[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11293396A - High strength hot dip galvanized steel sheet, galvannealed steel sheet, and their production - Google Patents

High strength hot dip galvanized steel sheet, galvannealed steel sheet, and their production

Info

Publication number
JPH11293396A
JPH11293396A JP10458798A JP10458798A JPH11293396A JP H11293396 A JPH11293396 A JP H11293396A JP 10458798 A JP10458798 A JP 10458798A JP 10458798 A JP10458798 A JP 10458798A JP H11293396 A JPH11293396 A JP H11293396A
Authority
JP
Japan
Prior art keywords
steel sheet
phase
hot
less
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10458798A
Other languages
Japanese (ja)
Inventor
Junichi Ozaki
純一 小崎
Michitaka Sakurai
理孝 櫻井
Masaru Sagiyama
勝 鷺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10458798A priority Critical patent/JPH11293396A/en
Publication of JPH11293396A publication Critical patent/JPH11293396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high strength hot dip galvanized steel sheet and a galvannealed steel sheet, excellent in stability of material quality, and their production. SOLUTION: The high strength hot dip galvanized steel sheet and the galvannealed steel sheet are produced by using, as a substrate, a cold rolled steel sheet having a composition containing, by weight, 0.06-0.18% C, <=1.5% Si, 1.4-2.3% Mn, 0.2-0.6% Cr, <=0.05% P, 0.010-0.100% Sol. Al, <=0.01% S, and <=0.01% N, and the steel-sheet structure consists of >=5% by area ratio, in total, of martensitic phase, bainitic phase, and retained austenite phase and the balance ferritic phase and pearlitic structure. A steel with the above composition is hot rolled, pickled, and cold rolled. In the successive continuous hot dip galvanizing line, annealing temperature, annealing time, and average cooling rate from the annealing temperature to 570 deg.C are regulated to a temperature not lower than the Ac1 point, 30-90 sec, and >=5 deg.C/sec, respectively, and then, the steel sheet is allowed to stay at 570-390 deg.C for >=40 sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷延鋼板を下地と
した、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき
鋼板ならびにその製造方法に関する。より詳細には、プ
レス成形性に優れた高強度溶融亜鉛めっき鋼板および合
金化溶融亜鉛めっき鋼板ならびにその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and a method for producing the same using a cold-rolled steel sheet as a base. More specifically, the present invention relates to a high-strength hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having excellent press formability and a method for producing the same.

【0002】[0002]

【従来の技術】近年、燃費向上と排気ガス低減の必要性
から、自動車の車体軽量化が要求されている。一方、自
動車の安全性に対するニーズも高まっていることから、
車体を軽量化しつつ、高い車体強度を維持することが望
まれている。また、通常、車体の部品には高い耐食性が
要求される。以上の背景から、自動車用部品の素材とし
て、高強度溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき
鋼板の使用が増加しつつある。
2. Description of the Related Art In recent years, there has been a demand for a reduction in the weight of a vehicle body due to the need for improving fuel efficiency and reducing exhaust gas. On the other hand, with the growing need for car safety,
It is desired to maintain a high body strength while reducing the weight of the body. In addition, high corrosion resistance is usually required for parts of the vehicle body. From the above background, the use of high-strength hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets as materials for automotive components is increasing.

【0003】自動車用部品は、形状が複雑なものが多
く、また、製造においては高い生産性が要求されること
から、プレス成形により加工される場合が多い。しか
し、高強度鋼板は軟質鋼板と比べてプレス成形性に劣
り、問題となっている。
[0003] Since many automotive parts have complicated shapes and high productivity is required in production, they are often processed by press molding. However, high-strength steel sheets are inferior in press-formability as compared with soft steel sheets, and pose a problem.

【0004】その原因として、2つの要因が挙げられ
る。1つは、高強度鋼板の材質である。高強度鋼板は延
性が低いため割れが発生しやすい。また、スプリングバ
ックが強く、形状凍結性に劣る。もう1つは、材質の変
動である。前記のように、高強度鋼板はプレス成形性に
劣るため、一般に、成形可能なプレス条件範囲が軟質鋼
板よりも狭い。そのため、鋼板の材質が変動すれば、た
ちまち割れや形状不良が発生し、生産性の低下につなが
る。したがって、プレス成形において高い生産性を実現
するためには、鋼板の材質が常に安定していることが必
要である。ところが、高強度鋼板は軟質鋼板と比較して
材質の変動が大きく、プレス成形を一層困難にしている
のが実状である。
There are two factors as the cause. One is the material of the high-strength steel plate. High-strength steel sheets have low ductility and are liable to crack. In addition, the springback is strong and the shape freezing property is poor. The other is a change in the material. As described above, since a high-strength steel sheet is inferior in press-formability, the range of press conditions that can be formed is generally narrower than that of a soft steel sheet. Therefore, if the material of the steel sheet fluctuates, cracks and shape defects occur immediately, leading to a decrease in productivity. Therefore, in order to achieve high productivity in press forming, it is necessary that the material of the steel sheet is always stable. However, a high-strength steel sheet has a large variation in the material as compared with a soft steel sheet, and in reality, press forming is more difficult.

【0005】前者の問題点に関しては、従来より、強度
−延性バランスに優れ、降伏比の低い鋼板の製造方法が
提案されている(例えば特開平5-179402号公報、特開平
4-173946号公報、特開平8-134591号公報)。これらの鋼
板は、鋼板組織をフェライト相+マルテンサイト相、フ
ェライト相+ベイナイト相あるいはフェライト相+マルテ
ンサイト相+ベイナイト相の複合組織(以下、単に複合
組織という)にすることで、高強度高延性低降伏比の材
質を得ている。
[0005] Regarding the former problem, a method for producing a steel sheet having an excellent strength-ductility balance and a low yield ratio has been proposed (for example, JP-A-5-179402, JP-A-5-179402).
4-173946, JP-A-8-134591). These steel sheets have a high-strength, high-ductility steel by forming the steel sheet into a composite structure of ferrite phase + martensite phase, ferrite phase + bainite phase, or ferrite phase + martensite phase + bainite phase. A material with a low yield ratio is obtained.

