JPH1131579A - Inspection method for induction hardened part - Google Patents
Inspection method for induction hardened partInfo
- Publication number
- JPH1131579A JPH1131579A JP9186786A JP18678697A JPH1131579A JP H1131579 A JPH1131579 A JP H1131579A JP 9186786 A JP9186786 A JP 9186786A JP 18678697 A JP18678697 A JP 18678697A JP H1131579 A JPH1131579 A JP H1131579A
- Authority
- JP
- Japan
- Prior art keywords
- work
- heating
- quenching
- predetermined
- hardening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- General Induction Heating (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高周波焼入れ部品
の検査方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting induction hardened parts.
【0002】[0002]
【従来の技術】ワークの硬度を部分的に高めるため、部
分的に高周波加熱によって焼入れする工程がある。上記
焼入れ工程は、例えば図3(a)に示すように、軸状ワ
ーク(1)に円環状焼入れコイル(2)を外嵌し、ワー
ク(1)を自転させつつコイル(2)に所定の焼入れ電
圧及び電流を所定時間印加して高周波誘導加熱により焼
入れ加熱した後、所定温度と量の冷却水でワーク(1)
を急冷するものである。又、ワークとしては上記軸状ワ
ーク(1)の他、屈曲部を有するワーク、例えばクラン
クシャフトがある。2. Description of the Related Art In order to partially increase the hardness of a workpiece, there is a step of partially quenching by high-frequency heating. In the quenching step, for example, as shown in FIG. 3A, an annular quenching coil (2) is externally fitted to the shaft-like work (1), and the work (1) is rotated on the coil (2) while rotating the work (1). After applying quenching voltage and current for a predetermined time and quenching and heating by high frequency induction heating, the work (1) is cooled with a predetermined temperature and amount of cooling water.
Is to quench. Examples of the work include a work having a bent portion, for example, a crankshaft, in addition to the axial work (1).
【0003】この時、焼入れ品質は、焼入れ電圧、電流
及び時間の加熱条件そして冷却温度や量の冷却条件に影
響され、且つ、それらの各条件に応じてワーク(1)の
被加熱面(1a)が所定色に変色していく。例えば、焼
入れ加熱中は、図3(a)に示すように、ワーク被加熱
面(1a)が赤熱し、焼入れ冷却後は、図3(b)に示
すように、同じ被加熱面(1a)が黒っぽく変色する。
そこで、焼入れ加熱中及び焼入れ冷却後、それぞれワー
ク被加熱面(1a)の外観の変色状態を作業者が目視で
チェックして焼入れ具合を検査している。[0003] At this time, the quenching quality is affected by heating conditions such as quenching voltage, current and time, and cooling conditions such as cooling temperature and amount, and the surface (1a) to be heated of the work (1) is determined according to each of these conditions. ) Changes to a predetermined color. For example, during quenching and heating, the workpiece heated surface (1a) glows red as shown in FIG. 3A, and after quenching and cooling, the same heated surface (1a) as shown in FIG. 3B. Turns blackish.
Therefore, during quenching heating and after quenching and cooling, an operator visually checks the discoloration state of the appearance of the work-heated surface (1a) to inspect the quenching condition.
【0004】[0004]
【発明が解決しようとする課題】上述の高周波焼入れ部
品の検査手段によれば、作業者が目視により焼入れ加熱
中及び焼入れ冷却後のワーク外観の変色をチェックして
検査しているため、作業者によって検査結果がばらつ
き、又、見逃しが発生するという不具合がある。According to the above-mentioned inspection means for induction hardened parts, the worker visually inspects and checks the discoloration of the work appearance during quenching heating and after quenching and cooling. There is a problem that the inspection results vary, and that oversight occurs.
【0005】本発明の目的は、高周波焼入れ部品の検査
工程をファジィ推論により自動化し、作業者による検査
のばらつきや見逃しを防止し、且つ、省人化した高周波
焼入れ部品の検査方法を提供することである。It is an object of the present invention to provide a method of inspecting induction hardened parts by automating the inspection process of the induction hardened parts by fuzzy inference, preventing variation and oversight of the inspection by the operator, and saving labor. It is.
