JPH11323481A - Steel with fine grained structure, and its production - Google Patents
Steel with fine grained structure, and its productionInfo
- Publication number
- JPH11323481A JPH11323481A JP13297298A JP13297298A JPH11323481A JP H11323481 A JPH11323481 A JP H11323481A JP 13297298 A JP13297298 A JP 13297298A JP 13297298 A JP13297298 A JP 13297298A JP H11323481 A JPH11323481 A JP H11323481A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- temperature
- low
- phase
- transformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、多量の合金元素を
含まず、しかも、延性に優れ、かつ高靱性の高強度鋼、
およびその製造方法に関する。TECHNICAL FIELD The present invention relates to a high-strength steel which does not contain a large amount of alloying elements, has excellent ductility, and has high toughness.
And its manufacturing method.
【0002】[0002]
【従来の技術】鋼の強化方法としては、従来、特定元素
を固溶させる方法、冷間にて加工し加工歪みを与える方
法、熱処理により強度の高い組織に変態させる方法、A
lN(窒化アルミニウム)やTiC(炭化チタン)など
の微細な粒子を析出させる方法、または結晶粒を細かく
する方法などが知られている。これらの強化方法は、そ
れぞれ利点と欠点とを併せ持ち、実用鋼では、これらの
強化方法を組み合わせて必要とする鋼の性能を得てい
る。2. Description of the Related Art Conventionally, methods of strengthening steel include a method of forming a solid solution of a specific element, a method of working in a cold state to give a working strain, a method of transforming into a high-strength structure by heat treatment, and
A method of precipitating fine particles such as 1N (aluminum nitride) and TiC (titanium carbide), a method of making crystal grains fine, and the like are known. These strengthening methods have both advantages and disadvantages, and in practical steels, the required steel performance is obtained by combining these strengthening methods.
【0003】固溶による強化は、鋼の場合、通常は多量
の合金元素、例えばSiなどを含有させることにより得
られる。このため、表面性状の変化や耐食性の劣化な
ど、強度以外の面に添加元素の影響が強く現れる。ま
た、添加する合金元素は鋼より高価なものが多く、この
効果により強度を上昇させようとすれば鋼は必然的に高
価になり、安くて強度があるという鋼本来の特質が失わ
れてしまう。In the case of steel, reinforcement by solid solution is usually obtained by including a large amount of alloying elements, for example, Si. For this reason, the influence of the added element strongly appears on surfaces other than the strength, such as changes in surface properties and deterioration of corrosion resistance. In addition, the alloying elements to be added are often more expensive than steel, and if it is attempted to increase the strength by this effect, the steel is inevitably expensive, and the inherent properties of steel that are cheap and strong are lost. .
【0004】加工歪みを与える方法は、冷間加工などに
より歪みを加えることにより硬くなる効果を利用するも
のであるが、強度上昇とともに延性が急激に低下し、靱
性も大きく劣化して、材料が脆くなる難点があり、その
上形状が限定される。[0004] The method of imparting work strain utilizes the effect of hardening by applying strain by cold working or the like. However, ductility decreases sharply with increase in strength, and toughness also deteriorates significantly, and the material becomes harder. There is a difficulty in becoming brittle, and the shape is further limited.
【0005】鋼の変態を利用する方法としては、一般に
は焼入れ−焼戻し処理が行われる。焼入れでは、900℃
前後の高温から水冷や油冷などにより急冷し、マルテン
サイト相やベーナイト相などの準安定相を形成させる。
これらの極めて硬度の高い相とするには、被処理鋼のサ
イズに基づき、その化学組成を十分に選定する必要があ
るが、この焼入れ−焼戻しの調質によりすぐれた性質の
鋼を得ることができる。しかし、この熱処理のための余
分の工程が必要であり、加熱炉や急冷装置が必要とな
る。そこで、近年は、熱間加工直後にその高温の状態の
まま焼入れをおこなうなど、工程を短縮する手段が種々
講じられている。As a method utilizing the transformation of steel, a quenching-tempering treatment is generally performed. 900 ° C for quenching
It is rapidly cooled by water cooling or oil cooling from a high or low temperature to form a metastable phase such as a martensite phase or a bainite phase.
In order to obtain these extremely hard phases, it is necessary to sufficiently select the chemical composition based on the size of the steel to be treated. However, it is necessary to obtain a steel having excellent properties by this quenching and tempering. it can. However, an extra step for this heat treatment is required, and a heating furnace and a rapid cooling device are required. Therefore, in recent years, various measures have been taken to shorten the steps, for example, quenching is performed in the high temperature state immediately after hot working.
【0006】微細粒子の析出による硬化は、Ti、N
b、Vなど炭化物や窒化物を形成する元素を少量添加
し、これらの元素が固溶状態になっている熱間で加工し
た後、冷却過程にて微細に析出させるものである。少量
の添加元素で大きな硬化が得られる利点があるが、靱性
が劣化する傾向があり、添加量を厳密に調整する必要が
ある。また、上記のような合金元素の添加が必要なこと
から、鋼材の価格も高くなる。[0006] The hardening due to the precipitation of fine particles is performed by Ti, N
A small amount of elements that form carbides or nitrides such as b and V are added, hot-worked in a solid solution state of these elements, and then finely precipitated in a cooling process. Although there is an advantage that a large amount of hardening can be obtained with a small amount of added element, the toughness tends to be deteriorated, and the amount of addition needs to be strictly adjusted. Further, since the addition of alloying elements as described above is required, the price of steel materials also increases.
【0007】結晶粒を細かくすると、一般に延性を低下
させることなく強度、とくに降伏点が向上し、さらに靭
性も向上する。通常の鋼の場合、強度を高くすると靭性
が低下する傾向があるが、結晶粒を微細にすることによ
り、靭性の改善すなわち靭性−脆性遷移温度を低くする
ことができる。結晶粒を微細にすることは、プレス成形
に用いる薄鋼板のように加工性を強く要求される場合と
か、高温でのクリープ強度が重要である場合を除き、通
常は鋼の性能向上に好ましい結果をもたらす。このた
め、上記の各種の鋼の強化方法には、いずれも結晶粒の
微細化が組み合わされて適用される。[0007] When the crystal grains are made finer, the strength, especially the yield point, is generally improved without lowering the ductility, and the toughness is also improved. In the case of ordinary steel, toughness tends to decrease when the strength is increased. However, by making the crystal grains fine, the toughness can be improved, that is, the toughness-brittle transition temperature can be lowered. Refining the crystal grains is usually a favorable result for improving the performance of steel, unless the workability is strongly required as in the case of a thin steel sheet used for press forming or when the creep strength at high temperatures is important. Bring. For this reason, any of the above various methods of strengthening steel is applied in combination with the refinement of crystal grains.