【0006】しかし、後者の問題点に関しては、従来、
有効な解決策は提案されていない。
However, regarding the latter problem, conventionally,
No effective solution has been proposed.

【0007】[0007]

【発明が解決しようとする課題】上記の問題点に鑑み
て、本発明は、材質安定性に優れた、高強度溶融亜鉛め
っき鋼板および合金化溶融亜鉛めっき鋼板ならびにその
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a high-strength hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and a method for producing the same, which are excellent in material stability. Aim.

【0008】[0008]

【課題を解決するための手段】材質の変動の原因として
は、鋼成分組成の変動、熱間圧延条件の変動、冷間圧延
条件の変動、連続式溶融亜鉛めっきラインにおける焼鈍
温度および冷却条件の変動などが挙げられる。本発明者
らの得た知見によると、このうち、最も制御が困難で材
質変動の最大の原因となっているものは、熱間圧延後の
巻取温度の変動である。熱間圧延後の巻取温度は、特に
コイルの先端と終端で差が出やすく、また、幅方向にお
いても、エッジ部分は中央部分よりも低温になりやす
い。
The causes of the change of the material include the change of the steel composition, the change of the hot rolling condition, the change of the cold rolling condition, the annealing temperature and the cooling condition in the continuous galvanizing line. Fluctuation and the like. According to the knowledge obtained by the present inventors, among them, the most difficult to control and the biggest cause of the material fluctuation is the fluctuation of the winding temperature after hot rolling. The winding temperature after hot rolling tends to be different particularly at the leading end and the trailing end of the coil, and also in the width direction, the edge portion tends to be lower in temperature than the central portion.

【0009】複合組織を持つ鋼板の多くは、巻取温度に
よって、熱延後の材質はもちろん、冷間圧延、焼鈍、溶
融亜鉛めっきを施した後の材質も影響を受ける。すなわ
ち、巻取温度が高い場合は、熱延後の組織が粗大で軟質
なフェライト+パーライト組織になり、材質は低強度高
延性となる。一方、巻取温度が低い場合は、微細で硬質
なベイナイト組織になり、材質は高強度低延性になる。
この熱延組織の違いが、めっき後の組織にも複雑な影響
を及ぼし、材質を変動させると考えられる。巻取温度を
常に一定温度に保つことができれば、巻取温度に起因す
る材質の変動はなくなるが、実際の操業において巻取温
度を一定に保つことは、非常に困難である。
[0009] In many steel sheets having a composite structure, the material after hot rolling as well as the material after cold rolling, annealing, and hot dip galvanizing are affected by the winding temperature. That is, when the winding temperature is high, the structure after hot rolling becomes a coarse and soft ferrite + pearlite structure, and the material has low strength and high ductility. On the other hand, when the winding temperature is low, a fine and hard bainite structure is formed, and the material has high strength and low ductility.
It is considered that this difference in the hot-rolled structure has a complicated effect on the structure after plating, and changes the material. If the winding temperature can always be maintained at a constant temperature, there is no change in the material due to the winding temperature, but it is very difficult to keep the winding temperature constant in the actual operation.

【0010】本発明者らが検討を重ねた結果、材質の巻
取温度依存性は鋼板の成分組成、とりわけCrの含有量に
よってその程度が異なり、材質の巻取温度依存性が最小
になる組成、すなわち材質安定性が最大になる組成が存
在することを見いだした。この知見に加えて、この効果
が有効な鋼板成分および製造条件範囲を検討した結果を
加えて、本発明を完成した。
As a result of repeated investigations by the present inventors, the degree of dependency of the material on the winding temperature varies depending on the composition of the steel sheet, especially the content of Cr, and the composition at which the dependency on the winding temperature of the material is minimized. That is, it was found that there was a composition that maximized the material stability. In addition to this finding, the present invention has been completed by adding the results of examining the components of the steel sheet and the range of manufacturing conditions in which this effect is effective.

【0011】前記課題を解決するための構成は次のとお
りである。 (1)第一発明は、重量%で、C:0.06〜0.18%、Si:1.5
%以下、Mn:1.4〜2.3%、Cr:0.2〜0.6%、P:0.05%
以下、Sol.Al:0.010〜0.100%、S:0.01%以下、N:0.
01%以下を含有する冷延鋼板を下地とし、その鋼板組織
がマルテンサイト相とベイナイト相と残留オーステナイ
ト相の合計で面積率5%以上を有し、残部がフェライト
相とパーライト組織から成ることを特徴とする、材質安
定性に優れた高強度溶融亜鉛めっき鋼板である。
The structure for solving the above-mentioned problem is as follows. (1) In the first invention, C: 0.06 to 0.18%, Si: 1.5% by weight
%, Mn: 1.4-2.3%, Cr: 0.2-0.6%, P: 0.05%
Hereinafter, Sol. Al: 0.010 to 0.100%, S: 0.01% or less, N: 0.
A cold rolled steel sheet containing not more than 01% is used as a base material, and the steel sheet structure has a total area ratio of 5% or more of a martensite phase, a bainite phase and a retained austenite phase, and the balance consists of a ferrite phase and a pearlite structure. High strength hot-dip galvanized steel sheet with excellent material stability.

【0012】(2)第二発明は、重量%で、C:0.06〜0.18
%、Si:1.5%以下、Mn:1.4〜2.3%、Cr:0.2〜0.6
%、P:0.05%以下、Sol.Al:0.010〜0.100%、S:0.01
%以下、N:0.01%以下を含有する冷延鋼板を下地と
し、その鋼板組織がマルテンサイト相とベイナイト相と
残留オーステナイト相の合計で面積率5%以上を有し、
残部がフェライト相とパーライト組織から成ることを特
徴とする、材質安定性に優れた高強度合金化溶融亜鉛め
っき鋼板である。
(2) In the second invention, C: 0.06 to 0.18 by weight%
%, Si: 1.5% or less, Mn: 1.4 to 2.3%, Cr: 0.2 to 0.6
%, P: 0.05% or less, Sol. Al: 0.010 to 0.100%, S: 0.01
% Or less, N: 0.01% or less of the cold rolled steel sheet as a base, the structure of the steel sheet has a martensite phase, a bainite phase and a residual austenite phase having a total area ratio of 5% or more,
A high-strength alloyed hot-dip galvanized steel sheet excellent in material stability, characterized in that the balance consists of a ferrite phase and a pearlite structure.