【0006】[0006]
【課題を解決するための手段】本発明は、高周波加熱に
より焼入れしたワークを検査するにあたり、焼入れ加熱
中のワークを所定方向から撮像して所定の焼入れ電圧、
電流及び時間の加熱条件におけるワーク表面の明度を検
出する工程と、焼入れ加熱後に冷却液で冷却したワーク
を所定方向から撮像して上記加熱条件及び所定の冷却温
度と液量におけるワーク表面の濃淡度を検出する工程
と、焼入れ加熱中のワーク表面の明度データ及び焼入れ
冷却後のワーク表面の濃淡度データの基準データに対す
る一致度をファジィ推論により判別し、各一致度を総合
判定して高周波焼入れワークを検査する工程とを含むこ
とを特徴とする。According to the present invention, when inspecting a work hardened by high-frequency heating, the work being hardened and heated is imaged from a predetermined direction to obtain a predetermined hardening voltage.
A step of detecting the lightness of the work surface under current and time heating conditions; and imaging the work cooled by a cooling liquid after quenching heating from a predetermined direction, and shading the work surface under the above heating conditions and a predetermined cooling temperature and liquid amount. And the degree of coincidence of the brightness data of the work surface during quenching and heating and the density data of the work surface after quenching and cooling with the reference data are determined by fuzzy inference, and the respective degrees of coincidence are comprehensively determined and the induction hardening work is performed. Inspection step.
【0007】[0007]
【発明の実施の形態】本発明に係る高周波焼入れ部品の
検査方法の実施の形態を図1(a)〜(d)及び図2
(a)(b)を参照して以下に説明する。まず図1
(a)に示すように、焼入れコイル(3)にワーク
(4)を嵌入した後、所定の焼入れ電圧(V)と電流
(I)を焼入れコイル(3)に所定時間(t)印加して
ワーク(4)を焼入れ加熱する。そこで、焼入れ加熱中
のワーク(4)を所定方向、例えば上方からカメラ
(5)で撮像すると、図1(b)に示すように、所定の
焼入れ電圧(Va)と電流(Ia)におけるワーク表面
の明度(F)の時間的変化を示すアナログの計測データ
曲線(Da)が描かれる。1 (a) to 1 (d) and FIG. 2 show an embodiment of an inspection method for an induction hardened part according to the present invention.
This will be described below with reference to (a) and (b). First, Figure 1
As shown in (a), after the work (4) is inserted into the hardening coil (3), a predetermined hardening voltage (V) and current (I) are applied to the hardening coil (3) for a predetermined time (t). The work (4) is quenched and heated. Therefore, when the work (4) during quenching and heating is imaged by a camera (5) from a predetermined direction, for example, from above, as shown in FIG. 1B, the work surface at a predetermined hardening voltage (Va) and current (Ia) is obtained. An analog measurement data curve (Da) showing the temporal change of the lightness (F) is drawn.
【0008】そこで、計測データ曲線(Da)を画像処
理して所定の時間座標(ta)(tb)…に分割し、ア
ナログによる計測データ曲線(Da)をデジタル化す
る。そして、各時間座標(ta)(tb)…における明
度(Fa)(Fb)…と基準明度(Fra)(Frb)
…との一致度(Ua)(Ub)…をファジィ推論により
判定する。更に、全時間座標(ta)(tb)…に亘る
ファジィ判定により明度(F)の良否を判定する。Therefore, the measured data curve (Da) is image-processed and divided into predetermined time coordinates (ta) (tb)..., And the analog measured data curve (Da) is digitized. Then, the lightness (Fa) (Fb)... And the reference lightness (Fra) (Frb) at each time coordinate (ta) (tb).
Are determined by fuzzy inference. Further, the quality (F) of the lightness (F) is determined by fuzzy determination over all time coordinates (ta) (tb).
【0009】その際、確率による判定手段により判別す
る。例えば図2(a)に示すように、焼入れ加熱中の所
定の電圧(Va)、電流(Ia)及び時間(t)におけ
る明度(F)のファジィ集合のメンバーシップ関数
(M){但し、(ZRa)は基準データ、(PSa)
(NSa)はずれデータの各ファジィ集合}、及び判定
確率(D)を時間座標(ta)(tb)…毎に設定す
る。そこで、例えば時間(ta)における明度(Fa)
の基準データ及びずれデータに対する各適合度(Aa)
(Ba)を検知する。そして、適合度(Aa)が大きい
程、又、適合度(Ba)が小さい程、基準データに近付
くため、それらを判定確率(Da)と比較し、例えばA
a>Da>Baの時、時間座標(ta)における明度
(Fa)は正常と判定し、その判定作業を全時間座標
(ta)(tb)…について行う。その全判定結果から
例えば正常判定回数、又は全適合度の乗算値等を目安と
して明度(F)の良否を判定し、併せて焼入れ加熱状態
の良否を判定する。又、他の焼入れ電圧(V)及び電流
(I)により同様の判定を行い、最適の加熱条件を選択
することが出来る。At this time, the judgment is made by the judgment means based on the probability. For example, as shown in FIG. 2A, a membership function (M) of a fuzzy set of lightness (F) at a predetermined voltage (Va), current (Ia), and time (t) during quenching heating, where (M) ZRa) is reference data, (PSa)
(NSa) Each fuzzy set} of deviation data and the determination probability (D) are set for each time coordinate (ta) (tb). Thus, for example, the lightness (Fa) at time (ta)
(Aa)
(Ba) is detected. Then, the higher the fitness (Aa) and the smaller the fitness (Ba), the closer to the reference data, the comparison is made with the determination probability (Da).
When a>Da> Ba, the brightness (Fa) at the time coordinate (ta) is determined to be normal, and the determination operation is performed for all time coordinates (ta) (tb). From the results of all the determinations, the quality (F) of the lightness (F) is determined based on, for example, the number of normal determinations or the multiplied value of the total fitness, and the quality of the quenching heating state is also determined. Further, the same determination can be made based on other quenching voltage (V) and current (I), and the optimal heating condition can be selected.
【0010】又、焼入れ加熱後のワーク(4)を所定の
冷却温度と量の冷却水で冷却した後、側方からワーク
(4)の全周囲を囲む。例えば図1(c)に示すよう
に、3台のカメラ(6)(7)(8)により図示点線を
各カメラ毎の視野境界線として側方からワーク(4)の
全周囲を囲む。そこで、ワーク側表面を全方位から撮像
すると、図1(d)に示すように、所定の加熱条件及び
冷却温度(Θa)と量(Qa)におけるワーク表面の濃
淡度(L)の場所的変動を示すアナログの計測データ曲
線(Db)が描かれる。尚、(Ea)(Eb)(Ec)
はそれぞれカメラ(6)(7)(8)による各視野を示
し、3個の視野(Ea)(Eb)(Ec)で全視野を収
める。又、カメラの数を4台、5台等に増やし、4個以
上の視野で全視野を収めても良い。After the quenching and heating of the work (4) is cooled with a predetermined cooling temperature and a predetermined amount of cooling water, the work (4) is entirely surrounded from the side. For example, as shown in FIG. 1 (c), three cameras (6), (7) and (8) surround the entire periphery of the work (4) from the side with the dotted line shown as a visual field boundary for each camera. Therefore, when the work side surface is imaged from all directions, as shown in FIG. 1D, the spatial variation of the density (L) of the work surface under a predetermined heating condition, cooling temperature (Θa) and quantity (Qa) is obtained. , An analog measurement data curve (Db) is drawn. (Ea) (Eb) (Ec)
Indicates the fields of view by the cameras (6), (7) and (8), respectively, and covers all the fields of view with three fields of view (Ea), (Eb) and (Ec). Alternatively, the number of cameras may be increased to four, five, or the like to cover the entire visual field with four or more visual fields.
【0011】そこで、計測データ曲線(Db)を画像処
理して所定の視野座標(Xa)(Xb)…毎に分割し、
アナログによる計測データ曲線(Db)をデジタル化す
る。そして、各視野座標(Xa)(Xb)…における濃
淡度(La)(Lb)…と基準濃淡度(Lra)(Lr
b)…との一致度(Va)(Vb)…をファジィ推論に
より判定する。更に、全視野座標(Xa)(Xb)…に
亘るファジィ判定により濃淡度(L)の良否を判定す
る。Then, the measured data curve (Db) is image-processed and divided into predetermined visual field coordinates (Xa) (Xb).
An analog measurement data curve (Db) is digitized. Then, in each of the visual field coordinates (Xa) (Xb)..., The contrast (La) (Lb)... And the reference contrast (Lra) (Lr)
b) The degree of coincidence (Va) (Vb)... with fuzzy inference is determined. Further, the quality of the shading (L) is determined by fuzzy determination over the entire visual field coordinates (Xa) (Xb).
【0012】その際、確率による判定手段により判別す
る。例えば図2(b)に示すように、焼入れ加熱時の所
定の加熱条件(電圧、電流、時間)及び所定の冷却温度
(Θa)と量(Qa)における焼入れ冷却後の濃淡度
(L)のファジィ集合のメンバーシップ関数(N){但
し、(ZRb)は基準データ、(PSb)(NSb)は
ずれデータの各ファジィ集合}、及び判定確率(G)を
各視野座標(Xa)…毎に設定する。そこで、例えば視
野座標(Xa)における濃淡度(La)の基準データ及
びずれデータに対する各適合度(Ab)(Bb)を検知
する。そして、適合度(Ab)が大きい程、又、適合度
(Bb)が小さい程、基準データに近付くため、それら
を判定確率(Ga)と比較し、例えばAb>Ga>Bb
の時、視野座標(Xa)における濃淡度(La)は正常
と判定し、その判定作業を全視野座標(Xa)(Xb)
…について行う。その全判定結果から例えば正常判定回
数、又は全適合度の乗算値等を目安として濃淡度(L)
の良否を判定し、併せて焼入れ品質の良否を判定する。
又、他の加熱及び冷却条件により同様の判定を行い、最
適の加熱及び冷却条件を選択することが出来る。At this time, the judgment is made by the judgment means based on the probability. For example, as shown in FIG. 2 (b), predetermined heating conditions (voltage, current, time) at the time of quenching heating and the density (L) after quenching and cooling at a predetermined cooling temperature (Θa) and a predetermined amount (Qa). Fuzzy set membership function (N) {where (ZRb) is reference data, (PSb) (NSb) each fuzzy set of outliers}, and determination probability (G) is set for each view coordinate (Xa) ... I do. Therefore, for example, the respective degrees of conformity (Ab) and (Bb) with respect to the reference data and the deviation data of the gray level (La) in the visual field coordinates (Xa) are detected. Then, as the fitness (Ab) is larger and the fitness (Bb) is smaller, the reference data is closer to the reference data. Therefore, these are compared with the determination probability (Ga), and for example, Ab>Ga> Bb
, It is determined that the shading (La) in the visual field coordinates (Xa) is normal, and the determination operation is performed in all visual field coordinates (Xa) (Xb).
Do about ... From the results of all the determinations, for example, the density (L) using the number of normal determinations or the multiplied value of the total fitness as a guide
Is determined, and the quality of the quenching quality is also determined.
Further, the same judgment is made based on other heating and cooling conditions, and the optimum heating and cooling conditions can be selected.