【0008】通常の低炭素のフェライト相を主とする鋼
においては、結晶粒の微細化は、基本的には加工変形を
加えて素材の粗大結晶を破壊し細かくする方法、または
オーステナイト−フェライトの変態を利用し細かくする
方法によっておこなわれる。Alなど非鉄金属では溶湯
中に微細な析出核生成元素を添加し、凝固組織から細粒
化させる方法もあるが、鋼では凝固組織は通常粗大であ
る。しかし、通常は最終製品形状に至るまでに様々な加
工が施されるので、その過程である程度の細粒化が進行
する。[0008] In a steel mainly containing an ordinary low-carbon ferrite phase, the grain refinement is basically performed by a method of applying a working deformation to break a coarse crystal of a material to make it finer, or a method of austenite-ferrite. It is performed by a method of making use of metamorphosis. In the case of non-ferrous metals such as Al, there is a method of adding a fine precipitation nucleation element to the molten metal to make the solidified structure finer, but in steel, the solidified structure is usually coarse. However, various processes are usually performed until the final product shape is reached, and in the process, some degree of grain refinement proceeds.
【0009】鋼板の場合を例にとれば、連続鋳造法によ
る200mm前後の厚さの鋳片は、熱間にて圧延加工され
て、鋼の変形とともに粗大な凝固組織は破壊され圧延変
形組織になる。そして高温であるため、圧延ロールから
離れた直後から圧延変形組織の中に加工の歪みのない新
たな再結晶粒が発生し、これが成長して鋼全体が速やか
に再結晶粒の組織となる。その場合、圧延の加工度が大
きいほど数多くの再結晶粒が発生し、細粒組織になる傾
向がある。また、より大きく厚さを減ずるためにこの圧
延加工がくりかえされると、組織の破壊と再結晶がその
都度おこなわれ、より細粒化が進む。熱間加工は通常オ
ーステナイト相の領域で行われ、加工後の冷却でフェラ
イト相に変態する。この変態の際にもオーステナイト相
の結晶組織の中からフェライト相の結晶粒が発生し、や
がては鋼全体がフェライト粒組織となる。しかし、この
ように単に高温のオーステナイト相から低温のフェライ
ト相に変態する場合、一般にはオーステナイト相におけ
る組織の結晶粒径とほぼ同じ結晶粒径のフェライト相組
織になる。Taking the case of a steel sheet as an example, a slab having a thickness of about 200 mm by a continuous casting method is hot rolled, and a coarse solidified structure is destroyed as the steel is deformed to form a rolled deformed structure. Become. Because of the high temperature, new recrystallized grains without deformation during processing are generated in the rolling deformation structure immediately after leaving the rolling roll, and these grow and the whole steel quickly becomes a recrystallized grain structure. In that case, as the degree of rolling increases, a larger number of recrystallized grains are generated, which tends to result in a fine grain structure. Further, when this rolling process is repeated to further reduce the thickness, the structure is destroyed and recrystallized each time, and the grain size is further reduced. Hot working is usually performed in an austenite phase region, and is transformed into a ferrite phase by cooling after working. During this transformation, crystal grains of the ferrite phase are generated from the crystal structure of the austenite phase, and eventually the entire steel has a ferrite grain structure. However, when the transformation from the high-temperature austenite phase to the low-temperature ferrite phase is performed, the ferrite phase structure generally has the same crystal grain size as that of the structure in the austenite phase.
【0010】上記のように、加工と再結晶の繰り返しに
より、結晶粒を細かくすることができるが、結晶が細か
くなってくると今度は結晶粒どうしが合体し、成長しや
すくなってくる。これは、結晶粒内よりも粒界の持つエ
ネルギーの方が大きく、エネルギーを放出して安定化す
る方向に進むため、結晶粒が細かいほどその傾向が強い
からである。このため、単なる加工と再結晶だけでは、
細粒化に限界がある。これに対し、AlやTi、Nb、
Vなど、窒化物や炭窒化物形成元素を少量添加すること
により微細な析出物を形成させ、それによって結晶粒界
の移動を抑止し、結晶粒の成長を阻止して、鋼の組織を
細粒化する方法がある。実用的な低コストの細粒化鋼は
このような炭窒化物形成元素の添加によって得られてい
る。As described above, the crystal grains can be made finer by repetition of the processing and recrystallization. However, when the crystals become finer, the crystal grains are united to each other and grow more easily. This is because the energy of the grain boundary is larger than that in the crystal grain, and the energy is released and stabilized. Therefore, the smaller the crystal grain, the stronger the tendency. For this reason, mere processing and recrystallization alone
There is a limit to grain refinement. On the other hand, Al, Ti, Nb,
The addition of a small amount of a nitride or carbonitride forming element, such as V, forms fine precipitates, thereby suppressing the movement of grain boundaries, inhibiting the growth of crystal grains, and reducing the structure of the steel. There is a method of granulating. Practical low-cost refined steels have been obtained by the addition of such carbonitride forming elements.
【0011】しかしながら、鋼の性能に対する要求がま
すます厳しくなり、より強度が高くより靭性のすぐれた
ものが要望され、加工熱処理または制御圧延、あるいは
TMCP(Thermo Mechanical Control Process)といわ
れる手法が開発され、実用化されるようになった。これ
は鋼組成を規制し、圧延など熱間加工の過程で加工温度
や加工度を制御して、より高靭性の高強度鋼にしようと
するものである。鋼組成としては、通常、従来の焼入れ
−焼戻しを適用する場合よりも低炭素とし、Ti、N
b、Vなどが添加される。ことにNbの添加はオーステ
ナイト域での再結晶を遅らせる効果があり、より低温で
の圧延と繰り返し圧延による加工歪みの蓄積増大が可能
となるので、好んで用いられる。そして、熱間加工をオ
ーステナイト域だけでなく、オーステナイト+フェライ
トの二相域にまでも拡大して、加工変形を温度変化とと
もに生じる再結晶、析出、変態等の進行に組み合わせ
る。それによって、変態強化および析出強化に細粒化が
加わり、強度が向上し、靭性がよりいっそう改善され
る。[0011] However, the demands on the performance of steel have become more and more severe, and there has been a demand for a steel having higher strength and higher toughness, and a method called thermomechanical heat treatment or controlled rolling or TMCP (Thermo Mechanical Control Process) has been developed. , Has come to practical use. This is intended to regulate the steel composition and to control the working temperature and the working degree in the process of hot working such as rolling to make a high-strength steel with higher toughness. The steel composition is usually lower in carbon than when conventional quenching-tempering is applied, and Ti, N
b, V, etc. are added. In particular, the addition of Nb has an effect of delaying the recrystallization in the austenite region, and can increase the accumulation of processing strain due to rolling at lower temperatures and repeated rolling, so that it is preferably used. Then, the hot working is expanded not only to the austenite region but also to the two-phase region of austenite + ferrite, and the working deformation is combined with the progress of recrystallization, precipitation, transformation and the like which occur with temperature change. Thereby, grain refinement is added to the transformation strengthening and the precipitation strengthening, the strength is improved, and the toughness is further improved.
【0012】このように加工熱処理法では、とくに結晶
粒の微細化による強度上昇と靭性改善の効果が大きい。
結晶粒の微細化は、上記の再結晶を遅らせ微細析出物を
形成する元素の添加により、加工後再結晶前の歪みエネ
ルギーが増加し、そのエネルギー解放に基づく再結晶核
の生成頻度が増して細粒化するとともに、微細析出物の
結晶粒界移動阻止により粒成長が抑止されることによ
る。これは加工温度が通常より低めに設定されることに
より一層助長される。さらに、オーステナイト+フェラ
イトの二相域でも加工することにより、変態のエネルギ
ーも核生成頻度を高め、相界面の粒界移動阻止による粒
成長抑止効果も加わってくると考えられる。As described above, in the thermomechanical treatment, the effect of increasing the strength and improving the toughness due to the refinement of crystal grains is particularly large.