【0013】(3)第三発明は、重量%で、C:0.06〜0.18
%、Si:1.5%以下、Mn:1.4〜2.3%、Cr:0.2〜0.6
%、P:0.05%以下、Sol.Al:0.010〜0.100%、S:0.01
%以下、N:0.01%以下を含有する鋼を、熱間圧延、酸
洗、冷間圧延した後、連続溶融亜鉛めっきラインで焼
鈍、溶融亜鉛めっきを施し、溶融亜鉛めっき鋼板を製造
する工程において、連続溶融亜鉛めっきラインにおける
焼鈍温度をAc1点以上、焼鈍時間を30sec以上90sec以
下、焼鈍後570℃以下まで平均冷却速度を5℃/sec以上と
し、その後570℃以下390℃以上の温度域に40sec以上留
まることを特徴とする、材質安定性に優れた高強度溶融
亜鉛めっき鋼板の製造方法である。
(3) In the third invention, C: 0.06 to 0.18 by weight%.
%, Si: 1.5% or less, Mn: 1.4 to 2.3%, Cr: 0.2 to 0.6
%, P: 0.05% or less, Sol. Al: 0.010 to 0.100%, S: 0.01
% Or less, N: 0.01% or less, hot-rolled, pickled, cold-rolled, then annealed and galvanized in a continuous hot-dip galvanizing line to produce hot-dip galvanized steel sheet , The annealing temperature in the continuous hot-dip galvanizing line is 1 point or more of Ac, the annealing time is 30 seconds or more and 90 seconds or less, and the average cooling rate is 5 degrees C / sec or more to 570 degrees C or less after annealing, and then the temperature range is 570 degrees C or less and 390 degrees C or more. A method for producing a high-strength hot-dip galvanized steel sheet having excellent material stability, characterized by staying for 40 seconds or more.

【0014】(4)第四発明は、前記の第三発明におい
て、めっき後皮膜の合金化を行うことを特徴とする、材
質安定性に優れた高強度合金化溶融亜鉛めっき鋼板の製
造方法である。
(4) The fourth invention is the method for producing a high-strength alloyed hot-dip galvanized steel sheet having excellent material stability according to the third invention, wherein the coating after plating is alloyed. is there.

【0015】以下に本発明を詳細に説明する。まず、本
発明の鋼板成分の限定理由について述べる。
Hereinafter, the present invention will be described in detail. First, the reasons for limiting the steel sheet components of the present invention will be described.

【0016】C:0.06〜0.18% Cは、鋼の強度を確保するとともに、焼入性を高め、複
合組織を形成するために必要不可欠な成分である。上記
の効果を得るため0.06%を下限とする。しかし、Cの過
剰な添加は溶接性および耐遅れ破壊性を劣化させるた
め、上限を0.18%とする。
C: 0.06 to 0.18% C is an indispensable component for securing the strength of the steel, increasing the hardenability, and forming a composite structure. To obtain the above effects, the lower limit is set to 0.06%. However, excessive addition of C deteriorates weldability and delayed fracture resistance, so the upper limit is made 0.18%.

【0017】Si:1.5%以下 Siは、鋼の強度を確保するとともに、焼入性を高め、複
合組織を形成するために有用な成分である。しかし、過
剰に添加すると、めっきの濡れ性と合金化処理性を劣化
させるため、上限を1.5%とする。
Si: 1.5% or less Si is a component useful for securing the strength of steel, increasing hardenability, and forming a composite structure. However, if added excessively, the wettability of the plating and the alloying property are deteriorated, so the upper limit is made 1.5%.

【0018】Mn:1.4〜2.3% Mnは、固溶強化、結晶粒細粒化強化により鋼板の強度と
靭性を向上させるために必要な成分である。また、オー
ステナイト相を安定化させ、ベイナイト相、マルテンサ
イト相を生成して、鋼板組織を複合組織にする作用もあ
る。本発明では、上記の効果を得るために下限を1.4%
とした。また、2.3%越えて添加しても、効果が飽和し
製造コストが高くなるため、上限を2.3%とする。
Mn: 1.4 to 2.3% Mn is a component necessary for improving the strength and toughness of the steel sheet by solid solution strengthening and grain refinement strengthening. It also has the effect of stabilizing the austenite phase, generating the bainite phase and the martensite phase, and turning the steel sheet structure into a composite structure. In the present invention, in order to obtain the above effect, the lower limit is 1.4%
And Further, even if added in excess of 2.3%, the effect is saturated and the production cost increases, so the upper limit is made 2.3%.

【0019】Cr:0.2〜0.6% Crは、Mnと同様にオーステナイト相を安定化させ、複合
組織の生成を容易にする。また、本発明の特徴である、
巻取温度の変動に対する材質の安定性は、Crの含有量を
最適にすることによって得られる。この作用のメカニズ
ムは不明であるが、C-Mn-Cr鋼の連続冷却変態挙動に関
わっているものと推定される。Crの含有量が0.2%未満
あるいは0.6%より大きいと、巻取温度の変動に対する
材質安定性が発揮されないため、下限を0.2%、上限を
0.6%とする。
Cr: 0.2-0.6% Cr stabilizes the austenite phase like Mn and facilitates the formation of a composite structure. Further, the feature of the present invention,
The stability of the material with respect to the fluctuation of the winding temperature can be obtained by optimizing the Cr content. The mechanism of this action is unknown, but is presumed to be involved in the continuous cooling transformation behavior of C-Mn-Cr steel. If the Cr content is less than 0.2% or more than 0.6%, material stability against fluctuations in the winding temperature will not be exhibited.
0.6%.

【0020】P:0.05%以下 Pは、オーステナイト相を安定化させる効果があるが、
反面、鋼板の加工性、めっき密着性およびめっき皮膜の
合金化処理性を劣化させる。0.05%を越えて添加する
と、鋼板の加工性、めっき密着性およびめっき皮膜の合
金化処理性が劣化するため、上限を0.05%とする。
P: 0.05% or less P has the effect of stabilizing the austenite phase.
On the other hand, it deteriorates the workability of the steel sheet, the plating adhesion, and the alloying property of the plating film. If the addition exceeds 0.05%, the workability of the steel sheet, the plating adhesion and the alloying property of the plating film deteriorate, so the upper limit is made 0.05%.

【0021】Sol.Al:0.010〜0.100% Alは、鋼の脱酸を目的として添加されるが、所望の効果
を得るために下限を0.010%とし、上限はこれ以上添加
しても効果が飽和するため0.100%とする。
Sol. Al: 0.010% to 0.100% Al is added for the purpose of deoxidizing steel, but the lower limit is set to 0.010% in order to obtain a desired effect, and the upper limit is saturated even if added more. 0.100% in order to perform

【0022】S:0.01%以下 Sは、加工性の面で低い方が望ましく、上限を0.01%と
する。
S: 0.01% or less S is desirably low in terms of workability, and the upper limit is made 0.01%.

【0023】N:0.01%以下 Nも、加工性の面で低い方が望ましく、上限を0.01%と
する。
N: 0.01% or less N is desirably low in terms of workability, and the upper limit is made 0.01%.

【0024】また、上記で限定していない成分について
も、鋼の連続冷却変態挙動を大きく変化させない量であ
れば、鋼板中に含有してもよい。
The components not limited to the above may be contained in the steel sheet as long as they do not significantly change the continuous cooling transformation behavior of the steel.

【0025】マルテンサイト相とベイナイト相と残留オ
ーステナイト相の合計の面積率:5%以上 本発明の鋼板は、鋼板組織を複合組織とすることで、高
い強度と延性および低い降伏比を実現している。マルテ
ンサイト相とベイナイト相と残留オーステナイト相の合
計の面積率(以下、硬質相の面積率と標記する)が5%
未満では、上記の効果が不十分であるため、下限を5%
とする。
The total area ratio of the martensite phase, the bainite phase, and the retained austenite phase: 5% or more The steel sheet of the present invention realizes high strength, ductility, and a low yield ratio by forming the steel sheet into a composite structure. I have. 5% of total area ratio of martensite phase, bainite phase and retained austenite phase (hereinafter, referred to as area ratio of hard phase)
If it is less than 5%, the above effect is insufficient, so the lower limit is 5%.
And

【0026】次に、本発明の鋼板の製造条件の限定理由
について述べる。 焼鈍温度:Ac1点以上 本発明では、高強度高延性かつ低降伏比の鋼板を得るた
めに、鋼板組織が複合組織になる必要がある。そのため
には、焼鈍中にオーステナイト相が生成している必要が
ある。このオーステナイト相の一部が、その後の冷却過
程でベイナイト相、次いでマルテンサイト相に変態し、
複合組織となる。焼鈍温度がAc1点未満では、オーステ
ナイト相が生成せず、前記の作用が働かないので、下限
をAc1点とする。
Next, the reasons for limiting the manufacturing conditions of the steel sheet of the present invention will be described. Annealing temperature: Ac 1 point or more In the present invention, in order to obtain a steel sheet having high strength, high ductility and a low yield ratio, the steel sheet structure needs to be a composite structure. For that purpose, an austenite phase needs to be generated during annealing. Part of this austenite phase transforms into a bainite phase and then a martensite phase in the subsequent cooling process,
Becomes a composite organization. If the annealing temperature is lower than the Ac 1 point, the austenitic phase is not formed and the above-mentioned action does not work, so the lower limit is set to the Ac 1 point.

【0027】焼鈍時間:30〜90sec 前記したように、焼鈍中の鋼板組織はオーステナイト相
を含有する必要があるが、焼鈍時間が30sec未満では、
オーステナイト相の生成は不十分であり、前記の作用の
効果が低下する。また、90secを越えて焼鈍しても、そ
れ以上オーステナイト相の生成が進行しない。したがっ
て、下限を30sec、上限を90secとする。
Annealing time: 30 to 90 sec As described above, the steel sheet structure during annealing needs to contain an austenitic phase.
The formation of the austenite phase is insufficient, and the effect of the above-described action is reduced. Further, even if annealing is performed for more than 90 seconds, the generation of the austenite phase does not proceed any longer. Therefore, the lower limit is 30 seconds and the upper limit is 90 seconds.

【0028】焼鈍温度から570℃までの冷却速度:5℃/s
ec以上 冷却速度が5℃/sec未満では、オーステナイト相からベ
イナイト相およびマルテンサイト相への変態が安定して
起こらず、複合組織の生成が不安定になるため、下限を
5℃/secとする。
Cooling rate from annealing temperature to 570 ° C: 5 ° C / s
If the cooling rate is less than 5 ° C / sec, the transformation from the austenite phase to the bainite phase and the martensite phase does not occur stably, and the formation of the composite structure becomes unstable.
5 ° C / sec.

【0029】570℃以下390℃以上の温度域での滞在時
間:40sec以上 焼鈍後の冷却過程において、570℃以下390℃以上の温度
域に一定時間留まることにより、オーステナイト→ベイ
ナイト変態を進行させ、材質を安定化する。当該温度域
での滞在時間が40sec未満では、オーステナイト→ベイ
ナイト変態が十分に進行しないうちにオーステナイト→
マルテンサイト変態が起こるため、焼鈍後の冷却速度の
変動による材質の変動が大きくなる。そこで、下限を40
secとする。
Residence time in the temperature range of 570 ° C. or less and 390 ° C. or more: 40 seconds or more In the cooling process after annealing, the steel stays in the temperature range of 570 ° C. or less and 390 ° C. or more for a certain time to advance austenite → bainite transformation, Stabilize the material. If the staying time in the temperature range is less than 40 sec, austenite → austenite before bainite transformation does not sufficiently proceed →
Since the martensitic transformation occurs, the fluctuation of the material due to the fluctuation of the cooling rate after annealing increases. Therefore, the lower limit is 40
sec.

【0030】また、本発明の溶融亜鉛めっき鋼板は、必
要に応じてめっき皮膜の合金化処理を行う。合金化処理
の有無、合金化温度および合金化処理後の冷却速度によ
って、本発明の効果は影響を受けない。
The hot dip galvanized steel sheet of the present invention is subjected to an alloying treatment of the plating film if necessary. The effect of the present invention is not affected by the presence or absence of the alloying treatment, the alloying temperature, and the cooling rate after the alloying treatment.

【0031】[0031]

【発明の実施の形態】本発明は、冷延鋼板を下地とし
て、連続式溶融亜鉛めっきラインで溶融亜鉛めっき鋼板
を製造し、またはその後めっき皮膜を合金化して合金化
溶融亜鉛めっき鋼板を製造する場合を対象としている。
本発明の鋼の溶製、熱間圧延、酸洗、冷間圧延、前記で
規定しない溶融亜鉛めっき条件および合金化処理条件等
は特に限定されず、通常行われている方法でよい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is to manufacture a hot-dip galvanized steel sheet by using a cold-rolled steel sheet as a base material in a continuous hot-dip galvanizing line or to alloy a galvanized film thereafter. The case is targeted.
The smelting, hot rolling, pickling, cold rolling, hot-dip galvanizing conditions and alloying treatment conditions and the like not specified above of the steel of the present invention are not particularly limited, and may be conventional methods.

【0032】[0032]

【実施例】本発明の実施例を以下に示す。表1に示す成
分を含み残部が不可避不純物からなる鋼(本発明例:N
o.c,d,e,f,g、比較例:No.a,b,h,i)を実験室で真空溶
解法により溶製し、鋳造して得られた鋳塊を板厚2.6mm
に熱間圧延した。熱間圧延は加熱温度を1250℃、仕上げ
圧延温度は900℃とした。仕上げ圧延後すぐに、鋼板を
一定温度の炉中で1hr保持し、その後炉冷することによ
り、実機でのコイルの巻取をシミュレートした。ここ
で、炉の温度を巻取温度とみなした。炉の温度は480
℃、580℃および640℃とした。その後、酸洗し、さらに
冷間圧延して板厚1.0mm(冷圧率61.5%)の鋼板を得た。
Embodiments of the present invention will be described below. Steel containing the components shown in Table 1 and the balance being unavoidable impurities (Example of the present invention: N
oc, d, e, f, g, Comparative Example: No. a, b, h, i) were melted in a laboratory by a vacuum melting method, and an ingot obtained by casting was obtained with a sheet thickness of 2.6 mm.
Hot-rolled. In the hot rolling, the heating temperature was 1250 ° C, and the finish rolling temperature was 900 ° C. Immediately after the finish rolling, the steel sheet was held in a furnace at a constant temperature for 1 hour, and then cooled in the furnace to simulate coil winding in an actual machine. Here, the furnace temperature was regarded as the winding temperature. Furnace temperature is 480
° C, 580 ° C and 640 ° C. Thereafter, the steel sheet was pickled and cold-rolled to obtain a steel sheet having a thickness of 1.0 mm (cooling ratio 61.5%).

【0033】[0033]

【表1】 [Table 1]

【0034】次いで、前記で得た鋼板を用い、実験室に
おいて溶融亜鉛めっきを施した。製造条件は連続式溶融
亜鉛めっきラインをシミュレートし、表2、表3に示し
た条件で、焼鈍、冷却、保持、両面への溶融めっき、ガ
スワイピングを行い、一部のサンプルについては、引き
続き合金化処理を施した。めっき浴の温度は465℃とし
た。めっき付着量は、片面当たり60g/m2程度になるよう
にした。また、合金化処理条件は、皮膜中のFe濃度が9
〜11wt%になるように調整した。合金化処理後、室温ま
で冷却した。
Next, the steel sheet obtained above was subjected to hot-dip galvanizing in a laboratory. The production conditions simulate a continuous hot-dip galvanizing line, annealing, cooling, holding, hot-dip galvanizing on both sides, and gas wiping under the conditions shown in Tables 2 and 3. An alloying treatment was performed. The temperature of the plating bath was 465 ° C. The coating weight was set to be about 60 g / m 2 per one side. The alloying conditions were such that the Fe concentration in the coating was 9%.
It was adjusted to be about 11% by weight. After the alloying treatment, it was cooled to room temperature.

【0035】このようにして作製した供試材の材質を、
圧延方向と直角に切り出したJIS-5号引張試験片によっ
て測定した。また、鋼板組織を調査し、硬質相の面積率
を調査した。
The material of the test material thus manufactured is
It was measured using a JIS-5 tensile test piece cut out at right angles to the rolling direction. Further, the structure of the steel sheet was investigated, and the area ratio of the hard phase was investigated.

【0036】材質の巻取温度依存性の評価は以下のよう
に行った。同一の鋼を用い、巻取温度以外の製造条件を
全て同じにして、巻取温度のみを変えた溶融亜鉛めっき
鋼板を作製した。このうち、巻取温度を640℃および480
℃とした溶融亜鉛めっき鋼板の引張強度の差(=ΔTS)
を求め、これを材質の巻取温度依存性の指標として用い
た。すなわち、ΔTSの絶対値が小さいほど、材質の巻取
温度依存性が小さく、巻取温度の変動に対する材質安定
性に優れていることになる。本発明においては、引張強
度(TS)が45kg/mm2以上、引張強度(TS)×全伸び(El)の値
が1650(kg/mm2・%)以上、降伏比(YR)が65%以下でか
つΔTSの絶対値が18kg/mm2以下の鋼板を合格とした。
The evaluation of the dependence of the material on the winding temperature was performed as follows. A hot-dip galvanized steel sheet was produced using the same steel, except that all the production conditions except the winding temperature were the same. Of these, the winding temperature was 640 ° C and 480 ° C.
Difference in tensile strength of hot-dip galvanized steel sheet at ℃ (= ΔTS)
And used as an index of the dependence of the material on the winding temperature. That is, the smaller the absolute value of ΔTS is, the smaller the dependency of the material on the winding temperature is, and the more excellent the material stability is against the fluctuation of the winding temperature. In the present invention, the tensile strength (TS) is 45 kg / mm 2 or more, the value of tensile strength (TS) × total elongation (El) is 1650 (kg / mm 2 ·%) or more, and the yield ratio (YR) is 65%. A steel sheet having a value of not more than 18 and an absolute value of ΔTS of not more than 18 kg / mm 2 was accepted.

【0037】表2、表3に実施例の製造条件と材質の測
定値、硬質相の面積率を示した。
Tables 2 and 3 show the manufacturing conditions and the measured values of the materials and the area ratio of the hard phase in the examples.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】図1に、鋼中Cr含有量と引張強度の巻取温
度依存性との関係を示した。表2、表3の実験No.7〜2
1、28〜36は本発明例である。いずれも、硬質相の面積
率は5%以上、引張強度(TS)は45kg/mm2以上、引張強度
(TS)と全伸び(El)の積は1650(kg/mm2・%)以上で、
降伏比(YR)は65%以下であった。また、ΔTSの絶対値
は18kg/mm2以下であった。
FIG. 1 shows the relationship between the Cr content in steel and the dependence of the tensile strength on the winding temperature. Experiment Nos. 7 and 2 in Tables 2 and 3
1, 28 to 36 are examples of the present invention. In each case, the area ratio of the hard phase is 5% or more, the tensile strength (TS) is 45 kg / mm 2 or more, and the product of the tensile strength (TS) and the total elongation (El) is 1650 (kg / mm 2 ·%) or more. ,
The yield ratio (YR) was less than 65%. Further, the absolute value of ΔTS was 18 kg / mm 2 or less.

【0041】実験No.7〜21は、鋼中のCr含有量を変化さ
せた例である。ΔTSの値は、鋼中Cr濃度が高いほど大き
くなり、ΔTSの絶対値は供試材No.e(Cr濃度:0.40wt
%)が最小であった。
Experiment Nos. 7 to 21 are examples in which the Cr content in steel was changed. The value of ΔTS increases as the Cr concentration in the steel increases, and the absolute value of ΔTS is the test material No.e (Cr concentration: 0.40wt
%) Was the smallest.

【0042】実験No.28〜30は、皮膜の合金化を行わな
かった場合である。同じ条件で合金化を行った場合(実
験No.13〜15)と比較して、材質(TS,El,YP,YR)および
巻取温度依存性(ΔTS)はほぼ同じであった。
Experiment Nos. 28 to 30 are the cases where alloying of the film was not performed. The material (TS, El, YP, YR) and the winding temperature dependency (ΔTS) were almost the same as compared to the case where alloying was performed under the same conditions (Experiment Nos. 13 to 15).

【0043】実験No.31〜33は、焼鈍温度を770℃とした
場合である。同じ条件で焼鈍温度850℃の場合(実験No.
13〜15)と比較して、TSは高くなっているが、ΔTSはほ
ぼ同じであった。焼鈍温度850℃の場合と比較してTSが
高くなった理由は、焼鈍中に鋼板の結晶が十分成長せ
ず、冷却後の結晶粒径が小さくなったためと考えられ
る。
Experiment Nos. 31 to 33 are the cases where the annealing temperature was 770 ° C. In the case of annealing temperature 850 ° C under the same conditions (Experiment No.
Compared with 13-15), TS was higher, but ΔTS was almost the same. It is considered that the reason why the TS was increased as compared with the case where the annealing temperature was 850 ° C. was that the crystals of the steel sheet did not grow sufficiently during annealing and the crystal grain size after cooling became small.

【0044】実験No.34〜36は、焼鈍後の冷却速度を変
えた例である。同じ条件で冷却速度が7℃/secの場合
(実験No.13〜15)と比べて、TSはやや高くなってい
た。これは、硬質相の面積率が、大きくなったためと推
定される。
Experiment Nos. 34 to 36 are examples in which the cooling rate after annealing was changed. The TS was slightly higher than when the cooling rate was 7 ° C./sec under the same conditions (Experiment Nos. 13 to 15). This is presumably because the area ratio of the hard phase has increased.

【0045】実験No.1〜6、22〜27、37は比較例であ
る。実験No.1〜3は、鋼中にCrを含まないため、焼鈍後
の鋼板が複合組織にならず、硬質相は観察されなかっ
た。材質はYRが65%よりも高く、TS×Elの値は1650(kg/
mm2・%)未満であった。
Experiment Nos. 1 to 6, 22 to 27 and 37 are comparative examples. In Experiments Nos. 1 to 3, since the steel did not contain Cr, the steel sheet after annealing did not have a composite structure, and no hard phase was observed. The material has a YR higher than 65% and a TS × El value of 1650 (kg /
mm 2 %).

【0046】実験No.4〜6は、鋼中のCr含有量が0.2%未
満であったため、ΔTSの絶対値が18kg/mm2より大きかっ
た。
In Experiments Nos. 4 to 6, the absolute value of ΔTS was greater than 18 kg / mm 2 because the Cr content in the steel was less than 0.2%.

【0047】実験No.22〜27は、鋼中のCr含有量が0.6%
を越えていたため、ΔTSの絶対値が18kg/mm2より大きか
った。
In Experiments Nos. 22 to 27, the Cr content in steel was 0.6%.
Therefore, the absolute value of ΔTS was larger than 18 kg / mm 2 .

【0048】実験No.37は、焼鈍後の冷却速度が小さか
ったため、鋼板が複合組織にならず、硬質相は観察され
なかった。材質はYRが65%よりも高く、TS×Elの値は16
50(kg/mm2・%)未満であった。
In Experiment No. 37, since the cooling rate after annealing was low, the steel sheet did not have a composite structure, and no hard phase was observed. The material has a YR higher than 65% and a TS × El value of 16
It was less than 50 (kg / mm 2 ·%).

【0049】[0049]

【発明の効果】以上に示したように、本発明によって、
鋼板中に複合組織を有するため強度−延性バランスに優
れ、また降伏比が低く、プレス成形性に優れた高強度溶
融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を安
定して得ることができる。本発明の鋼板は、表面に溶融
亜鉛めっき皮膜または合金化溶融亜鉛めっき皮膜を有し
ているために耐食性に優れ、高強度でかつプレス成形性
に優れているため、自動車部品をはじめ多くの用途に使
用することができる。
As described above, according to the present invention,
Since the steel sheet has a composite structure, a high strength hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having excellent strength-ductility balance, low yield ratio, and excellent press formability can be obtained stably. Since the steel sheet of the present invention has a hot-dip galvanized film or an alloyed hot-dip galvanized film on its surface, it has excellent corrosion resistance, and has high strength and excellent press formability. Can be used for

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼中Cr含有量と引張強度の巻取温度依存性の関
係を示す図である。
FIG. 1 is a diagram showing the relationship between the Cr content in steel and the dependence of tensile strength on the winding temperature.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.06〜0.18%、Si:1.5%
以下、Mn:1.4〜2.3%、Cr:0.2〜0.6%、P:0.05%以
下、Sol.Al:0.010〜0.100%、S:0.01%以下、N:0.01
%以下を含有する冷延鋼板を下地とし、その鋼板組織が
マルテンサイト相とベイナイト相と残留オーステナイト
相の合計で面積率5%以上を有し、残部がフェライト相
とパーライト組織から成ることを特徴とする、材質安定
性に優れた高強度溶融亜鉛めっき鋼板。
C .: 0.06 to 0.18%, Si: 1.5% by weight%
Mn: 1.4 to 2.3%, Cr: 0.2 to 0.6%, P: 0.05% or less, Sol. Al: 0.010 to 0.100%, S: 0.01% or less, N: 0.01
% Of a cold-rolled steel sheet containing at most 5% by weight of a martensite phase, a bainite phase, and a retained austenite phase, and the balance consists of a ferrite phase and a pearlite structure. High strength galvanized steel sheet with excellent material stability.
【請求項2】 重量%で、C:0.06〜0.18%、Si:1.5%
以下、Mn:1.4〜2.3%、Cr:0.2〜0.6%、P:0.05%以
下、Sol.Al:0.010〜0.100%、S:0.01%以下、N:0.01
%以下を含有する冷延鋼板を下地とし、その鋼板組織が
マルテンサイト相とベイナイト相と残留オーステナイト
相の合計で面積率5%以上を有し、残部がフェライト相
とパーライト組織から成ることを特徴とする、材質安定
性に優れた高強度合金化溶融亜鉛めっき鋼板。
2. In% by weight, C: 0.06-0.18%, Si: 1.5%
Mn: 1.4 to 2.3%, Cr: 0.2 to 0.6%, P: 0.05% or less, Sol. Al: 0.010 to 0.100%, S: 0.01% or less, N: 0.01
% Of a cold-rolled steel sheet containing at most 5% by weight of a martensite phase, a bainite phase, and a retained austenite phase, and the balance consists of a ferrite phase and a pearlite structure. High strength alloyed hot-dip galvanized steel sheet with excellent material stability.
【請求項3】 重量%で、C:0.06〜0.18%、Si:1.5%
以下、Mn:1.4〜2.3%、Cr:0.2〜0.6%、P:0.05%以
下、Sol.Al:0.010〜0.100%、S:0.01%以下、N:0.01
%以下を含有する鋼を、熱間圧延、酸洗、冷間圧延した
後、連続溶融亜鉛めっきラインにて焼鈍し、引き続き溶
融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する工
程において、連続溶融亜鉛めっきラインにおける焼鈍温
度をAc 1点以上、焼鈍時間を30sec以上90sec以下、焼鈍
温度から570℃までの平均冷却速度を5℃/sec以上とし、
その後570℃以下390℃以上の温度域に40sec以上留まる
ことを特徴とする、材質安定性に優れた高強度溶融亜鉛
めっき鋼板の製造方法。
3. C: 0.06 to 0.18%, Si: 1.5% by weight
Mn: 1.4 to 2.3%, Cr: 0.2 to 0.6%, P: 0.05% or less
Bottom, Sol. Al: 0.010 to 0.100%, S: 0.01% or less, N: 0.01
%, Hot-rolled, pickled, cold-rolled
After that, it is annealed in a continuous hot-dip galvanizing line,
A process to manufacture hot-dip galvanized steel sheet by applying hot-dip galvanizing
The annealing temperature in the continuous hot-dip galvanizing line
Ac degree 1Annealing point, annealing time 30sec or more and 90sec or less, annealing
The average cooling rate from temperature to 570 ° C is 5 ° C / sec or more,
After that, stay in the temperature range below 570 ℃ and above 390 ℃ for more than 40sec
High strength molten zinc with excellent material stability
Manufacturing method of plated steel sheet.
【請求項4】 請求項3において、めっき後皮膜の合金
化を行うことを特徴とする、材質安定性に優れた高強度
合金化溶融亜鉛めっき鋼板の製造方法。
4. The method for producing a high-strength alloyed hot-dip galvanized steel sheet according to claim 3, wherein the film after plating is alloyed.
JP10458798A 1998-04-15 1998-04-15 High strength hot dip galvanized steel sheet, galvannealed steel sheet, and their production Pending JPH11293396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10458798A JPH11293396A (en) 1998-04-15 1998-04-15 High strength hot dip galvanized steel sheet, galvannealed steel sheet, and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10458798A JPH11293396A (en) 1998-04-15 1998-04-15 High strength hot dip galvanized steel sheet, galvannealed steel sheet, and their production

Publications (1)

Publication Number Publication Date
JPH11293396A true JPH11293396A (en) 1999-10-26

Family

ID=14384579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10458798A Pending JPH11293396A (en) 1998-04-15 1998-04-15 High strength hot dip galvanized steel sheet, galvannealed steel sheet, and their production

Country Status (1)

Country Link
JP (1) JPH11293396A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303185A (en) * 2000-04-27 2001-10-31 Kawasaki Steel Corp High tensile strength cold rolled steel sheet excellent in ductility and strain age hardening characteristic and method for producing high tensile strength cold rolled steel sheet
JP2002146502A (en) * 2000-08-28 2002-05-22 Nippon Steel Corp Galvanized high strength steel having good appearance
EP1227167A1 (en) * 2000-01-24 2002-07-31 Nkk Corporation Hot dip zinc plated steel sheet and method for producing the same
JP2008144239A (en) * 2006-12-12 2008-06-26 Nippon Steel Corp Steel sheet to be hot-dip galvannealed and hot-dip galvannealed steel sheet
EP2444510A1 (en) * 2009-06-17 2012-04-25 JFE Steel Corporation High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
JP2012167363A (en) * 2011-01-26 2012-09-06 Jfe Steel Corp Method of manufacturing cold rolled steel plate
WO2013051714A1 (en) * 2011-10-06 2013-04-11 新日鐵住金株式会社 Steel plate and method for producing same
WO2013189474A1 (en) * 2012-06-22 2013-12-27 Salzgitter Flachstahl Gmbh High-strength multiphase steel and method for producing a strip made from this steel with a minimum tensile strength of 580 mpa
EP2834383A1 (en) * 2012-04-05 2015-02-11 Tata Steel IJmuiden B.V. Steel strip having a low si content

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227167A1 (en) * 2000-01-24 2002-07-31 Nkk Corporation Hot dip zinc plated steel sheet and method for producing the same
EP1227167A4 (en) * 2000-01-24 2003-03-19 Nippon Kokan Kk Hot dip zinc plated steel sheet and method for producing the same
JP2001303185A (en) * 2000-04-27 2001-10-31 Kawasaki Steel Corp High tensile strength cold rolled steel sheet excellent in ductility and strain age hardening characteristic and method for producing high tensile strength cold rolled steel sheet
WO2001083839A1 (en) * 2000-04-27 2001-11-08 Kawasaki Steel Corporation High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
KR100592211B1 (en) * 2000-04-27 2006-06-23 제이에프이 스틸 가부시키가이샤 High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
JP4524850B2 (en) * 2000-04-27 2010-08-18 Jfeスチール株式会社 High-tensile cold-rolled steel sheet with excellent ductility and strain age hardening characteristics and method for producing high-tensile cold-rolled steel sheet
JP2002146502A (en) * 2000-08-28 2002-05-22 Nippon Steel Corp Galvanized high strength steel having good appearance
JP2008144239A (en) * 2006-12-12 2008-06-26 Nippon Steel Corp Steel sheet to be hot-dip galvannealed and hot-dip galvannealed steel sheet
EP2444510A4 (en) * 2009-06-17 2013-03-20 Jfe Steel Corp High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
US9580785B2 (en) 2009-06-17 2017-02-28 Jfe Steel Corporation High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
EP2444510A1 (en) * 2009-06-17 2012-04-25 JFE Steel Corporation High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
US8968494B2 (en) 2009-06-17 2015-03-03 Jfe Steel Corporation High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
JP2012167363A (en) * 2011-01-26 2012-09-06 Jfe Steel Corp Method of manufacturing cold rolled steel plate
JP5365758B2 (en) * 2011-10-06 2013-12-11 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
WO2013051714A1 (en) * 2011-10-06 2013-04-11 新日鐵住金株式会社 Steel plate and method for producing same
US10538830B2 (en) 2011-10-06 2020-01-21 Nippon Steel Corporation Steel sheet and method of producing the same
EP2834383A1 (en) * 2012-04-05 2015-02-11 Tata Steel IJmuiden B.V. Steel strip having a low si content
JP2015517033A (en) * 2012-04-05 2015-06-18 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Low Si content steel strip
EP2834383B1 (en) * 2012-04-05 2021-07-21 Tata Steel IJmuiden B.V. Steel strip having a low si content
WO2013189474A1 (en) * 2012-06-22 2013-12-27 Salzgitter Flachstahl Gmbh High-strength multiphase steel and method for producing a strip made from this steel with a minimum tensile strength of 580 mpa
KR20150023567A (en) * 2012-06-22 2015-03-05 잘쯔기터 플래시슈탈 게엠베하 High-strength multiphase steel and method for producing a strip made from this steel with a minimum tensile strength of 580 mpa
RU2627068C2 (en) * 2012-06-22 2017-08-03 Зальцгиттер Флахшталь Гмбх HIGH-STRENGTH MULTI-PHASE STEEL AND METHOD FOR STRIP MANUFACTURE FROM THIS STEEL WITH MINIMUM TENSILE STRENGTH AT 580 MPa

Similar Documents

Publication Publication Date Title
JP5413546B2 (en) High strength thin steel sheet and method for producing the same
EP1571229B1 (en) High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
JP5651964B2 (en) Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
KR20180016518A (en) Alloying hot-dip galvanized steel sheet and manufacturing method thereof
JPWO2017164346A1 (en) High strength steel plate and high strength galvanized steel plate
CA2601497C (en) Galvannealed steel sheet and method for producing the same
WO2013047830A1 (en) High-strength hot-dipped galvanized steel sheet and high-strength alloyed hot-dipped galvanized steel sheet, each having tensile strength of 980 mpa or more, excellent plating adhesion, excellent formability and excellent bore expanding properties, and method for producing same
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP2005320561A (en) High-strength hot-dip galvanized steel sheet superior in spot weldability and quality stability of material
JP2013076137A (en) High strength hot-dip galvanized steel sheet excellent in plating adhesion and formability, and manufacturing method therefor
JPWO2020203943A1 (en) Galvanized steel sheet and its manufacturing method
KR20190022786A (en) High strength steel sheet and manufacturing method thereof
CN113195772B (en) High-strength cold-rolled steel sheet having excellent bending workability and method for producing same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2009167475A (en) High-strength steel sheet and producing method thereof
JP5953695B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JP4325508B2 (en) High tensile hot dip galvanized steel sheet and manufacturing method
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JPH11131145A (en) Production of high strength and high ductility hot-dip galvanized steel sheet
JPWO2014178358A1 (en) Galvanized steel sheet and manufacturing method thereof
JPH11293396A (en) High strength hot dip galvanized steel sheet, galvannealed steel sheet, and their production
JP2012082499A (en) Hot-dipped steel sheet and method for producing the same