage application test on this sample, it was found that the peak was considered to be based on ZnMn 2 O 4 of the tetragonal spinel. The large drop in capacity is believed to be due to the formation of this compound.

【0033】電圧印加試験終了後、例5及び例6の電池
の負極リチウム上に黒色の堆積物がみられ、特に例6で
は顕著であった。この堆積物を蛍光X線分析で調べた結
果、Mnを含む化合物であることが判明した。これは電
圧印加中に正極活物質から溶解したMnイオンが負極リ
チウム上に析出したものと考えられる。なお、例1〜4
では黒色の堆積物はほとんどみられなかった。
After the completion of the voltage application test, black deposits were found on the negative electrode lithium of the batteries of Examples 5 and 6, and the deposit was particularly remarkable in Example 6. The sediment was examined by X-ray fluorescence analysis and found to be a compound containing Mn. This is considered to be because Mn ions dissolved from the positive electrode active material were deposited on the negative electrode lithium during voltage application. Examples 1-4
Almost no black deposits were found.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明の非水電解質二次電池は、電圧を
印加された状態でも正極活物質が安定であり、また電圧
印加による正極活物質の溶解を防止できるため、高温で
電圧印加しても容量が維持され、きわめて信頼性が高
い。
According to the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material is stable even when a voltage is applied, and the dissolution of the positive electrode active material by applying a voltage can be prevented. Even though the capacity is maintained, it is extremely reliable.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Li(x-a)a Mn(y-b)b4 で表さ
れ(ただし、Aは2価金属イオンとなりうる元素であ
り、Bは3価金属イオンとなりうる元素であり、0<x
≦1.5、1.8≦y≦2.2、0<a≦0.3、0≦
b≦0.5である。)、元素Aはリチウムの存在する8
aサイトに、元素Bはマンガンの存在する16dサイト
に存在するスピネル系リチウムマンガン複合酸化物から
なることを特徴とする非水電解質二次電池用正極活物
質。
(1) Li (xa) A a Mn (yb) B b O 4 (where A is an element which can be a divalent metal ion, B is an element which can be a trivalent metal ion, and 0 <X
≦ 1.5, 1.8 ≦ y ≦ 2.2, 0 <a ≦ 0.3, 0 ≦
b ≦ 0.5. ), Element A is the presence of lithium 8
A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the element B is composed of a spinel-based lithium manganese composite oxide existing at the 16d site where manganese exists at the a site.
【請求項2】aの値が、0.01≦a≦0.15である
請求項1記載の非水電解質二次電池用正極活物質。
2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the value of a is 0.01 ≦ a ≦ 0.15.
【請求項3】Aで表される元素が、Zn元素及び/又は
Mg元素である請求項1又は2記載の非水電解質二次電
池用正極活物質。
3. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the element represented by A is a Zn element and / or a Mg element.
【請求項4】Bで表される元素が、Cr元素、Fe元
素、Co元素及びNi元素からなる群から選ばれる1種
以上である請求項1、2又は3記載の非水電解質二次電
池用正極活物質。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the element represented by B is at least one element selected from the group consisting of Cr element, Fe element, Co element and Ni element. For positive electrode active material.
【請求項5】前記複合酸化物は、酸素濃度が50%以上
の雰囲気で焼成されてなる請求項1、2、3又は4記載
の非水電解質二次電池用正極活物質。
5. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the composite oxide is fired in an atmosphere having an oxygen concentration of 50% or more.
【請求項6】リチウム又はリチウムを吸蔵、放出できる
物質を負極活物質として有し、請求項1、2、3、4又
は5記載の正極活物質を有することを特徴とする非水電
解質二次電池。
6. A non-aqueous electrolyte secondary comprising lithium or a substance capable of occluding and releasing lithium as a negative electrode active material, and comprising the positive electrode active material according to claim 1, 2, 3, 4, or 5. battery.
JP10150127A 1998-05-29 1998-05-29 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery Withdrawn JPH11339805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10150127A JPH11339805A (en) 1998-05-29 1998-05-29 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10150127A JPH11339805A (en) 1998-05-29 1998-05-29 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11339805A true JPH11339805A (en) 1999-12-10

Family

ID=15490081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10150127A Withdrawn JPH11339805A (en) 1998-05-29 1998-05-29 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11339805A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060678A1 (en) * 1999-03-30 2000-10-12 Matsushita Electric Industrial Co., Ltd. Electrode material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the same
JP2002025617A (en) * 2000-07-11 2002-01-25 Sony Corp Nonaqueous electrolyte secondary battery
KR100326449B1 (en) * 2000-01-03 2002-02-28 김순택 Positive active material for lithium secondary battery and method of preparing same
US6814894B2 (en) * 2001-02-16 2004-11-09 Tosoh Corporation Lithium-manganese complex oxide, production method thereof and use thereof
US10003072B2 (en) 2013-12-04 2018-06-19 Nec Corporation Positive electrode active material for secondary battery, method for producing same and secondary battery
JP2020518960A (en) * 2017-10-11 2020-06-25 エルジー・ケム・リミテッド Positive electrode active material, method for producing the same, and lithium secondary battery including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060678A1 (en) * 1999-03-30 2000-10-12 Matsushita Electric Industrial Co., Ltd. Electrode material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the same
US6582853B1 (en) 1999-03-30 2003-06-24 Matsushita Electric Industrial Co., Ltd. Electrode material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the same
KR100326449B1 (en) * 2000-01-03 2002-02-28 김순택 Positive active material for lithium secondary battery and method of preparing same
JP2002025617A (en) * 2000-07-11 2002-01-25 Sony Corp Nonaqueous electrolyte secondary battery
US6814894B2 (en) * 2001-02-16 2004-11-09 Tosoh Corporation Lithium-manganese complex oxide, production method thereof and use thereof
US10003072B2 (en) 2013-12-04 2018-06-19 Nec Corporation Positive electrode active material for secondary battery, method for producing same and secondary battery
JP2020518960A (en) * 2017-10-11 2020-06-25 エルジー・ケム・リミテッド Positive electrode active material, method for producing the same, and lithium secondary battery including the same
US11563211B2 (en) 2017-10-11 2023-01-24 Lg Chem, Ltd. Positive electrode active material, method of preparing the same, and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
US7718319B2 (en) Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4742866B2 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
EP2907180B1 (en) Doped nickelate compounds
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JPWO2004105162A6 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
US12021220B2 (en) Cathode materials for secondary batteries
CN103274472A (en) Active materials for non-aqueous electrolyte battery and non-aqueous electrolyte battery
KR101255853B1 (en) Nonaqueous electrolyte secondary battery
EP1255311A2 (en) Cathode active material and non-aqueous electrolyte cell
JP2020031058A (en) Cathode active material, manufacturing method of the same, and cathode containing them and lithium secondary battery
JP2001273899A (en) Positive electrode material for lithium secondary battery
WO2003088382A1 (en) Non-aqueous secondary cell
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
JP2001243954A (en) Positive electrode material for lithium secondary battery
JPH11339805A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10790508B2 (en) Cobalt-stabilized lithium metal oxide electrodes for lithium batteries
JP2004158348A (en) Anode active substance for non-aqueous electrolyte rechargeable battery
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
KR20220089244A (en) Cathode active material, and lithium ion battery including the same
JP3818753B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery
CN101226996B (en) Negative electrode and rechargeable lithium battery including the same
JPH0982362A (en) Nonaqueous electrolyte secondary battery
EP1134825A2 (en) Non-aqueous electrolyte cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071030