【0013】更に、明度(F)及び濃淡度(L)の判定
結果から焼入れ具合を総合判定する。尚、時間及び視野
の座標分割数が多い程、判定精度が高くなるため、必要
に応じて適宜設定する。Further, the degree of quenching is comprehensively determined from the determination results of the lightness (F) and the shading (L). Note that the greater the number of divisions of time and field coordinates, the higher the accuracy of the determination.
【0014】[0014]
【発明の効果】本発明によれば、高周波焼入れ部品を検
査する際、焼入れ加熱中の部品表面の明度及び焼入れ冷
却後の部品表面の濃淡度を計測して基準データに対する
一致度をファジィ推論により判定して検査したから、高
周波焼入れ部品の検査工程が自動化されて省人化され、
且つ、作業者による検査のばらつきや見逃しを防止出
来、検査精度が大幅に向上する。According to the present invention, when inspecting an induction hardened part, the brightness of the part surface during quenching heating and the density of the part surface after quenching and cooling are measured, and the degree of coincidence with reference data is determined by fuzzy inference. After the judgment and inspection, the inspection process of the induction hardened parts is automated and labor saving,
In addition, it is possible to prevent variation and oversight of the inspection by the operator, and the inspection accuracy is greatly improved.
【図1】(a)は高周波焼入れ加熱中のワーク及びその
撮像カメラを示す側断面図。(b)は図1(a)のカメ
ラによって撮像したワークの明度の時間的変化を示すグ
ラフ。(c)は焼入れ冷却後のワークの撮像カメラを示
す上面図。(d)は図1(c)のカメラによって撮像し
たワークの濃淡度の場所的変化を示すグラフ。FIG. 1A is a side sectional view showing a workpiece during induction hardening and heating and an imaging camera thereof. 2B is a graph illustrating a temporal change in the brightness of the workpiece captured by the camera in FIG. (C) is a top view showing the imaging camera of the workpiece after quenching and cooling. (D) is a graph showing the change in the density of the work imaged by the camera of FIG.
【図2】(a)は焼入れ加熱中のワークの明度のメンバ
ーシップ関数。(b)は焼入れ冷却後のワークの濃淡度
のメンバーシップ関数。FIG. 2A is a membership function of the brightness of a workpiece during quenching and heating. (B) is a membership function of the density of the work after quenching and cooling.
【図3】(a)は高周波焼入れ加熱中を示すワークと焼
入れコイルの斜視図。(b)は焼入れ冷却後のワークを
示す側面図。FIG. 3A is a perspective view of a workpiece and a quenching coil during induction hardening and heating. (B) is a side view showing the work after quenching and cooling.
4 ワーク F 明度 L 濃淡度 4 Work F Lightness L Shading
Claims (1)
するにあたり、 焼入れ加熱中のワークを所定方向から撮像して所定の焼
入れ電圧、電流及び時間の加熱条件におけるワーク表面
の明度を検出する工程と、焼入れ加熱後に冷却液で冷却
したワークを所定方向から撮像して上記加熱条件及び所
定の冷却温度と液量におけるワーク表面の濃淡度を検出
する工程と、焼入れ加熱中のワーク表面の明度データ及
び焼入れ冷却後のワーク表面の濃淡度データの基準デー
タに対する一致度をファジィ推論により判別し、各一致
度を総合判定して高周波焼入れワークを検査する工程と
を含むことを特徴とする高周波焼入れ部品の検査方法。When inspecting a work hardened by high-frequency heating, a step of detecting the brightness of the work surface under heating conditions of a predetermined hardening voltage, current and time by imaging the work being hardened and heated from a predetermined direction; A step of imaging the work cooled by the cooling liquid after the quenching and heating from a predetermined direction to detect the density of the work surface at the above-mentioned heating conditions and the predetermined cooling temperature and liquid amount; and brightness data and quenching of the work surface during the quenching and heating. Inspecting the induction hardened part by determining the degree of coincidence of the density data of the work surface after cooling with the reference data by fuzzy inference, and comprehensively judging each degree of coincidence to inspect the induction hardened workpiece. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18678697A JP3576354B2 (en) | 1997-07-11 | 1997-07-11 | Inspection method for induction hardened parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18678697A JP3576354B2 (en) | 1997-07-11 | 1997-07-11 | Inspection method for induction hardened parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1131579A true JPH1131579A (en) | 1999-02-02 |