The refinement of the crystal grains increases the strain energy before recrystallization after processing and the frequency of generation of recrystallization nuclei based on the release of energy due to the addition of the element that delays the recrystallization and forms a fine precipitate. This is because the grains are refined and grain growth is suppressed by inhibiting the movement of fine precipitates at the grain boundaries. This is further promoted by setting the processing temperature lower than usual. Further, it is considered that by working in the two-phase region of austenite + ferrite, the energy of transformation also increases the nucleation frequency, and the effect of suppressing grain growth by inhibiting the movement of grain boundaries at the phase interface is considered to be added.
【0013】加工熱処理は、素材の加熱後の熱間加工の
過程にて、温度低下に伴う金属組織的変化に、加工を組
み合わせたものであるが、その加工の途中で急冷や再加
熱がおこなわれることもある。また、冷却して得られた
変態組織を冷間または温間にて加工し、昇温して変態
(逆変態)させ、結晶粒を微細化する方法も高合金鋼で
実施されている。これは、現在のところ最も結晶粒が微
細化された例であるが、高合金鋼の準安定オーステナイ
ト鋼にて、室温で加工し加工誘起変態させてマルテンサ
イト相とし、これを加熱してオーステナイト相に変態さ
せるもので、超微細粒組織が得られている。[0013] The thermomechanical heat treatment is a combination of metallographic change due to a temperature drop in the course of hot working after heating of a material and working, and rapid cooling and reheating are performed during the working. It may be. In addition, a method of processing a transformed structure obtained by cooling in a cold or warm state, raising the temperature to transform (reverse transformation), and refining crystal grains has also been practiced with high alloy steel. This is an example in which the crystal grains are most refined at present.However, in a metastable austenitic steel of high alloy steel, it is processed at room temperature and is subjected to a work-induced transformation to form a martensite phase, which is heated to austenite. It transforms into a phase, and an ultrafine grain structure is obtained.
【0014】上記のように、鋼の強度向上とその性能向
上のため、結晶粒微細化が種々検討され、実用的にもそ
の改善効果が認められてきた。しかし、超微細粒の鋼に
ついては、高合金鋼においてはある程度実現されている
ものの、低炭素鋼ないしは低合金鋼においては、まだ十
分なものは得られていない。As described above, various refinements of crystal grains have been studied to improve the strength and performance of steel, and the effect of improvement has been recognized in practical use. However, although ultra-fine-grained steel has been realized to some extent in high-alloy steel, it has not yet been obtained in low-carbon steel or low-alloy steel.
【0015】[0015]
【発明が解決しようとする課題】前記のように、低炭素
鋼または低合金鋼においても、結晶粒をさらに微細にす
れば、より性能のすぐれた低コストの鋼が得られること
が期待される。本発明の目的は、低炭素鋼または低炭素
低合金鋼であって、平均結晶粒径が極めて小さく、強度
と靱性および延性がすぐれた鋼、およびその鋼の製造方
法を提供することにある。As described above, even in a low carbon steel or a low alloy steel, if the crystal grains are further refined, it is expected that a steel with better performance and lower cost can be obtained. . An object of the present invention is to provide a low carbon steel or a low carbon low alloy steel having an extremely small average crystal grain size and excellent strength, toughness and ductility, and a method for producing the steel.
【0016】[0016]
【課題を解決するための手段】結晶粒を微細にすれば、
鋼の強度を上昇させるばかりでなく、靱性や延性を同時
に向上させることができる。すなわち他の鋼の強化方法
のように、強度の上昇にともなって靱性が劣化したり、
加工性が悪くなるという問題点がなく、鋼の強化方法と
しては理想的なものと考えられる。Means for Solving the Problems By making the crystal grains fine,
Not only can the strength of the steel be increased, but also the toughness and ductility can be improved at the same time. That is, like other steel strengthening methods, with the increase in strength, toughness deteriorates,
There is no problem of poor workability, and it is considered to be an ideal method for strengthening steel.
【0017】低炭素鋼ないしは低炭素低合金鋼の結晶粒
微細化方法として、加工熱処理方法は種々検討され、微
細結晶組織の鋼が得られている。これらの方法は、前述
のように加工により素地組織ないしは結晶粒を破砕細分
化し、その加工組織から発生した再結晶粒の成長をでき
るだけ抑止し、細粒鋼を得るもので、この手法による限
界に近いところまで微細粒化が実現されていて、これ以
上の細粒化は困難であると思われる。加工のままの組織
では歪みが多すぎ、靱性も延性も極めて劣った状態にあ
り、これらを回復するには必ず歪みを解放しなければな
らず、歪みの解放の過程で、再結晶と粒成長が進むため
である。また、高合金鋼におけるような逆変態は、低炭
素低合金鋼の場合、冷間での加工度を如何に大きくして
もフェライト相以外のものにはならず、これを加熱する
と、フェライト相の温度域で加工歪みが解放され、再結
晶核生成、粒成長が進んでしまい、逆変態する時にはす
でにかなり成長した粒になっていて、これも結晶粒微細
化には利用できない。As a method for refining crystal grains of a low-carbon steel or a low-carbon low-alloy steel, various thermomechanical treatment methods have been studied, and a steel having a fine crystal structure has been obtained. As described above, these methods crush and subdivide the base structure or crystal grains by processing, suppress the growth of recrystallized grains generated from the processed structure as much as possible, and obtain fine-grained steel. Fine graining has been realized to a close place, and further fine graining seems to be difficult. In the as-processed structure, the strain is too high, the toughness and the ductility are extremely poor, and the strain must be released in order to recover them.In the process of strain release, recrystallization and grain growth Is to advance. In addition, in the case of low-carbon low-alloy steel, reverse transformation such as in high-alloy steel does not become anything other than the ferrite phase even if the degree of cold working is increased. In the above temperature range, the processing strain is released, the recrystallization nucleus generation and the grain growth progress, and when the reverse transformation takes place, the grains have already grown considerably and cannot be used for grain refinement.
【0018】そこで、本発明者らは、低炭素鋼または低
炭素低合金鋼の微細粒化をより一層促進させる手段とし
て、加工による破砕と粒成長抑止の手法に変態を組み合
わせる方法を検討した。Therefore, the present inventors have studied a method of combining transformation with a method of crushing by processing and suppressing grain growth as a means for further promoting the fine graining of low carbon steel or low carbon low alloy steel.
【0019】Ac3点以上に加熱されオーステナイト相と
した鋼を急冷すると、通常、Ar3点以下に過冷された状
態のオーステナイト相となり、その温度に保持するか、
またはさらに冷却を続ければ変態して、鋼組成やその際
の冷却条件によって、フェライト相、マルテンサイト相
あるいはベイナイト相となる。この変態直前の過冷状態
にて加工を加えると、フェライトを主体とする組織に急
速に変化する。これは加工により変態が誘起されるため
と考えられる。その際に、加工温度および加工率を変え
ることにより、歪みが解放されたフェライト相で、しか
も極めて結晶粒径の小さい組織が得られることを見出し
たのである。When the steel which has been heated to the Ac 3 point or more and is in the austenite phase is rapidly cooled, the steel usually becomes an austenite phase in a state of being supercooled to the Ar 3 point or less.
Or, if the cooling is further continued, it transforms to a ferrite phase, a martensite phase or a bainite phase depending on the steel composition and the cooling conditions at that time. When processing is performed in a supercooled state immediately before the transformation, the structure rapidly changes to a structure mainly composed of ferrite. It is considered that the transformation induces the transformation. At that time, they found that by changing the processing temperature and the processing rate, it was possible to obtain a ferrite phase in which strain was released and a structure having an extremely small crystal grain size.
【0020】この細粒のフェライト相を主体とする組織
が得られる条件をさらに調査した結果、加工を加える温
度が高すぎると、結晶粒が微細にならず、変形量ないし
は圧下率を十分大きくしなければ、フェライト相の比率
が低下して、マルテンサイト相やベイナイト相が増加す
ることがわかった。さらに加工後、できるだけ速く冷却
しなければ結晶粒が大きくなることも明らかになった。
すなわち、低温相への変態直前に強加工を加えることに
より、フェライトの変態再結晶核が急速かつ高密度に生
成して変態が急速に進み、それと同時にその加工歪みが
解放されると推定された。この場合、加工による変形が
大きいほど、それによって誘起される変態にともなう加
工歪みの放出が、十分におこなわれると考えられるので
ある。加工度が不十分であれば、結晶粒の細粒化が不十
分になるばかりでなく、歪みの解放も不十分となってし
まう。そして、加工により誘起された変態によって極め
て微細なフェライト結晶組織となるが、変態後はできる
だけ急冷しなければ、変態後にも粒成長が進行すること
もわかった。As a result of further investigation on the conditions for obtaining a structure mainly composed of the fine-grained ferrite phase, it was found that if the temperature at which the working was applied was too high, the crystal grains would not be fine, and the deformation or the rolling reduction would be sufficiently large. If not, it was found that the ratio of the ferrite phase decreased and the martensite phase and the bainite phase increased. Furthermore, it became clear that the crystal grains would become large unless cooled as quickly as possible after processing.
In other words, it was presumed that by performing strong working immediately before transformation to the low-temperature phase, transformation recrystallization nuclei of ferrite were rapidly and densely formed and transformation proceeded rapidly, and at the same time, the processing strain was released. . In this case, it is considered that the greater the deformation due to the working, the more sufficiently the working strain accompanying the transformation induced by the working is released. If the degree of work is insufficient, not only the grain refinement becomes insufficient, but also the strain release becomes insufficient. Then, the transformation induced by the working resulted in an extremely fine ferrite crystal structure, but it was also found that the grain growth proceeds even after the transformation unless cooling as rapidly as possible after the transformation.
【0021】このようにして、鋼の化学組成、冷却条
件、加工の温度範囲、加工度、等の限界条件を明確に
し、本発明を完成させた。本発明の要旨は次のとおりで
ある。Thus, the present invention was completed by clarifying the chemical composition of steel, cooling conditions, working temperature range, working degree, and other critical conditions. The gist of the present invention is as follows.
【0022】(1)重量%にて、C:0.05〜0.3%とMn:
0.5〜3%を含み、残部が実質的にFeからなり、オース
テナイトの低温変態によって生成したフェライトが80%
以上を占め、かつ平均結晶粒径が3μm以下である金属組
織を有することを特徴とする鋼。(1) In terms of% by weight, C: 0.05 to 0.3% and Mn:
0.5 to 3%, with the balance being substantially Fe, 80% of ferrite generated by low-temperature transformation of austenite
A steel characterized by having a metal structure occupying the above and having an average crystal grain size of 3 μm or less.
【0023】(2)重量%にて、C:0.05〜0.3%、Mn:
0.5〜3%、Si:0.01〜0.3%、Nb:0〜0.05%、T
i:0〜0.05%、V:0〜0.08%、Cr:0〜1%およ
びMo:0〜1%を含み、残部が実質的にFeからな
り、オーステナイトの低温変態によって生成したフェラ
イトが80%以上を占め、かつ平均結晶粒径が3μm以下で
ある金属組織を有することを特徴とする鋼。(2) In weight%, C: 0.05-0.3%, Mn:
0.5-3%, Si: 0.01-0.3%, Nb: 0-0.05%, T
i: 0 to 0.05%, V: 0 to 0.08%, Cr: 0 to 1%, and Mo: 0 to 1%, with the balance being substantially Fe and 80% ferrite formed by low-temperature transformation of austenite. A steel characterized by having a metal structure occupying the above and having an average crystal grain size of 3 μm or less.
【0024】(3)上記(1)または(2)の組成を持つ鋼をAc
3点以上の温度から、5℃/s以上100℃/s未満の冷却速
度にて冷却する過程において、フェライト相、ベイナイ
ト相、またはマルテンサイト相のような低温相が析出を
開始する温度より高く、かつ650℃以下の温度域で断面
積減少率にて60%以上の加工をおこない、その後40℃/
s以上の冷却速度にて350℃以下の温度にまで冷却するこ
とを特徴とする上記(1)または(2)に記載の鋼の製造方
法。(3) The steel having the composition of the above (1) or (2) is
In the process of cooling at a cooling rate of 5 ° C / s or more and less than 100 ° C / s from a temperature of 3 points or more, a temperature higher than a temperature at which a low-temperature phase such as a ferrite phase, a bainite phase, or a martensite phase starts to precipitate. And at a cross-sectional area reduction rate of 60% or more in a temperature range of 650 ° C or less, and then 40 ° C /
The method for producing steel according to the above (1) or (2), wherein the steel is cooled to a temperature of 350 ° C. or less at a cooling rate of s or more.
【0025】なお、ここでオーステナイトの低温変態に
よって生成したフェライトというのは、結晶組織が微細
なため通常の光学顕微鏡観察では観察が困難であるが、
鋼から採取した薄膜試料により、透過型電子顕微鏡で直
接観察して見出すことのできる歪みの少ない結晶粒から
なるフェライト組織のことである。上記(1)および(2)の
本発明の鋼は、この組織が断面観察の面積率で80%以上
を占めるものである。The ferrite formed by low-temperature transformation of austenite is difficult to observe by ordinary optical microscopy because of its fine crystal structure.
It is a ferrite structure composed of crystal grains with low distortion that can be found by directly observing with a transmission electron microscope using a thin film sample collected from steel. In the steels of the present invention (1) and (2), this structure accounts for 80% or more of the area ratio of the cross-section observation.
【0026】[0026]
【発明の実施の形態】本発明において、鋼の化学組成を
限定した理由は次のとおりである。なお、成分元素の含
有量はすべて重量%である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the chemical composition of steel in the present invention are as follows. In addition, all the contents of the component elements are% by weight.
【0027】Cは、本発明鋼の基本成分である。その含
有量が0.05%より少ないと、Ac3点以上のオーステナイ
ト相とした後に、急冷しても高温で変態を開始してしま
うので、低温の過冷された状態のオーステナイト相での
強加工が不可能となり、微細粒の鋼が得られなくなる。
一方、Cが0.3%を超えると、変形抵抗が増大し、低温
での強加工が困難となってくる。したがってCの含有量
は0.05〜0.3%の範囲とする。C is a basic component of the steel of the present invention. If the content is less than 0.05%, after transformation to an austenite phase of 3 points or more of Ac, transformation will start at high temperature even if quenched, so that strong working in low temperature supercooled austenite phase is required. It becomes impossible and fine-grained steel cannot be obtained.
On the other hand, if C exceeds 0.3%, the deformation resistance increases, and it becomes difficult to perform strong working at low temperatures. Therefore, the content of C is in the range of 0.05 to 0.3%.
【0028】Mnは、Ac3点以上のオーステナイト相か
ら急冷する際、フェライト相、ベイナイト相、またはマ
ルテンサイト相等の低温相が析出を開始する温度を十分
低下させるために必要である。すなわち、Mnは、低温
の過冷された状態のオーステナイト相を安定して実現さ
せるために重要である。その量が少ない場合は過冷状態
のオーステナイト相の安定化が困難になるので、0.5%
以上の含有が必要である。しかし、Mnの含有量が3%
を超えると、変形抵抗が増大して強加工が困難となり、
その上得られた鋼は極めて発錆しやすくなる。従って、
Mnの含有量は0.5〜3%に限定する。Mn is necessary for sufficiently lowering the temperature at which a low-temperature phase such as a ferrite phase, a bainite phase, or a martensite phase starts to precipitate when quenched from an austenite phase having three or more Ac points. That is, Mn is important for stably realizing a low-temperature supercooled austenite phase. If the amount is small, it becomes difficult to stabilize the supercooled austenite phase, so 0.5%
The above content is necessary. However, the content of Mn is 3%
If it exceeds, deformation resistance increases and strong machining becomes difficult,
Moreover, the steel obtained is very prone to rust. Therefore,
The content of Mn is limited to 0.5-3%.
【0029】本発明の一つは、上記のCおよびMn以外
に特殊な合金成分を含まない、いわゆる低炭素鋼であ
る。即ち、CおよびMn以外の残部は実質的にFeであ
る。なお「実質的にFeである」というのは、鋼の製造
上、不可避的に混入する不純物の存在は許される、とい
う意味である。不可避的不純物としては、P、S、O、
Nなどがあるが、これらはできるだけ少ないことが望ま
しい。One of the present invention is a so-called low carbon steel which does not contain any special alloy components other than the above-mentioned C and Mn. That is, the balance other than C and Mn is substantially Fe. The phrase “substantially Fe” means that the presence of impurities that are inevitably mixed in the production of steel is allowed. Inevitable impurities include P, S, O,
There are N and the like, but it is desirable that these are as small as possible.
【0030】なお、Al(アルミニウム)は、細粒組織
を得る目的には特には必要ないが、鋳造の際、欠陥のな
い健全な鋳片を得るための溶鋼の脱酸に必須の元素であ
る。上記の不可避不純物の中には、十分な溶鋼脱酸をお
こなうために添加したAlの残留分(0.01%以上が望ま
しい)も含まれる。ただし、Alの多量の添加は効果が
飽和するため無意味であり、鋼の価格を上げることにな
るので、多くても0.1%以下に止めておくのがよい。Al (aluminum) is not particularly necessary for the purpose of obtaining a fine grain structure, but is an essential element for deoxidizing molten steel in order to obtain a sound slab without defects during casting. . Among the above unavoidable impurities, there is also included a residual amount of Al (preferably 0.01% or more) added for performing sufficient deoxidation of molten steel. However, the addition of a large amount of Al is meaningless because the effect is saturated and increases the price of steel. Therefore, it is better to keep the content at most 0.1% or less.
【0031】本発明鋼のもう一つは、CおよびMnの外
に、超微細な細粒組織を安定して得るのに寄与するS
i、Nb、Ti、V、CrおよびMoの各元素を一種以
上、以下に示す範囲で含有する、いわゆる低炭素低合金
鋼である。なお、これらの元素の含有量を0〜X%とい
うように表記したが、それは、その元素が積極的に添加
されなくてもよく、添加される場合にはその含有量の上
限をX%にするという意味である。Another one of the steels according to the present invention is that, in addition to C and Mn, S contributes to stably obtain an ultrafine grain structure.
This is a so-called low-carbon low-alloy steel containing at least one element of i, Nb, Ti, V, Cr and Mo in the following ranges. Although the contents of these elements are described as 0 to X%, it is not necessary to add the elements positively, and when they are added, the upper limit of the contents is set to X%. It means to do.
【0032】Siを含有させるとC量が比較的少ない場
合でも安定して微細粒を得ることができる。その効果は
0.01%以下では、ほとんど認められないので、添加する
場合はその含有量を0.01%以上とするのがよい。一方、
Siの含有量が0.3%を超えると、変形抵抗が増して強
加工が困難になるので、添加する場合でも、その含有の
上限は0.3%とする。When Si is contained, fine grains can be stably obtained even when the amount of C is relatively small. The effect is
If it is less than 0.01%, it is hardly recognized. Therefore, when it is added, its content is preferably made 0.01% or more. on the other hand,
If the content of Si exceeds 0.3%, the deformation resistance increases and it becomes difficult to perform strong working. Therefore, even when Si is added, the upper limit of the content is set to 0.3%.
【0033】NbまたはTiを含有させると、低温相が
析出を開始する温度から多少離れた高めの温度で加工を
加えても、十分安定して微細組織にすることができる。
これは微細な炭窒化物の析出により変態後の結晶粒の成
長が抑止されるためと考えられる。この効果を十分得る
ためには、Nbでは0.005%以上、Tiでは0.005%以上
含有させることが望ましい。ただし、これらの元素が過
剰になると靱性が低下してくるので、Nbでは0.05%以
下、Tiも0.05%以下とすべきである。すなわち含有さ
せる場合、Nbは0.005〜0.05%、Tiは0.005〜0.05%
の範囲とするのがよい。When Nb or Ti is contained, the microstructure can be sufficiently stabilized to obtain a fine structure even when working is performed at a temperature slightly higher than the temperature at which the low-temperature phase starts to precipitate.
This is presumably because the growth of crystal grains after transformation is suppressed by the precipitation of fine carbonitrides. In order to sufficiently obtain this effect, it is desirable that the content of Nb be 0.005% or more and that of Ti be 0.005% or more. However, if these elements become excessive, the toughness decreases, so that Nb should be 0.05% or less and Ti should be 0.05% or less. That is, when it is contained, Nb is 0.005 to 0.05% and Ti is 0.005 to 0.05%.
It is good to be in the range of.
【0034】V、CrおよびMoも含有させることによ
り、微細粒組織を安定して得ることができるようにな
る。これらの元素は炭化物を形成し、その析出物は、N
bまたはTiの場合と同様結晶粒の成長を抑止する作用
があるが、その効果は大きくない。それよりは、これら
の元素は変態を遅らせる作用が強く、低温相の析出をよ
り低温にするとともに、その析出時期を遅くし、過冷状
態の低温でのオーステナイトとなる範囲を拡大できるの
で、微細粒組織の生成を容易にする効果がある。このよ
うな効果を得るためには、それぞれVでは0.008%以
上、Crでは0.05%以上、Moでは0.05%以上含有して
いることが望ましい。しかし、むやみに含有量を多くし
ても、その効果は飽和し、いたずらにコストを増すだけ
となるので、Vでは0.08%以下、CrとMoではそれぞ
れ1%以下とするのがよい。すなわち含有させる場合の
含有量は、Vでは0.008〜0.08%、Crでは0.05〜1%、
Moでは0.05〜1%とするのが望ましい。By including V, Cr and Mo, a fine grain structure can be obtained stably. These elements form carbides and the precipitates are N
As in the case of b or Ti, there is an action of suppressing the growth of crystal grains, but the effect is not so great. Rather, these elements have a strong effect of delaying the transformation, lowering the precipitation of the low-temperature phase at a lower temperature, delaying the precipitation time, and expanding the range of austenite at a low temperature in a supercooled state. This has the effect of facilitating the generation of a grain structure. In order to obtain such an effect, it is preferable that V contains 0.008% or more, Cr contains 0.05% or more, and Mo contains 0.05% or more. However, even if the content is excessively increased, the effect is saturated and the cost is unnecessarily increased. Therefore, it is preferable that the content is 0.08% or less for V and 1% or less for Cr and Mo, respectively. That is, the content in the case of containing V is 0.008 to 0.08% for V, 0.05 to 1% for Cr,
Mo is preferably set to 0.05 to 1%.
【0035】本発明鋼は、上記の組成を有し、その金属
組織は、オーステナイトの低温変態によって生成したフ
ェライト(以下、低温生成フェライトと記す)が全体の
80%以上を占め、かつその平均結晶粒径が3μm以下の
鋼である。低温生成フェライトとは、前記のように、薄
膜試料により、透過型電子顕微鏡の手法で直接観察でき
るものであるが、転位密度が小さく、明らかに変態によ
り生じた再結晶粒を言う。The steel of the present invention has the above composition, and the metal structure of the steel is ferrite generated by low-temperature transformation of austenite (hereinafter referred to as low-temperature generated ferrite) as a whole.
The steel occupies 80% or more and has an average crystal grain size of 3 μm or less. As described above, the low-temperature-generated ferrite, which can be directly observed by a transmission electron microscope technique using a thin film sample, has a low dislocation density and is clearly a recrystallized grain formed by transformation.
【0036】フェライト結晶粒には、高温生成による粗
大な粒、加工により転位網に取り囲まれた粒、冷間の加
工組織から発生した再結晶粒などがあるが、3μm以下
の歪みの少ない結晶粒が集まった状態で、透過型の電子
顕微鏡にて観察できるのは低温生成フェライトだけであ
る。この低温生成フェライト組織が全体の80%を下回る
場合は、靱性のすぐれた鋼にはならない。これは低温生
成フェライト組織以外の部分が、マルテンサイト相やベ
イナイト相となり、強度は高くても靱性の劣る鋼となる
か、またはフェライト相でも歪みの多い加工組織の鋼
や、粗大結晶粒のフェライト相で強度と靱性が劣る鋼と
なるからである。また、平均結晶粒径が3μmを超える
と、これもまた強度および靱性が劣った鋼となる。Ferrite crystal grains include coarse grains formed by high temperature generation, grains surrounded by dislocation networks by processing, and recrystallized grains generated from a cold worked structure. In a state in which the ferrite is gathered, only ferrite produced at a low temperature can be observed with a transmission electron microscope. If the low-temperature formed ferrite structure is less than 80% of the whole, the steel does not have excellent toughness. This is because the part other than the low-temperature generated ferrite structure becomes a martensite phase or a bainite phase, resulting in steel with high strength but poor toughness. This is because the steel phase is inferior in strength and toughness. If the average crystal grain size exceeds 3 μm, this also results in a steel having poor strength and toughness.
【0037】本発明の鋼の製造方法は、上記の組成範囲
の鋼素材を用い、Ac3点以上の温度から5〜100℃/s
の冷却速度にて、650℃以下でフェライト相、ベイナイ
ト相、またはマルテンサイト相等の低温相が析出を開始
する温度以上の温度範囲に冷却し、断面積の減少率が60
%以上の強加工を施す。The method for producing the steel of the present invention uses a steel material of the above composition range, 5 to 100 ° C. from Ac 3 point or more temperature / s
At a cooling rate of 650 ° C or lower, the temperature is reduced to a temperature range not lower than the temperature at which a low-temperature phase such as a ferrite phase, a bainite phase, or a martensite phase starts to precipitate.
% Strong processing.
【0038】Ac3点以上の温度からの冷却速度を5〜10
0℃/sとするのは、5℃/sを下回る冷却速度の場
合、過冷のオーステナイト状態を650℃以下にまで持ち
来すことが困難であり、フェライト結晶粒が粗大化する
からである。また、100℃/sを超える急激な冷却速度
とすると、被冷却材の温度分布が悪くなり、場所による
不均一を招くことに加え、低温相が析出する温度以下に
まで低下してしまうおそれがある。Ac The cooling rate from a temperature of 3 points or more is 5 to 10
The reason why the temperature is set to 0 ° C./s is that when the cooling rate is lower than 5 ° C./s, it is difficult to bring the supercooled austenite state to 650 ° C. or less, and the ferrite grains become coarse. . Further, when the cooling rate is abruptly higher than 100 ° C./s, the temperature distribution of the material to be cooled is deteriorated, causing nonuniformity depending on a place, and may be lowered to a temperature at which a low-temperature phase is precipitated. is there.
【0039】この冷却開始以前の素材は、常温から加熱
炉にてAc3点以上の温度に加熱されたものでもよいが、
素材を加熱し、粗鍛造、粗圧延など所要形状にAc3点以
上の温度にて加工された状態であってもよく、その前歴
は問わない。The material before the start of cooling may be a material heated from room temperature to a temperature of three or more Ac in a heating furnace.
The material may be heated and processed into a required shape such as rough forging or rough rolling at a temperature of three or more Ac, regardless of its prior history.
【0040】650℃以下にまで冷却するのは、650℃を上
回る温度にて加工を加えると、加工変形直後の再結晶に
より十分な微細組織が得られなくなるからである。ま
た、変態が始まってしまってから加工がおこなわれる
と、均質な微細組織が得られなくなり、加工歪みが残存
してしまうばかりでなく、変形抵抗が増加するので強加
工を加えることが困難になる。したがって加工は、650
℃以下でかつ低温相が析出するまでの温度範囲において
行わなければならない。そして、その場合の加工は、断
面積の減少率にて60%以上であることが必要である。60
%を下回る変形量では、変形が不十分で十分な微細粒組
織とはならず、しかも、変態による加工歪みの放出が不
十分になる傾向がある。板圧延の場合は幅方向の変形が
ほとんど無いので、断面積の減少率は板厚減少率と実質
的に同じである。この加工度は、60%以上であればいく
ら大きくても同様な効果が得られるが、変形に要するエ
ネルギーの増大や温度降下のため、通常90%程度までが
限度である。The reason for cooling to 650 ° C. or less is that if working is performed at a temperature exceeding 650 ° C., a sufficient fine structure cannot be obtained due to recrystallization immediately after working deformation. In addition, if processing is performed after the transformation has begun, a uniform fine structure cannot be obtained, and not only processing strain remains, but also deformation resistance increases, so that it becomes difficult to apply strong processing. . Therefore, processing is 650
It must be carried out in a temperature range of not more than 0 ° C. and until a low-temperature phase is precipitated. In such a case, it is necessary that the rate of reduction in the cross-sectional area is 60% or more. 60
When the amount of deformation is less than%, deformation tends to be insufficient and a fine grain structure cannot be obtained, and further, there is a tendency that release of processing strain due to transformation is insufficient. In the case of sheet rolling, since there is almost no deformation in the width direction, the reduction rate of the cross-sectional area is substantially the same as the reduction rate of the sheet thickness. The same effect can be obtained no matter how large the working ratio is 60% or more, but is generally limited to about 90% due to an increase in energy required for deformation and a temperature drop.
【0041】強加工後ないしはそれにともなう変態直後
は、350℃以下の温度にまで40℃/s以上の冷却速度にて
冷却する。これは変態直後は極めて細粒であるため、変
態直後の温度に保持されるか40℃/sを下回るゆっくり
した速度で冷却されると粒成長が進み、平均粒径が3μ
mを超える結晶粒になってしまうおそれがあるからであ
る。変態時点で加工歪みは十分解放されているので、冷
却速度は速くてもかまわないが、水冷などその採用でき
る冷却手段により、その速度には自ずから限界がある。After the strong working or immediately after the transformation, the steel is cooled to a temperature of 350 ° C. or less at a cooling rate of 40 ° C./s or more. This is because the grains are extremely fine immediately after the transformation, so that if the temperature is maintained immediately after the transformation or is cooled at a slow rate of less than 40 ° C./s, the grain growth proceeds, and the average grain size becomes 3 μm.
This is because there is a possibility that the crystal grains may exceed m. Since the processing strain is sufficiently released at the time of transformation, the cooling rate may be high, but the cooling rate is naturally limited by the cooling means that can be adopted such as water cooling.
【0042】[0042]
【実施例】表1に示す組成の鋼を、50kgの高周波真空溶
解炉にて溶解し、鋳塊を鍛造して幅150mm、厚さ50mmの
スラブとし、1200℃に加熱して圧延し、厚さ20mmの素板
とした。この素板を1000℃に加熱してオーステナイト化
させた後、噴霧冷却により冷却速度を変え、その冷却速
度にて冷却すれば、低温相が析出し始める温度、すなわ
ち変態を開始する温度の直上の温度で圧延をおこない、
圧延後直ちに冷却した。EXAMPLE A steel having the composition shown in Table 1 was melted in a 50 kg high-frequency vacuum melting furnace, and an ingot was forged into a slab having a width of 150 mm and a thickness of 50 mm. The plate was 20 mm in length. After heating the base plate to 1000 ° C to austenitize, the cooling rate is changed by spray cooling, and if cooled at that cooling rate, the temperature at which the low-temperature phase starts to precipitate, that is, the temperature immediately above the temperature at which transformation starts Rolling at temperature
It cooled immediately after rolling.
【0043】[0043]
【表1】 [Table 1]
【0044】これらの圧延に供した鋼番号それぞれの圧
延条件を表2に示す。得られた圧延試片から任意の位置
にて採取した10ヶ所の板厚中心部の薄膜試験片にて、透
過型電子顕微鏡を用いて7000倍の写真を撮りフェライト
粒径を測定し、2000倍の写真にてフェライト組織の比率
を求めた。また圧延試片からJIS5号の引張り試験片を
切り出して引張り強さを測定し、幅2.5mmのJIS4号サブ
サイズ試験片により衝撃試験をおこない、破面遷移温度
を求めた。Table 2 shows the rolling conditions of each of the steel numbers subjected to the rolling. Using a transmission electron microscope, a 7,000-fold photograph was taken using a transmission electron microscope to measure the ferrite particle size, and the 2,000-fold magnification was obtained from the thin-film specimens at the center of the sheet thickness, which were collected at arbitrary positions from the obtained rolling specimens at arbitrary positions. The ratio of the ferrite structure was determined from the photograph. In addition, a JIS No. 5 tensile test piece was cut out from the rolled test piece, the tensile strength was measured, and an impact test was performed using a JIS No. 4 subsize test piece having a width of 2.5 mm to obtain a fracture surface transition temperature.
【0045】[0045]
【表2】 [Table 2]
【0046】フェライトの平均結晶粒径、フェライト組
織の占有率、強度および靱性の試験結果をまとめて表2
に併記した。その結果から明らかなように、本発明の低
温生成フェライトが全体の80%以上を占め、かつその平
均結晶粒径が3μm以下の鋼は、その強度に対する靱性
がすぐれた鋼であることがわかる。またこのような超微
細粒の鋼を製造するには、本発明にて定めるように、オ
ーステナイトから加工までの冷却速度、加工温度、加工
度および加工後の冷却速度を規制する必要のあることが
明らかである。Table 2 summarizes the test results of the average grain size of ferrite, the occupancy of the ferrite structure, the strength and the toughness.
It was also described in. As is clear from the results, it is understood that the low-temperature formed ferrite of the present invention accounts for 80% or more of the whole and the steel having an average crystal grain size of 3 μm or less is a steel having excellent toughness with respect to its strength. Also, in order to produce such ultrafine-grained steel, it is necessary to regulate the cooling rate from austenite to processing, the processing temperature, the degree of processing, and the cooling rate after processing, as defined in the present invention. it is obvious.
【0047】[0047]
【発明の効果】本発明の鋼は、合金組成の含有量の少な
い鋼であるにもかかわらず、高強度でしかも靱性が極め
てすぐれている。これは、低温変態により生成したフェ
ライトが80%以上を占め、かつその平均結晶粒が3μm
以下と微細であることによる。そして、本発明方法によ
れば、過冷のオーステナイトの大歪み加工により極めて
微細なフェライト組織が得られ、低炭素低合金鋼でも、
強度および靱性のすぐれた鋼を得ることができる。The steel of the present invention has high strength and extremely excellent toughness, despite being a steel having a small alloy composition content. This is because ferrite formed by low-temperature transformation accounts for 80% or more, and the average crystal grain is 3 μm.
The following is due to the fineness. According to the method of the present invention, an extremely fine ferrite structure is obtained by large strain processing of supercooled austenite, and even in a low-carbon low-alloy steel,
Steel with excellent strength and toughness can be obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 吉隆 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 藤岡 政昭 千葉県富津市新富20−1新日本製鐵株式会 社鉄鋼研究所内 (72)発明者 難波 茂信 兵庫県神戸市西区高塚台1丁目5番5号株 式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 横田 智之 東京都千代田区丸の内1丁目1番2号日本 鋼管株式会社技術開発本部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshitaka Adachi 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (72) Inventor Masaaki Fujioka 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Steel Research Laboratory (72) Inventor Shigenobu Namba 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Tomoyuki Yokota Chiyoda, Tokyo 1-1-2, Marunouchi-ku, Japan Kokan Co., Ltd. Technology Development Division
Claims (3)
〜3%を含み、残部が実質的にFeからなり、オーステ
ナイトの低温変態によって生成したフェライトが80%以
上を占め、かつ平均結晶粒径が3μm以下である金属組織
を有することを特徴とする鋼。C. 0.05 to 0.3% and Mn: 0.5% by weight.
Steel having a metal structure containing at least 80% of ferrite produced by low-temperature transformation of austenite and having an average crystal grain size of 3 μm or less. .
〜3%、Si:0.01〜0.3%、Nb:0〜0.05%、Ti:
0〜0.05%、V:0〜0.08%、Cr:0〜1%およびM
o:0〜1%を含み、残部が実質的にFeからなり、オ
ーステナイトの低温変態によって生成したフェライトが
80%以上を占め、かつ平均結晶粒径が3μm以下である金
属組織を有することを特徴とする鋼。2. C: 0.05 to 0.3%, Mn: 0.5% by weight.
-3%, Si: 0.01-0.3%, Nb: 0-0.05%, Ti:
0 to 0.05%, V: 0 to 0.08%, Cr: 0 to 1% and M
o: containing 0 to 1%, the balance being substantially Fe, and ferrite generated by low-temperature transformation of austenite
A steel having a metal structure occupying 80% or more and having an average crystal grain size of 3 μm or less.
つ鋼をAc3点以上の温度から、5℃/s以上100℃/s未満
の冷却速度にて冷却する過程において、フェライト相、
ベイナイト相、またはマルテンサイト相のような低温相
が析出を開始する温度より高く、かつ650℃以下の温度
域で断面積減少率にて60%以上の加工をおこない、その
後40℃/s以上の冷却速度にて350℃以下の温度にまで冷
却することを特徴とする請求項1または2に記載の鋼の
製造方法。3. The process of cooling a steel having the composition according to claim 1 or 2 at a cooling rate of 5 ° C./s or more and less than 100 ° C./s from a temperature of 3 or more Ac. ,
Processing is performed at a temperature higher than the temperature at which a low-temperature phase such as a bainite phase or a martensite phase starts to precipitate, and at a cross-sectional area reduction rate of 60% or more in a temperature range of 650 ° C. or less, and then at a rate of 40 ° C./s or more. The method for producing steel according to claim 1, wherein the steel is cooled to a temperature of 350 ° C. or less at a cooling rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13297298A JP3623656B2 (en) | 1998-05-15 | 1998-05-15 | Steel having fine grain structure and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13297298A JP3623656B2 (en) | 1998-05-15 | 1998-05-15 | Steel having fine grain structure and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11323481A true JPH11323481A (en) | 1999-11-26 |
JP3623656B2 JP3623656B2 (en) | 2005-02-23 |
Family
ID=15093805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13297298A Expired - Fee Related JP3623656B2 (en) | 1998-05-15 | 1998-05-15 | Steel having fine grain structure and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3623656B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098322A (en) * | 1999-09-27 | 2001-04-10 | Sumitomo Metal Ind Ltd | Method of producing steel having fine-grained ferritic structure |
JP2002097521A (en) * | 2000-09-21 | 2002-04-02 | Sumitomo Metal Ind Ltd | Production method for steel having fine ferrite structure |
WO2004028718A1 (en) | 2002-09-30 | 2004-04-08 | Zenji Horita | Method of working metal, metal body obtained by the method and metal-containing ceramic body obtained by the method |
JP2010222614A (en) * | 2009-03-23 | 2010-10-07 | Jfe Steel Corp | High-tensile-strength thick steel plate superior in balance between strength and ductility, and method for manufacturing the same |
JP2010222615A (en) * | 2009-03-23 | 2010-10-07 | Jfe Steel Corp | High-tensile-strength thick steel plate superior in balance between strength and ductility, and method for manufacturing the same |
-
1998
- 1998-05-15 JP JP13297298A patent/JP3623656B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098322A (en) * | 1999-09-27 | 2001-04-10 | Sumitomo Metal Ind Ltd | Method of producing steel having fine-grained ferritic structure |
JP2002097521A (en) * | 2000-09-21 | 2002-04-02 | Sumitomo Metal Ind Ltd | Production method for steel having fine ferrite structure |
WO2004028718A1 (en) | 2002-09-30 | 2004-04-08 | Zenji Horita | Method of working metal, metal body obtained by the method and metal-containing ceramic body obtained by the method |
US7637136B2 (en) | 2002-09-30 | 2009-12-29 | Rinascimetalli Ltd. | Method of working metal, metal body obtained by the method and metal-containing ceramic body obtained by the method |
JP2010222614A (en) * | 2009-03-23 | 2010-10-07 | Jfe Steel Corp | High-tensile-strength thick steel plate superior in balance between strength and ductility, and method for manufacturing the same |
JP2010222615A (en) * | 2009-03-23 | 2010-10-07 | Jfe Steel Corp | High-tensile-strength thick steel plate superior in balance between strength and ductility, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3623656B2 (en) | 2005-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2661692C2 (en) | Hot-rolled steel sheet for variable-thickness rolled blank, variable-thickness rolled blank, and method for producing same | |
JP3758508B2 (en) | Manufacturing method of duplex stainless steel pipe | |
US7799148B2 (en) | Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby | |
CN101263239B (en) | Method of producing high-strength steel plates with excellent ductility and plates thus produced | |
JP3990726B2 (en) | High strength duplex steel sheet with excellent toughness and weldability | |
JP3990725B2 (en) | High strength duplex steel sheet with excellent toughness and weldability | |
WO2012036312A1 (en) | High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same | |
JP2006517259A (en) | Fine-grained martensitic stainless steel and method for producing the same | |
JP4085826B2 (en) | Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same | |
JP3314295B2 (en) | Method of manufacturing thick steel plate with excellent low temperature toughness | |
JP2005298956A (en) | Hot rolled steel sheet and its production method | |
CN114921732A (en) | Multiphase reinforced ultrahigh-strength maraging stainless steel and preparation method thereof | |
EP3556890B1 (en) | High-strength steel plate having excellent burring workability in low temperature range and manufacturing method therefor | |
JP2010248621A (en) | Method for manufacturing high-strength high-toughness steel | |
JP3242303B2 (en) | High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same | |
JP2005290554A (en) | Steel plate excellent in machinability, toughness and weldability, and method for production thereof | |
JPH09202919A (en) | Production of high tensile strength steel material excellent in toughness at low temperature | |
JP2008013812A (en) | High toughness and high tensile strength thick steel plate and its production method | |
Grajcar | Hot-working in the γ+ α region of TRIP-aided microalloyed steel | |
JP3623656B2 (en) | Steel having fine grain structure and method for producing the same | |
JPH1171615A (en) | Production of thick steel plate excellent in low temperature toughness | |
JP5423309B2 (en) | Thick steel plate for offshore structures and manufacturing method thereof | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JP2004137564A (en) | Hot rolled steel member, and production method therefor | |
JP2007246985A (en) | Manufacturing method of high-toughness and high-tensile thick steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071203 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |