JPH11337009A - Flash type deaerator - Google Patents
Flash type deaeratorInfo
- Publication number
- JPH11337009A JPH11337009A JP14064798A JP14064798A JPH11337009A JP H11337009 A JPH11337009 A JP H11337009A JP 14064798 A JP14064798 A JP 14064798A JP 14064798 A JP14064798 A JP 14064798A JP H11337009 A JPH11337009 A JP H11337009A
- Authority
- JP
- Japan
- Prior art keywords
- deaerator
- pipe
- condensate
- condenser
- degassing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Physical Water Treatments (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、発電プラント中で
発生する復水を減圧によって脱気するためのフラッシュ
式脱気装置に関する。より詳しくは、本発明は、発電プ
ラント中の発電用ガスタービンから排出される燃焼排ガ
スの熱を高温の蒸気として回収し、該蒸気を高圧/中圧
蒸気タービン、更に低圧蒸気タービンに導いて、更なる
電力を発生させるシステムにおいて、低圧蒸気タービン
の後流側で生じる復水中の溶存酸素を、減圧下でのフラ
ッシュによって脱気し、設備の腐食を防止する技術に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flash deaerator for degassing condensate generated in a power plant by reducing pressure. More specifically, the present invention recovers heat of flue gas exhausted from a gas turbine for power generation in a power plant as high-temperature steam, guides the steam to a high-pressure / medium-pressure steam turbine, and further to a low-pressure steam turbine, In a system for generating further electric power, the present invention relates to a technique for degassing dissolved oxygen in condensed water generated on the downstream side of a low-pressure steam turbine by flashing under reduced pressure to prevent corrosion of equipment.
【0002】[0002]
【従来の技術】従来、発電プラント中の脱気装置とし
て、二胴式スプレートレイ式の脱気装置や、一胴式スパ
ージャタイプの脱気装置が用いられている。しかし、こ
れらの脱気装置は、脱気のために、高温の蒸気を必要と
する。このため、排熱回収蒸気発生器(HRSG;heat
recovery steam generator)で生じた高温の蒸気を、配
管によって脱気器に導いている。なお、排熱回収蒸気発
生器は、ガスタービンから排出された高温の燃焼排ガス
の煙道中に設置される蒸気発生手段である。このように
排熱回収蒸気発生器からの蒸気を用いる場合、配管の設
置が複雑になり、脱気に関わる装置全体が大がかりなも
のとなると共に、脱気に要する蒸気の分だけ、プラント
全体の効率が低下する。2. Description of the Related Art Conventionally, as a deaerator in a power plant, a two-body spray tray type deaerator or a one-body sparger type deaerator has been used. However, these degassing devices require hot steam for degassing. Therefore, the exhaust heat recovery steam generator (HRSG; heat)
The high-temperature steam generated by the recovery steam generator) is led to the deaerator by piping. The exhaust heat recovery steam generator is a steam generating means installed in a flue of high-temperature combustion exhaust gas discharged from the gas turbine. In the case of using the steam from the exhaust heat recovery steam generator in this way, the installation of piping becomes complicated, the entire device related to degassing becomes large, and the entire plant is reduced by the amount of steam required for degassing. Efficiency decreases.
【0003】一方、海水等で冷却する直触式復水器を採
用したガス専焼コンバインドプラントでは、復水中の溶
存酸素が、HRSGにおける許容レベルとなり、脱気器
の省略が可能となってきているものの、空冷式復水器を
採用したプラントでは、復水中の溶存酸素量が多く、ま
だ、脱気器を省略することができない状況にある。した
がって、特に、空冷式復水器を採用したプラントにおい
て、脱気器のコンパクト化および低コスト化が求められ
ている。On the other hand, in a gas-fired combined plant employing a direct contact condenser cooled by seawater or the like, the dissolved oxygen in the condensate reaches an allowable level in HRSG, and the deaerator can be omitted. However, in a plant employing an air-cooled condenser, the amount of dissolved oxygen in the condensate is large, and the deaerator cannot be omitted. Therefore, particularly in a plant employing an air-cooled condenser, there is a demand for a compact and low-cost deaerator.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、コン
パクトかつ低コストであって、しかも、排熱回収蒸気発
生器(HRSG)からの高温の蒸気を必要とせず、プラ
ントの効率を向上させることのできるフラッシュ式脱気
装置を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to improve the efficiency of a plant that is compact, low cost, and does not require hot steam from a heat recovery steam generator (HRSG). It is an object of the present invention to provide a flash type deaerator capable of performing the above-mentioned operations.
【0005】[0005]
【課題を解決するための手段】本発明の脱気装置は、脱
気器と、復水器から排出された復水の一部を該脱気器に
導くための第一の管と、上記復水器から排出された復水
の主流である残部を予熱器内を経由して該脱気器に導く
ための第二の管と、該第二の管の途中に設けられた減圧
弁とを備えてなることを特徴とする。According to the present invention, there is provided a deaerator comprising: a deaerator; a first pipe for guiding a portion of the condensate discharged from the condenser to the deaerator; A second pipe for guiding the remainder, which is the main stream of condensate discharged from the condenser, to the deaerator via the inside of the preheater, and a pressure reducing valve provided in the middle of the second pipe. It is characterized by comprising.
【0006】[0006]
【発明の実施の形態】以下、本発明の脱気装置を、図1
に基づいて説明する。図1において、蒸気タービン1か
ら排出された蒸気は、復水器2によって低温(例えば、
44℃)の復水となる。復水は、復水ポンプ3によって
配管内を流通し、分岐点において、復水のごく一部(例
えば、0.55トン/時間)は、第一の管4を通じて、
脱気器5に直接向かい、脱気器のサーマルスリーブ6内
で脱気器に供給される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a deaerator according to the present invention will be described with reference to FIG.
It will be described based on. In FIG. 1, steam discharged from a steam turbine 1 has a low temperature (for example,
(44 ° C). The condensate is circulated in the pipe by the condensate pump 3, and at a branch point, a small part of the condensate (for example, 0.55 ton / hour) passes through the first pipe 4.
It goes directly to the deaerator 5 and is supplied to the deaerator in a thermal sleeve 6 of the deaerator.
【0007】上記分岐点において、復水の大部分(例え
ば、489トン/時間)は、第二の管7を通じて、一
旦、予熱器8に送られ、高温(例えば、138℃)とな
った後、脱気器5に向かい、脱気器5の手前で減圧弁9
によって減圧(例えば、9.9×103 hPaが3.5
×103 hPaに減圧)されて、供給口10から脱気器
5に供給される。なお、減圧弁9から供給口10までを
脱気ゾーンと称する。At the branch point, most of the condensate (for example, 489 tons / hour) is once sent to the preheater 8 through the second pipe 7 and becomes high temperature (for example, 138 ° C.). , Heading to the deaerator 5 and the pressure reducing valve 9 in front of the deaerator 5
(For example, 9.9 × 10 3 hPa is reduced to 3.5).
The pressure is reduced to × 10 3 hPa) and supplied to the deaerator 5 from the supply port 10. Note that the area from the pressure reducing valve 9 to the supply port 10 is referred to as a degassing zone.
【0008】本発明の脱気装置における脱気のメカニズ
ムを説明すると、次の通りである。第一の管4から供給
される低温の復水によって、脱気器5内の蒸気が凝縮
し、その凝縮量と等しい量の気体が、第二の管7を通じ
て供給される高温の復水の蒸発によって供給される。高
温の復水の脱気は、減圧によって脱気ゾーンで生じるフ
ロス流及び気泡流(フラッシュ現象)における乱流混
合、及び、脱気器内への流入の際の乱流混合に伴う脱気
という形で起こる。このように、第一の管4によって供
給される少量の低温の復水と、第二の管7の途中に設け
られる減圧弁9とによって、復水を効果的に脱気するこ
とができる。The mechanism of deaeration in the deaerator of the present invention will be described as follows. The low-temperature condensate supplied from the first pipe 4 condenses the steam in the deaerator 5, and the same amount of gas as the condensed amount is supplied to the high-temperature condensate supplied through the second pipe 7. Supplied by evaporation. Degassing of high-temperature condensate is called turbulent mixing in the floss flow and bubble flow (flash phenomenon) generated in the degassing zone due to depressurization, and degassing due to turbulent mixing when flowing into the deaerator. Happens in shape. As described above, the condensed water can be effectively degassed by the small amount of low-temperature condensed water supplied by the first pipe 4 and the pressure reducing valve 9 provided in the middle of the second pipe 7.
【0009】第一の管4を通じて供給される復水の温度
は、通常、40〜50℃程度であり、第二の管7を通じ
て供給される復水の温度は、通常、120〜150℃程
度である。第二の管7の脱気ゾーン中で発生する気泡の
量は、第一の管4によって供給される低温の復水の量に
よって制御される。第一の管4によって供給される復水
の量は、全復水量の0.01〜1%、好ましくは0.0
5〜0.5%とする。該量が0.01%未満であると、
脱気が不十分となるおそれがある。該量が1%を超える
と、脱気ゾーンにおいて噴霧流(ミスト流)が生じ、脱
気の効果が減少する。[0009] The temperature of the condensate supplied through the first pipe 4 is usually about 40 to 50 ° C, and the temperature of the condensate supplied through the second pipe 7 is usually about 120 to 150 ° C. It is. The amount of bubbles generated in the degassing zone of the second tube 7 is controlled by the amount of cold condensate supplied by the first tube 4. The amount of condensate supplied by the first pipe 4 is 0.01-1% of the total condensate, preferably 0.0
5 to 0.5%. When the amount is less than 0.01%,
Degassing may be insufficient. When the amount exceeds 1%, a spray flow (mist flow) is generated in the degassing zone, and the degassing effect is reduced.
【0010】脱気器内の気体は、サーマルスリーブ6の
孔から排出され、弁11を経由して、系外に排気され
る。脱気器5内に貯留した復水は、その一部が、低圧ボ
イラ供給ポンプ(LP BFP;low pressure boiler
feeding pump)12によって低圧節炭器(LP EC
O)13に供給され、更に低圧蒸発器(LP EVA)
14、低圧過熱器(LP SH;low pressure super h
eater )(図示せず)へと導かれる。脱気器内の復水の
残部は、高圧/中圧ボイラ供給ポンプ(HP/IPBF
P)15によって節炭器(図示せず)に導かれる。The gas in the deaerator is exhausted from the hole of the thermal sleeve 6 and exhausted out of the system via the valve 11. Part of the condensate stored in the deaerator 5 is a low pressure boiler supply pump (LP BFP).
feeding pump) 12 to save low pressure
O) 13 and further low pressure evaporator (LP EVA)
14. Low pressure super heater (LP SH)
eater) (not shown). The remainder of the condensate in the deaerator is supplied to the high / medium pressure boiler supply pump (HP / IPBF).
P) 15 leads to economizers (not shown).
【0011】図2は、図1中の脱気器5のサーマルスリ
ーブ6付近の構造を示す。図2において、復水器からの
第一の管4は、サーマルスリーブ6内に差し込まれ、噴
出口16から復水が供給される。噴出口16の上方に位
置するサーマルスリーブの孔17からは、脱気によって
生じた気体が、弁11を経由して排出される。FIG. 2 shows a structure near the thermal sleeve 6 of the deaerator 5 in FIG. In FIG. 2, a first pipe 4 from a condenser is inserted into a thermal sleeve 6, and condensate is supplied from a jet port 16. Gas generated by degassing is discharged from the hole 17 of the thermal sleeve located above the jet port 16 via the valve 11.
【0012】図3は、復水器2からの第二の管7の途中
に設けられた減圧弁(玉形弁)9付近の構造を示す。復
水は、減圧弁9を通過後、高流速のフロス流となり、そ
の下流で流れが管壁に付着し、その後、気泡流として脱
気器内に流れ込む。フロス流及び気泡流域における気相
体積率は、65%未満である。減圧弁としては、玉形弁
以外に、仕切弁やニードル弁等の弁、またはオリフィス
を用いることができる。また、これらの弁またはオリフ
ィスを、直列に複数設けてもよい。FIG. 3 shows a structure around a pressure reducing valve (ball-shaped valve) 9 provided in the middle of the second pipe 7 from the condenser 2. The condensate becomes a high-speed floss flow after passing through the pressure reducing valve 9, the flow adheres to the pipe wall downstream thereof, and then flows into the deaerator as a bubble flow. The gas phase volume fraction in the floss flow and bubble flow regions is less than 65%. As the pressure reducing valve, a valve such as a gate valve or a needle valve or an orifice can be used in addition to the ball valve. Further, a plurality of these valves or orifices may be provided in series.
【0013】減圧弁9の後流の管の長さ(L)、すなわ
ち、図1における減圧弁9から供給口10までの脱気ゾ
ーンの長さは、第二の管の内径(D)の5倍以上、好ま
しくは7〜20倍、特に好ましくは8〜12倍となるよ
うにする。長さ(L)が内径(D)の5倍未満である
と、脱気が不十分となるおそれがある。例えば、第二の
管の内径が20cmの場合、脱気ゾーンの好ましい長さ
は、200cm程度である。The length (L) of the pipe downstream of the pressure reducing valve 9, that is, the length of the deaeration zone from the pressure reducing valve 9 to the supply port 10 in FIG. 1, is determined by the inner diameter (D) of the second pipe. 5 times or more, preferably 7 to 20 times, particularly preferably 8 to 12 times. If the length (L) is less than 5 times the inner diameter (D), degassing may be insufficient. For example, if the inner diameter of the second tube is 20 cm, the preferred length of the degassing zone is around 200 cm.
【0014】第二の管の内径は、次式によって定まる。
脱気ゾーンが気泡/フロス流となるために、流速を大き
くする必要があるからである。 D=(WVe/2.356(g)1/2 )0.4 (W:流量(kg/s)、Ve:液比体積(m3 /k
g)、g:重力加速度(=9.8m2 /s)、D:管内
径(m)) 例えば、W=500トン/時間、Ve=0.00108
m3 /kgの場合、D=20cmとなる。ただし、一般
的には、第二の管の内径は、上記式による算出値の0.
5〜2倍の範囲内となるように設計すればよい。本発明
の脱気装置によれば、復水中の溶存酸素の量を20pp
bから7ppb以下に、理論的には2ppbに減少させ
ることができる。The inner diameter of the second tube is determined by the following equation.
This is because the flow rate needs to be increased in order for the deaeration zone to be a bubble / floss flow. D = (WVe / 2.356 (g) 1/2 ) 0.4 (W: flow rate (kg / s), Ve: liquid specific volume (m 3 / k)
g), g: gravitational acceleration (= 9.8 m 2 / s), D: pipe inner diameter (m)) For example, W = 500 tons / hour, Ve = 0.00108
In the case of m 3 / kg, D = 20 cm. However, in general, the inner diameter of the second pipe is equal to the calculated value of 0.
What is necessary is just to design so that it may be in the range of 5 to 2 times. According to the deaerator of the present invention, the amount of dissolved oxygen in the condensate is reduced to 20 pp.
b to 7 ppb or less, theoretically 2 ppb.
【0015】[0015]
【発明の効果】本発明のフラッシュ式脱気装置は、簡易
かつ低コストであって、排熱回収蒸気発生器からの高温
の蒸気を必要としないためにプラントの効率を向上させ
ることができる。The flash deaerator of the present invention is simple and inexpensive, and does not require high-temperature steam from the exhaust heat recovery steam generator, thereby improving the efficiency of the plant.
【図1】本発明の脱気装置を説明する模式図である。FIG. 1 is a schematic diagram illustrating a deaerator according to the present invention.
【図2】脱気器のサーマルスリーブ付近の縦断面図であ
る。FIG. 2 is a vertical cross-sectional view of the vicinity of a thermal sleeve of the deaerator.
【図3】減圧弁及びその下流側の水流の状態を表す縦断
面図である。FIG. 3 is a longitudinal sectional view illustrating a state of a pressure reducing valve and a water flow on a downstream side thereof.
1 蒸気タービン 2 復水器 3 復水ポンプ 4 第一の管 5 脱気器 6 サーマルスリーブ 7 第二の管 8 予熱器 9 減圧弁 10 供給口 11 弁 12 低圧ボイラ供給ポンプ(LP BFP) 13 低圧節炭器(LP ECO) 14 低圧蒸発器(LP EVA) 15 高圧/中圧ボイラ供給ポンプ(HP/IP BF
P) 16 噴出口 17 孔DESCRIPTION OF SYMBOLS 1 Steam turbine 2 Condenser 3 Condensate pump 4 First pipe 5 Deaerator 6 Thermal sleeve 7 Second pipe 8 Preheater 9 Pressure reducing valve 10 Supply port 11 Valve 12 Low pressure boiler supply pump (LP BFP) 13 Low pressure Economizer (LP ECO) 14 Low pressure evaporator (LP EVA) 15 High pressure / medium pressure boiler supply pump (HP / IP BF)
P) 16 spouts 17 holes
Claims (1)
一部を該脱気器に導くための第一の管と、上記復水器か
ら排出された復水の主流である残部を予熱器内を経由し
て該脱気器に導くための第二の管と、該第二の管の途中
に設けられた減圧弁とを備えてなることを特徴とするフ
ラッシュ式脱気装置。1. A deaerator, a first pipe for guiding a part of the condensate discharged from the condenser to the deaerator, and a main flow of the condensate discharged from the condenser. A flash type degassing system comprising a second pipe for guiding a certain part to the deaerator through the preheater, and a pressure reducing valve provided in the middle of the second pipe. Qi device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14064798A JPH11337009A (en) | 1998-05-22 | 1998-05-22 | Flash type deaerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14064798A JPH11337009A (en) | 1998-05-22 | 1998-05-22 | Flash type deaerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11337009A true JPH11337009A (en) | 1999-12-10 |
Family
ID=15273529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14064798A Withdrawn JPH11337009A (en) | 1998-05-22 | 1998-05-22 | Flash type deaerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11337009A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102563611A (en) * | 2011-12-13 | 2012-07-11 | 浙江西子联合工程有限公司 | Self-deoxygenation-type waste heat power generating system and power generating method thereof |
CN104279551A (en) * | 2013-07-09 | 2015-01-14 | 北京亿玮坤节能科技有限公司 | Method and system for heating power plant condensate water or supplementing water through blast furnace slag flushing water |
CN104315498A (en) * | 2014-10-21 | 2015-01-28 | 谢其志 | Deaerator exhaust steam waste heat recovery device |
CN105090930A (en) * | 2015-08-20 | 2015-11-25 | 四川德胜集团钒钛有限公司 | Boiler water supply mechanism |
CN105953211A (en) * | 2016-06-22 | 2016-09-21 | 西安热工研究院有限公司 | Steam turbine and boiler united regenerative system and method |
CN107461732A (en) * | 2017-08-07 | 2017-12-12 | 山东胜星化工有限公司 | A kind of efficiently factory's steam exhaust recovering device |
JP2020190196A (en) * | 2020-08-26 | 2020-11-26 | 株式会社キンケン | Relay decompression unit |
-
1998
- 1998-05-22 JP JP14064798A patent/JPH11337009A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102563611A (en) * | 2011-12-13 | 2012-07-11 | 浙江西子联合工程有限公司 | Self-deoxygenation-type waste heat power generating system and power generating method thereof |
CN104279551A (en) * | 2013-07-09 | 2015-01-14 | 北京亿玮坤节能科技有限公司 | Method and system for heating power plant condensate water or supplementing water through blast furnace slag flushing water |
CN104315498A (en) * | 2014-10-21 | 2015-01-28 | 谢其志 | Deaerator exhaust steam waste heat recovery device |
CN104315498B (en) * | 2014-10-21 | 2016-04-20 | 谢其志 | Deaerator exhaust waste-heat recovery device |
CN105090930A (en) * | 2015-08-20 | 2015-11-25 | 四川德胜集团钒钛有限公司 | Boiler water supply mechanism |
CN105953211A (en) * | 2016-06-22 | 2016-09-21 | 西安热工研究院有限公司 | Steam turbine and boiler united regenerative system and method |
CN107461732A (en) * | 2017-08-07 | 2017-12-12 | 山东胜星化工有限公司 | A kind of efficiently factory's steam exhaust recovering device |
JP2020190196A (en) * | 2020-08-26 | 2020-11-26 | 株式会社キンケン | Relay decompression unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4191894B2 (en) | Method of operating gas / steam combined turbine facility and gas / steam combined turbine facility for implementing the method | |
JP2008151503A (en) | Waste heat boiler | |
JPH03124902A (en) | Combined cycle power plant and operating method therefor | |
US9890948B2 (en) | Method for preheating feed water in steam power plants, with process steam outcoupling | |
JPH11337009A (en) | Flash type deaerator | |
RU2152521C1 (en) | Condensate degassing method and device | |
JP2010276304A (en) | Steam generation system | |
JP6394699B2 (en) | Heat pump steam generation system | |
CN104990065B (en) | Boiler feedwater circulation deaerating type of cycles in turbine LP rotors | |
JP2014112018A (en) | Power generation unit, and method of recovering flash tank drain in starting power generation unit | |
CN202284918U (en) | Water refilling and deoxidizing system for turbine condenser | |
JP2006029759A (en) | Steam treatment method of boiler plant and boiler plant | |
JPH11304102A (en) | Natural circulation system vertical gas flow exhaust gas boiler | |
HUE027635T2 (en) | Removal of sulphur from flue gas with possibility of recovering water | |
JP2622096B2 (en) | Combined refuse power plant with controllable feedwater temperature | |
JP7331807B2 (en) | Geothermal power generation system | |
RU2765673C1 (en) | Thermal deaerator | |
JPH03117801A (en) | Exhaust heat recovery boiler | |
JP4114731B2 (en) | Boiler equipment and its water supply treatment method | |
JP2003294202A (en) | Exhaust heat recovery boiler, and method of starting up operation thereof | |
CN201268593Y (en) | Hot water flash evaporation deoxidization apparatus | |
JPH05125907A (en) | Heat insulation device for branch pipe | |
JP3684192B2 (en) | Deaerator | |
RU2198346C2 (en) | Ultrahigh pressure mixing heat exchanger for preheating feed water at atomic power station | |
JPH10176804A (en) | Vertical waste heat recovery boiler and operating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050802 |