JP3576354B2 JP3576354B2 (en) | 2004-10-13 |
Family
ID=16194576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18678697A Expired - Fee Related JP3576354B2 (en) | 1997-07-11 | 1997-07-11 | Inspection method for induction hardened parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3576354B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262437A (en) * | 2006-03-27 | 2007-10-11 | Toyota Motor Corp | Induction heat treatment apparatus and method of heat treatment |
US7666346B2 (en) | 2005-04-06 | 2010-02-23 | Ntn Corporation | Steel-member manufacturing facility, thin bearing-member and thrust bearing |
CN113720841A (en) * | 2021-08-25 | 2021-11-30 | 武汉飞能达激光技术有限公司 | Laser quenching quality monitoring method and application thereof |
-
1997
- 1997-07-11 JP JP18678697A patent/JP3576354B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666346B2 (en) | 2005-04-06 | 2010-02-23 | Ntn Corporation | Steel-member manufacturing facility, thin bearing-member and thrust bearing |
JP2007262437A (en) * | 2006-03-27 | 2007-10-11 | Toyota Motor Corp | Induction heat treatment apparatus and method of heat treatment |
JP4582339B2 (en) * | 2006-03-27 | 2010-11-17 | トヨタ自動車株式会社 | High frequency heat treatment apparatus and heat treatment method |
CN113720841A (en) * | 2021-08-25 | 2021-11-30 | 武汉飞能达激光技术有限公司 | Laser quenching quality monitoring method and application thereof |
CN113720841B (en) * | 2021-08-25 | 2024-02-09 | 武汉飞能达激光技术有限公司 | Laser quenching quality monitoring method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3576354B2 (en) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3597439B2 (en) | Diagnosis method for paint deterioration of painted steel | |
US5631465A (en) | Method of interpreting thermographic data for non-destructive evaluation | |
CN113781446B (en) | Method and device for detecting greasy dirt on glass fiber surface, storage medium and electronic equipment | |
CN117698288A (en) | Printing quality detection method, system, equipment and storage medium | |
JP3568871B2 (en) | Degradation evaluation method for inspection of pipe inner surface corrosion | |
JPH1131579A (en) | Inspection method for induction hardened part | |
KR101712489B1 (en) | Method for measuring a pollution level of spot welding electrode tip using images | |
WO2004008135A2 (en) | Method for online measurement of molten phases | |
JPH11160053A (en) | Working surface inspection device and inspection method therefor | |
JP3029760B2 (en) | Bacterial test equipment and test method | |
US5517237A (en) | Video photometric color system for processing color specific streams | |
JP3667886B2 (en) | Application state detection device using visual sensor | |
JPH0843315A (en) | Automatic diagnosing method for coating film deterioration | |
US10048131B2 (en) | Chromaticity test method and chromaticity test apparatus | |
JP2004170374A (en) | Apparatus and method for detecting surface defect | |
JP2021189239A (en) | Belt inspection system and belt inspection program | |
Li et al. | A quantitative analysis method for pipeline defect inspection based on infrared thermal imaging | |
CN112288747A (en) | Intelligent detection method and device for steel billets | |
JPS59204741A (en) | Automatic hardness measuring device | |
JP2021006854A (en) | Belt inspection system and belt inspection program | |
KR102554824B1 (en) | Plating thickness measurement system and method | |
CN118243689B (en) | Method and system for detecting lens aluminum seat based on mechanical arm | |
JP2638121B2 (en) | Surface defect inspection equipment | |
JPH05296943A (en) | Method and device for diagnosing corrosion of metallic antenna | |
JP2000121495A (en) | Screen inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040707 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |