[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11275783A - Permanent magnet embedded rotor - Google Patents

Permanent magnet embedded rotor

Info

Publication number
JPH11275783A
JPH11275783A JP10072122A JP7212298A JPH11275783A JP H11275783 A JPH11275783 A JP H11275783A JP 10072122 A JP10072122 A JP 10072122A JP 7212298 A JP7212298 A JP 7212298A JP H11275783 A JPH11275783 A JP H11275783A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
embedding
embedded
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10072122A
Other languages
Japanese (ja)
Inventor
Yoshinari Asano
能成 浅野
Masayuki Shindo
正行 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10072122A priority Critical patent/JPH11275783A/en
Publication of JPH11275783A publication Critical patent/JPH11275783A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a higher efficient permanent magnet motor by fully and effectively utilizing a reluctance torque, without decreasing the magnetic flux by a permanent magnet. SOLUTION: In a rotor 11, a flat part 16 is provided outside an arc of a punched hole for embedding a permanent magnet located at the inner-periphery side of the rotor, and a magnetic path width Xb of a magnetic path 15b that exists between areas near the surface of a rotor core 12 of punched holes 13a and 13b for embedding a permanent magnet in two layers within the same magnetic pole is nearly the same as a magnetic path width X of a magnetic path 15c, that exists between areas near the rotor core surface of the punched hole for embedded a permanent magnet which is located at the inner-periphery side of an adjacent magnetic pole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、マグネットトル
クのみならず、リラクタンストルクをも有効利用するこ
とにより、モータ効率を向上させる永久磁石埋め込みロ
ータの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a permanent magnet embedded rotor for improving motor efficiency by effectively utilizing not only magnet torque but also reluctance torque.

【0002】[0002]

【従来の技術】従来より、ロータコア内部に永久磁石を
埋め込むことにより、マグネットトルクに、リラクタン
ストルクを併せて利用することにより、高効率を実現す
る永久磁石モータが知られている。図9は、特開平8−
331783号公報に掲載された永久磁石モータの断面
図を示している。ロータ51は略円環状のステータ(図
示せず)と略同軸の略円筒形状であり、ステータ内周面
に対向して4個の磁極を有し、軸2を中心として自在に
回転するよう軸受などにより支持されている。ロータコ
ア52は鉄などの高透磁率材または積層された電磁鋼板
からなり、ロータ内周側に凸の円弧形状の永久磁石埋設
用打抜き穴53a,53bを、1極あたり半径方向に2
層に有し、前記永久磁石埋設用打抜き穴53a,53b
にはそれぞれ永久磁石54a,54bが埋設される。ロ
ータ51は、ステータに3相巻線として施された巻線に
流れる電流により形成される回転磁界にロータの磁極が
吸引または反発することにより回転している。
2. Description of the Related Art Conventionally, a permanent magnet motor that realizes high efficiency by embedding a permanent magnet in a rotor core and using a magnet torque in combination with a reluctance torque has been known. FIG.
1 is a cross-sectional view of a permanent magnet motor disclosed in Japanese Patent No. 331783. The rotor 51 has a substantially cylindrical shape that is substantially coaxial with a substantially annular stator (not shown), has four magnetic poles facing the inner peripheral surface of the stator, and has a bearing that rotates freely around the shaft 2. Supported by such. The rotor core 52 is made of a high magnetic permeability material such as iron or laminated electromagnetic steel plates, and has a circular arc-shaped punched hole 53a, 53b for embedding permanent magnets on the inner peripheral side of the rotor.
Punch holes 53a, 53b for burying permanent magnets
Are embedded with permanent magnets 54a and 54b, respectively. The rotor 51 is rotated by a magnetic pole of the rotor being attracted or repelled to a rotating magnetic field formed by a current flowing through a winding formed as a three-phase winding on the stator.

【0003】本構成において、同一磁極内の2層の永久
磁石埋設用打抜き穴53a,53bの間に鉄55bの磁
路が存在するため、ロータ磁極に直交して貫く磁束の通
り易さLd(d軸インダクタンスという)と、ロータ磁
極の境目を貫く磁束の通り易さLq(q軸インダクタン
スという)との間に、Ld<Lqの関係が成立する。永
久磁石埋設用打抜き穴の1極当たり層数は、Lq−L
d、トルク、マグネット磁束などの値において、2層で
飽和し、3層以上としても増加しないことは、特開平8
−331783号公報で述べた通りである。
In this configuration, since a magnetic path of iron 55b exists between the two layers of punched holes for embedding permanent magnets 53a and 53b in the same magnetic pole, the magnetic flux passing through the rotor magnetic pole at right angles Ld ( Ld <Lq holds between d-axis inductance) and the ease Lq (q-axis inductance) of the magnetic flux passing through the boundary between the rotor magnetic poles. The number of layers per pole of the punched hole for embedding permanent magnets is Lq-L
It is disclosed in Japanese Patent Application Laid-Open No. Hei 8 (1994) that values such as d, torque, and magnet magnetic flux are saturated in two layers and do not increase even in three or more layers.
As described in JP-A-333183.

【0004】一般に永久磁石モータのトルクは極対数を
Pn、鎖交磁束をψa、固定子巻線電流をI、電流Iの
進み位相角(電気角)をβとすると、T=Pn{ψa・
I・cosβ+0.5(Lq−Ld)I2・sin2
β}で表され、第一項はマグネットトルク(アクティブ
トルク)、第二項はリラクタンストルクを表している。
そこでLd<Lqの関係を満たす時に電流進角制御を行
なうことによりβ>0となりリラクタンストルクが発生
し、βの値を適当に設定することにより、同一電流で、
マグネットトルクのみのときと比べ、より大きいトルク
を発生されることが可能である。
In general, the torque of a permanent magnet motor is T = Pn {ψa ·, where Pn is the number of pole pairs, ψa is the flux linkage, I is the stator winding current, and β is the leading phase angle (electrical angle) of the current I.
I · cosβ + 0.5 (Lq−Ld) I2 · sin2
The first term represents magnet torque (active torque), and the second term represents reluctance torque.
Therefore, when the relationship of Ld <Lq is satisfied, the current advancing control is performed, β> 0, and reluctance torque is generated. By appropriately setting the value of β, the same current can be obtained.
It is possible to generate a larger torque than when only the magnet torque is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記構
成には、次のような欠点があった。
However, the above configuration has the following disadvantages.

【0006】永久磁石の磁極表面積を大きくするため、
ロータ内周側に位置する永久磁石埋設用打抜き穴53a
の円弧半径は十分に大きく構成され、隣接する磁極のロ
ータ内周側に位置する永久磁石埋設用打抜き穴53aの
円弧外側は互いに近接しあっており、十分な磁路が確保
されていなかった。したがって、リラクタンストルクを
十分に利用することはできなかった。
In order to increase the pole surface area of the permanent magnet,
Punched hole 53a for embedding permanent magnets located on inner circumferential side of rotor
The arc radii of the permanent magnets are configured to be sufficiently large, and the outsides of the arcs of the permanent magnet burying punched holes 53a located on the inner peripheral side of the rotor of the adjacent magnetic poles are close to each other, and a sufficient magnetic path has not been secured. Therefore, the reluctance torque could not be fully utilized.

【0007】本発明は、以上の欠点を解決し、永久磁石
による磁束を減少させることなく、リラクタンストルク
を十分に有効に利用し、より効率の高い永久磁石モータ
を提供するものである。
The present invention solves the above-mentioned drawbacks, and provides a highly efficient permanent magnet motor that makes full use of reluctance torque effectively without reducing the magnetic flux generated by the permanent magnet.

【0008】[0008]

【課題を解決するための手段】1極あたり、半径方向に
2層の永久磁石を埋設した永久磁石埋め込みロータにお
いて、同一磁極内の2層の永久磁石埋設用打抜き穴のロ
ータコア表面付近の相互間に存在する鉄の磁路幅が、隣
接する磁極のロータ内周側に位置する永久磁石埋設用打
抜き穴のロータコア表面付近の相互間に存在する鉄の磁
路幅と、略同一とした。
Means for Solving the Problems In a permanent magnet embedded rotor in which two layers of permanent magnets are embedded in the radial direction per pole, a gap between two punched holes for embedding permanent magnets in the same magnetic pole near the surface of the rotor core. The width of the magnetic path of the iron existing in the rotor is substantially the same as the width of the magnetic path of the iron existing between the vicinity of the rotor core surface of the punched hole for embedding the permanent magnet located on the inner circumferential side of the rotor of the adjacent magnetic pole.

【0009】[0009]

【発明の実施の形態】請求項1記載の発明は、鉄などの
高透磁率材または積層された電磁鋼板からなる略円筒形
のロータコア内部に、1極あたり半径方向に2層の永久
磁石埋設用打抜き穴を軸方向に有し、前記永久磁石埋設
用打抜き穴にはそれぞれ1個以上の永久磁石が埋設され
てなる永久磁石埋め込みロータにおいて、前記永久磁石
埋設用打抜き穴の両端がロータコア表面付近まで伸び、
同一磁極内の2層の永久磁石埋設用打抜き穴のロータコ
ア表面付近の相互間に存在する鉄の磁路幅が、隣接する
磁極のロータ内周側に位置する永久磁石埋設用打抜き穴
のロータコア表面付近の相互間に存在する鉄の磁路幅の
最狭部と、略同一である永久磁石埋め込みロータであ
り、同一磁極内の2層の永久磁石埋設用打抜き穴のロー
タコア表面付近の相互間に存在する鉄の磁路のみなら
ず、隣接する磁極のロータ内周側に位置する永久磁石埋
設用打抜き穴のロータコア表面付近の相互間に存在する
鉄の磁路をも有効に利用することができ、リラクタンス
トルクを大きくすることができる。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, two layers of permanent magnets are buried radially per pole in a substantially cylindrical rotor core made of a high magnetic permeability material such as iron or laminated electromagnetic steel sheets. A permanent magnet-embedded rotor having at least one permanent magnet embedded in each of the punched holes for embedding permanent magnets, wherein both ends of the punched hole for embedding permanent magnets are near the rotor core surface. To
The magnetic path width of the iron existing between the two cores in the same magnetic pole near the rotor core surface of the punched holes for embedding permanent magnets is equal to the rotor core surface of the punched holes for embedding permanent magnets located on the inner circumferential side of the rotor of adjacent magnetic poles. The permanent magnet embedded rotor which is substantially the same as the narrowest part of the magnetic path width of the iron existing between adjacent parts, and between the two layers near the rotor core surface of the two-layered permanent magnet embedded punched holes in the same magnetic pole. It is possible to effectively use not only the existing magnetic path of iron but also the magnetic path of iron existing between the vicinity of the rotor core surface of the punched hole for embedding permanent magnets located on the inner peripheral side of the rotor of the adjacent magnetic pole. , The reluctance torque can be increased.

【0010】請求項2記載の発明は、ロータ内周側に位
置する永久磁石埋設用打抜き穴に埋設される永久磁石の
磁極面積が、ロータ外周側に位置する永久磁石埋設用打
抜き穴に埋設される永久磁石の磁極面積より大きい請求
項1記載の永久磁石埋め込みロータであり、ロータ外周
側に位置する永久磁石の端面で無効な短絡磁束の発生を
抑える作用を有する。
According to a second aspect of the present invention, the magnetic pole area of the permanent magnet embedded in the punched hole for embedding the permanent magnet located on the inner peripheral side of the rotor is embedded in the punched hole for embedding the permanent magnet located on the outer peripheral side of the rotor. The permanent magnet-embedded rotor according to claim 1, wherein the permanent magnet has a magnetic pole area larger than the magnetic pole area of the permanent magnet, and has a function of suppressing generation of an ineffective short-circuit magnetic flux at an end face of the permanent magnet located on the outer peripheral side of the rotor.

【0011】請求項3記載の発明は、永久磁石埋設用打
抜き穴が、ロータ内周側に凸である円弧形状である請求
項1記載の永久磁石埋め込みロータであり、永久磁石の
磁極表面積を大きくとることができ、永久磁石による磁
束量を大きくすることができ、2層永久磁石用打抜き穴
の間にある磁路が円弧状となるため、局部的な磁気飽和
を防ぐことができる。
According to a third aspect of the present invention, there is provided the permanent magnet embedded rotor according to the first aspect, wherein the punched hole for embedding the permanent magnet has an arc shape which is convex on the inner peripheral side of the rotor. Therefore, the amount of magnetic flux generated by the permanent magnet can be increased, and the magnetic path between the punched holes for the two-layer permanent magnet has an arc shape, so that local magnetic saturation can be prevented.

【0012】請求項4記載の発明は、永久磁石が永久磁
石埋設用打抜き穴に挿入できる程度の隙間を有したロー
タ内周側に凸である円弧形状である請求項3記載の永久
磁石埋め込みロータであり、永久磁石の磁束を有効に利
用することができる。
According to a fourth aspect of the present invention, there is provided the permanent magnet embedded rotor according to the third aspect, wherein the permanent magnet has an arc shape which is convex toward the inner peripheral side of the rotor and has a gap large enough to be inserted into the hole for embedding the permanent magnet. Thus, the magnetic flux of the permanent magnet can be effectively used.

【0013】請求項5記載の発明は、隣接する磁極のロ
ータ内周側に位置する永久磁石埋設用打抜き穴のロータ
コア表面付近の相互間に存在する鉄の磁路幅が一定とな
るように、永久磁石埋設用打抜き穴の円弧外側の端部付
近に平坦部を設けた請求項3記載の永久磁石埋め込みロ
ータであり、永久磁石の磁極面積を大きく保ったまま
で、隣接する磁極のロータ内周側に位置する永久磁石埋
設用打抜き穴のロータコア表面付近の相互間に存在する
鉄の磁路幅を確保し、リラクタンストルクを大きくする
ことができる。
According to a fifth aspect of the present invention, there is provided a permanent magnet embedding punched hole located on the inner peripheral side of the rotor of adjacent magnetic poles, and a magnetic path width of iron existing near the surface of the rotor core is constant. 4. The permanent magnet-embedded rotor according to claim 3, wherein a flat portion is provided near an end outside the arc of the punched hole for embedding the permanent magnet, and the magnetic pole area of the adjacent permanent magnet is kept large while keeping the magnetic pole area of the permanent magnet large. The magnetic path width of iron existing between the punched holes for embedding permanent magnets located in the vicinity of the rotor core surface can be secured, and the reluctance torque can be increased.

【0014】請求項6記載の発明は、ロータ磁極数Pが
4以上であり、ロータ外径をrとしたとき、前記永久磁
石埋設用打抜き穴の円弧中心が、ロータ中心から0.8
5r/cos(180/P)以下0.7r/cos(1
80/P)以上の位置にある請求項5記載の永久磁石埋
め込みロータであり、永久磁石の磁極面積を大きくする
ことにより、磁束量を多くすることができる。
According to a sixth aspect of the present invention, when the number P of rotor magnetic poles is 4 or more and the outer diameter of the rotor is r, the arc center of the punched hole for embedding the permanent magnet is 0.8 mm from the center of the rotor.
5 r / cos (180 / P) or less 0.7 r / cos (1
80 / P) or higher, wherein the permanent magnet embedded rotor according to claim 5, wherein the amount of magnetic flux can be increased by enlarging the magnetic pole area of the permanent magnet.

【0015】請求項7記載の発明は、永久磁石埋設用打
抜き穴に板状の永久磁石を1または2以上埋設した請求
項1記載の永久磁石埋め込みロータであり、永久磁石が
安価な平板状であるため、効率の高いモータを安価に製
造することができる。
According to a seventh aspect of the present invention, there is provided the permanent magnet embedded rotor according to the first aspect, wherein one or more plate-shaped permanent magnets are embedded in the punched holes for embedding the permanent magnets. Therefore, a highly efficient motor can be manufactured at low cost.

【0016】請求項8記載の発明は、鉄などの高透磁率
材または積層された電磁鋼板からなる略円筒形のロータ
コア内部に、1極あたり半径方向に2層の永久磁石埋設
用打抜き穴を軸方向に有し、前記永久磁石埋設用打抜き
穴にはそれぞれ1個以上の永久磁石が埋設されてなる永
久磁石埋め込みロータにおいて、前記永久磁石埋設用打
抜き穴の両端がロータコア表面付近まで伸び、同一磁極
内の2層の永久磁石埋設用打抜き穴のロータコア表面付
近の相互間に存在する鉄の磁路幅のうち、ロータ回転前
進側をXf、ロータ回転後進側をXbとし、隣接する磁
極のロータ内周側に位置する永久磁石埋設用打抜き穴の
ロータコア表面付近の相互間に存在する鉄の磁路幅の最
狭部をXcとしたとき、Xf>Xc>Xbである永久磁
石埋め込みロータであり、同一磁極内の2層の永久磁石
埋設用打抜き穴のロータコア表面付近の相互間に存在す
る鉄の磁路のうち、特に磁束密度の高くなるロータ回転
前進側の磁気飽和を解消するとともに、隣接する磁極の
ロータ内周側に位置する永久磁石埋設用打抜き穴のロー
タコア表面付近の相互間に存在する鉄の磁路をも有効に
利用することができ、リラクタンストルクを大きくする
ことができる。
According to the present invention, two layers of punched holes for burying permanent magnets in the radial direction per pole are provided inside a substantially cylindrical rotor core made of a high magnetic permeability material such as iron or laminated magnetic steel sheets. In a permanent magnet embedded rotor having an axial direction and one or more permanent magnets embedded in each of the permanent magnet embedded punched holes, both ends of the permanent magnet embedded punched holes extend to near the rotor core surface, and Among the magnetic path widths of the iron existing between the vicinity of the rotor core surface of the two layers of the punched holes for embedding permanent magnets in the magnetic pole, the rotor rotation forward side is Xf, the rotor rotation backward side is Xb, and the rotor of the adjacent magnetic pole is Assuming that Xc is the narrowest part of the magnetic path width of the iron present between the punched holes for embedding permanent magnets located on the inner periphery and near the rotor core surface, Xf>Xc> Xb Among the iron magnetic paths existing between the two surfaces of the punched holes for burying permanent magnets in the same magnetic pole near the rotor core surface, the magnetic saturation on the rotor rotation forward side where the magnetic flux density is particularly high is eliminated, It is possible to effectively use the magnetic path of the iron existing between the punched holes for burying the permanent magnets located on the inner peripheral side of the rotor of the adjacent magnetic pole and near the rotor core surface, thereby increasing the reluctance torque.

【0017】請求項9記載の発明は、ロータ内周側に位
置する永久磁石埋設用打抜き穴に埋設される永久磁石の
磁極面積が、ロータ外周側に位置する永久磁石埋設用打
抜き穴に埋設される永久磁石の磁極面積より大きい請求
項8記載の永久磁石埋め込みロータであり、ロータ外周
側に位置する永久磁石の端面で無効な短絡磁束の発生を
抑える作用を有する。
According to a ninth aspect of the present invention, the magnetic pole area of the permanent magnet embedded in the punched hole for embedding permanent magnets located on the inner peripheral side of the rotor is embedded in the punched hole for embedding permanent magnets located on the outer peripheral side of the rotor. The permanent magnet-embedded rotor according to claim 8, wherein the rotor has a function of suppressing generation of an invalid short-circuit magnetic flux at an end face of the permanent magnet located on the outer peripheral side of the rotor.

【0018】請求項10記載の発明は、永久磁石埋設用
打抜き穴が、ロータ内周側に凸である円弧形状である請
求項8記載の永久磁石埋め込みロータであり、2層永久
磁石用打抜き穴の間にある磁路がロータ回転前進側程幅
の広い円弧状となるため、局部的な磁気飽和を防ぎ、均
一な磁束密度分布が実現できる。
According to a tenth aspect of the present invention, there is provided the permanent magnet embedded rotor according to the eighth aspect, wherein the perforated hole for embedding the permanent magnet has an arc shape that is convex on the inner peripheral side of the rotor. Since the magnetic path between them has an arc shape that is wider toward the rotor rotation forward side, local magnetic saturation can be prevented, and a uniform magnetic flux density distribution can be realized.

【0019】請求項11記載の発明は、永久磁石が永久
磁石埋設用打抜き穴に挿入できる程度の隙間を有したロ
ータ内周側に凸である円弧形状である請求項10記載の
永久磁石埋め込みロータであり、永久磁石の磁束を有効
に利用することができる。
According to an eleventh aspect of the present invention, there is provided the permanent magnet embedded rotor according to the tenth aspect, wherein the permanent magnet has a circular arc shape which is convex toward the inner peripheral side of the rotor and has a gap large enough to be inserted into the punched hole for embedding the permanent magnet. Thus, the magnetic flux of the permanent magnet can be effectively used.

【0020】請求項12記載の発明は、隣接する磁極の
ロータ内周側に位置する永久磁石埋設用打抜き穴のロー
タコア表面付近の相互間に存在する鉄の磁路幅が一定と
なるように、永久磁石埋設用打抜き穴の円弧外側の端部
付近に平坦部を設けた請求項10記載の永久磁石埋め込
みロータであり、永久磁石の磁極面積を大きく保ったま
まで、隣接する磁極のロータ内周側に位置する永久磁石
埋設用打抜き穴のロータコア表面付近の相互間に存在す
る鉄の磁路幅を確保し、リラクタンストルクを大きくす
ることができる。
According to a twelfth aspect of the present invention, the width of the magnetic path of the iron existing between the punched holes for embedding permanent magnets located on the inner circumferential side of the rotor of adjacent magnetic poles and near the surface of the rotor core is constant. 11. The permanent magnet embedded rotor according to claim 10, wherein a flat portion is provided near an outer end portion of the punched hole for embedding the permanent magnet, wherein the magnetic pole area of the adjacent permanent magnet is kept large while keeping the magnetic pole area of the permanent magnet large. The magnetic path width of iron existing between the punched holes for embedding permanent magnets located in the vicinity of the rotor core surface can be secured, and the reluctance torque can be increased.

【0021】請求項13記載の発明は、ロータ磁極数P
が4以上であり、ロータ外径をrとしたとき、前記永久
磁石埋設用打抜き穴の円弧中心が、ロータ中心から0.
85r/cos(180/P)以下0.7r/cos
(180/P)以上の位置にある請求項12記載の永久
磁石埋め込みロータであり、永久磁石の磁極面積を大き
くすることにより、磁束量を多くすることができる。
According to a thirteenth aspect, the number of rotor magnetic poles P
Is not less than 4 and the outer diameter of the rotor is r, the center of the arc of the perforated hole for embedding the permanent magnet is 0.
85r / cos (180 / P) or less 0.7r / cos
The permanent magnet embedded rotor according to claim 12, which is located at a position of (180 / P) or more, wherein the amount of magnetic flux can be increased by increasing the magnetic pole area of the permanent magnet.

【0022】請求項14記載の発明は、永久磁石埋設用
打抜き穴に板状の永久磁石を1または2以上埋設した請
求項7記載の永久磁石埋め込みロータであり、永久磁石
が安価な平板状であるため、効率の高いモータを安価に
製造することができる。
According to a fourteenth aspect of the present invention, there is provided the permanent magnet embedded rotor according to the seventh aspect, wherein one or more plate-shaped permanent magnets are buried in the punched holes for burying the permanent magnets. Therefore, a highly efficient motor can be manufactured at low cost.

【0023】[0023]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】(実施例1)図1により、実施例1を説明
する。
(Embodiment 1) Embodiment 1 will be described with reference to FIG.

【0025】図1は、本発明の実施例1におけるロータ
を示す断面図である。ロータ11は略円環状のステータ
(図示せず)と略同軸の略円筒形状であり、ステータ内
周面に対向して4個の磁極を有し、軸2を中心として自
在に回転するよう軸受などにより支持されている。ロー
タコア12は鉄などの高透磁率材または積層された電磁
鋼板からなり、ロータ内周側に凸の円弧形状の永久磁石
埋設用打抜き穴13a,13bを、1極あたり半径方向
に2層に有し、前記永久磁石埋設用打抜き穴13a,1
3bにはそれぞれ永久磁石埋設用打抜き穴に挿入できる
程度の隙間をもって、永久磁石14a,14bが埋設さ
れる。通常、隙間は、永久磁石幅の1〜3%程度が適し
ている。
FIG. 1 is a sectional view showing a rotor according to the first embodiment of the present invention. The rotor 11 has a substantially cylindrical shape that is substantially coaxial with a substantially annular stator (not shown), has four magnetic poles facing the inner peripheral surface of the stator, and has a bearing that rotates freely around the shaft 2. Supported by such. The rotor core 12 is made of a material having a high magnetic permeability such as iron or laminated electromagnetic steel plates, and has two arc-shaped perforated holes 13a and 13b for embedding permanent magnets, which are convex on the inner peripheral side of the rotor. And the punched holes 13a, 1
Permanent magnets 14a and 14b are buried in 3b so that they can be inserted into the permanent magnet burying holes. Usually, the gap is suitably about 1 to 3% of the width of the permanent magnet.

【0026】ロータは、ステータに3相巻線として施さ
れた巻線に流れる電流により形成される回転磁界にロー
タの磁極が吸引または反発することにより回転してい
る。
The rotor is rotated by a magnetic pole of the rotor attracting or repelling to a rotating magnetic field formed by a current flowing through a winding formed as a three-phase winding on the stator.

【0027】本構成において、永久磁石埋設用打抜き穴
13a,13bの両端がロータコア表面付近まで伸び、
同一磁極内の2層の永久磁石埋設用打抜き穴のロータコ
ア表面付近の相互間に存在する鉄15bの磁路幅Xb
が、隣接する磁極のロータ内周側に位置する永久磁石埋
設用打抜き穴のロータコア表面付近の相互間に存在する
鉄15cの磁路幅Xcと、略同一である。なお、Xbと
Xcの値は、全く同一である必要は無く、±10%程度
のずれは許される。
In this configuration, both ends of the perforated holes 13a and 13b for embedding permanent magnets extend to near the rotor core surface,
Magnetic path width Xb of iron 15b existing between two layers near the surface of the rotor core of punched holes for embedding permanent magnets in the same magnetic pole
Are substantially the same as the magnetic path width Xc of the iron 15c existing between the adjacent punched holes for burying permanent magnets located on the inner circumferential side of the rotor near the rotor core surface. The values of Xb and Xc need not be exactly the same, and a deviation of about ± 10% is allowed.

【0028】また、ロータ内周側に位置する永久磁石埋
設用打抜き穴13aに埋設される永久磁石14aの磁極
面積が、ロータ外周側に位置する永久磁石埋設用打抜き
穴13bに埋設される永久磁石14bの磁極面積より大
きい。
The magnetic pole area of the permanent magnet 14a buried in the permanent magnet burying hole 13a located on the inner peripheral side of the rotor has the same magnetic pole area as that of the permanent magnet burying hole 13b located on the rotor outer peripheral side. 14b is larger than the magnetic pole area.

【0029】さらに、ロータ半径をrとしたとき、永久
磁石埋設用打抜き穴13a,13bの円弧中心が、ロー
タ中心から0.85r/cos(180/P)以下の位
置にあり、ロータ表面に永久磁石を配する場合に比べ、
磁極表面積を大きくできる。なお、永久磁石埋設用打抜
き穴の円弧中心の、ロータ中心からの距離が小さすぎる
と、ロータ表面の磁極が狭くなり、磁気飽和を発生する
ので、0.7r/cos(180/P)以上が望まし
い。図2はロータ中心から円弧中心までの距離と単位長
さ当たり磁極面積を、ロータ内周側に位置する永久磁石
14aとロータ外周側に位置する永久磁石14bについ
て計算したものである。図3はロータ中心から円弧中心
までの距離と磁極開き角度θa,θbを、ロータ内周側
に位置する永久磁石14aとロータ外周側に位置する永
久磁石14bについて計算したものである。いずれも、
永久磁石厚みta,tbはロータ半径の6分の1程度、
2層の永久磁石埋設用打抜き穴の間の磁路幅Xbをロー
タの14分の1程度とし、永久磁石埋設用打抜き穴の半
径は可能な限り大きくした。これは、フェライト磁石を
用いた時の減磁等を考慮した妥当な値である。磁極面積
は、ロータ中心から円弧中心までの距離が大きくなるに
したがって、小さくなるが、特にロータ外周側の磁極面
積は、ロータ中心から円弧中心までの距離が1.2を超
えると大きく減少する。また、ロータ内径側の永久磁石
の磁極開き角度θaは、60°(電気角120°)以上
あることが望ましいが、ロータ中心から円弧中心までの
距離1以上必要であることが分かる。したがって、ロー
タ中心から円弧中心までの距離は1以上1.2以下が最
適である。この場合、4極ロータであるので、4極以外
のロータについても同様に考えると、ロータ中心から円
弧中心までの距離は、ロータ半径をrとすると、0.7
r/cos(180/P)以上0.85r/cos(1
80/P)以下がよい。
Further, assuming that the rotor radius is r, the center of the arc of the punched holes 13a and 13b for embedding the permanent magnets is at a position of 0.85r / cos (180 / P) or less from the center of the rotor, Compared to the case with magnets,
The pole surface area can be increased. If the distance from the center of the arc of the punched hole for embedding the permanent magnet to the center of the rotor is too small, the magnetic pole on the rotor surface becomes narrow and magnetic saturation occurs, so that 0.7 r / cos (180 / P) or more is required. desirable. FIG. 2 shows the distance from the center of the rotor to the center of the arc and the magnetic pole area per unit length calculated for the permanent magnet 14a located on the inner peripheral side of the rotor and the permanent magnet 14b located on the outer peripheral side of the rotor. FIG. 3 shows the distance from the center of the rotor to the center of the arc and the magnetic pole opening angles θa and θb calculated for the permanent magnet 14a located on the inner peripheral side of the rotor and the permanent magnet 14b located on the outer peripheral side of the rotor. In each case,
The permanent magnet thicknesses ta and tb are about 1/6 of the rotor radius,
The magnetic path width Xb between the two layers of punched holes for embedding permanent magnets was set to about 1/14 of that of the rotor, and the radius of the punched holes for embedding permanent magnets was made as large as possible. This is an appropriate value in consideration of demagnetization and the like when a ferrite magnet is used. The magnetic pole area decreases as the distance from the center of the rotor to the center of the arc increases, but the magnetic pole area on the outer peripheral side of the rotor particularly decreases greatly when the distance from the center of the rotor to the center of the arc exceeds 1.2. Further, the magnetic pole opening angle θa of the permanent magnet on the inner diameter side of the rotor is desirably 60 ° (electrical angle 120 °) or more, but it is understood that the distance from the center of the rotor to the center of the arc is 1 or more. Therefore, the distance from the center of the rotor to the center of the arc is optimally 1 or more and 1.2 or less. In this case, since the rotor is a four-pole rotor, if a rotor other than the four-pole rotor is similarly considered, the distance from the rotor center to the arc center is 0.7
r / cos (180 / P) or more and 0.85 r / cos (1
80 / P) or less.

【0030】永久磁石埋設用打抜き穴の円弧半径を大き
くすると、隣接する磁極のロータ内周側に位置する永久
磁石埋設用打抜き穴のロータコア表面付近が近接するた
め、隣接する磁極のロータ内周側に位置する永久磁石埋
設用打抜き穴13aのロータコア表面付近の相互間に存
在する鉄15cの磁路幅Xcが一定となるように、永久
磁石埋設用打抜き穴の円弧外側の端部付近に平坦部を設
けている。これにより、永久磁石の磁極面積を大きく保
ったままで、隣接する磁極のロータ内周側に位置する永
久磁石埋設用打抜き穴のロータコア表面付近の相互間に
存在する鉄15cの磁路幅Xcを確保し、リラクタンス
トルクを大きくすることができる。
When the arc radius of the punched hole for embedding permanent magnets is increased, the vicinity of the rotor core surface of the punched hole for embedding permanent magnets located on the inner circumferential side of the rotor of the adjacent magnetic pole is close to the inner circumferential side of the rotor. In order to keep the magnetic path width Xc of the iron 15c existing near the surface of the rotor core of the punched hole 13a for embedding the permanent magnet located at a position near the end outside the arc of the punched hole for embedding the permanent magnet, Is provided. As a result, while keeping the magnetic pole area of the permanent magnet large, the magnetic path width Xc of the iron 15c existing between the adjacent magnetic poles near the rotor core surface of the punched holes for burying permanent magnets located on the inner circumferential side of the rotor is secured. In addition, the reluctance torque can be increased.

【0031】本構成により、同一磁極内の2層の永久磁
石埋設用打抜き穴のロータコア表面付近の相互間に存在
する鉄15bの磁路のみならず、隣接する磁極のロータ
内周側に位置する永久磁石埋設用打抜き穴のロータコア
表面付近の相互間に存在する鉄15cの磁路をも有効に
利用することができ、Lq−Ldを大きくすることがで
きるので、リラクタンストルクを大きくすることがで
き、磁極表面積も大きい為、マグネットトルクも大きく
できる。したがって、効率の高い永久磁石モータを提供
することができる。
With this configuration, not only the magnetic path of the iron 15b existing between the two surfaces of the punched holes for embedding permanent magnets in the same magnetic pole near the surface of the rotor core but also on the inner circumferential side of the rotor of the adjacent magnetic pole. The magnetic path of the iron 15c existing between the punched holes for embedding permanent magnets near the rotor core surface can also be effectively used, and Lq-Ld can be increased, so that the reluctance torque can be increased. Since the magnetic pole surface area is large, the magnet torque can be increased. Therefore, a highly efficient permanent magnet motor can be provided.

【0032】図4に、本実施例における永久磁石埋め込
みロータを用いたモータに電流を流し、運転したときの
磁界解析の結果を示す。図4に示した曲線は磁束線であ
り、磁束の流れを示している。隣接する磁極のロータ内
周側に位置する永久磁石埋設用打抜き穴のロータコア表
面付近の相互間に磁気飽和を防止する程度の幅を持った
鉄の磁路があるため、磁極間の磁束がスムースにステー
タにわたっており、トルク発生に有効に寄与しているこ
とが分かる。図9に示す従来の永久磁石埋め込みロータ
においては、磁極間で磁気飽和を発生し、磁極間の磁束
が十分にトルクに寄与していない。本構成により、同一
電流により、トルクが従来例と比べて5〜8%増加し、
モータ効率として、0.5〜1%程度向上した。
FIG. 4 shows a result of a magnetic field analysis when a current is applied to the motor using the rotor with embedded permanent magnets in the present embodiment and the motor is operated. The curve shown in FIG. 4 is a magnetic flux line and indicates the flow of magnetic flux. Since there is an iron magnetic path wide enough to prevent magnetic saturation between the punched holes for embedding permanent magnets located on the inner peripheral side of the rotor of adjacent magnetic poles and near the rotor core surface, the magnetic flux between the magnetic poles is smooth. It can be seen that it extends over the stator and effectively contributes to torque generation. In the conventional permanent magnet embedded rotor shown in FIG. 9, magnetic saturation occurs between the magnetic poles, and the magnetic flux between the magnetic poles does not sufficiently contribute to the torque. With this configuration, the torque is increased by 5 to 8% as compared with the conventional example by the same current,
The motor efficiency was improved by about 0.5 to 1%.

【0033】なお、ロータ内周側に位置する永久磁石1
4aとロータ外周側に位置する永久磁石14bとの円弧
中心は同一である必要はない。
The permanent magnet 1 located on the inner peripheral side of the rotor
The arc centers of the permanent magnet 4b and the permanent magnet 14b located on the outer peripheral side of the rotor need not be the same.

【0034】(実施例2)図5により、実施例2を説明
する。
(Embodiment 2) Embodiment 2 will be described with reference to FIG.

【0035】図5は、本発明の実施例2におけるロータ
を示す断面図である。永久磁石埋設用打抜き穴23a,
23bに、平板状永久磁石24a1,24a2,24b
1,24b2が2個埋設されている。その他の構成及び
作用は実施例1と同様であり、省略する。生産性のよい
平板状磁石を使うことにより、コストが安くでき、効率
のよいモータを提供することができる。
FIG. 5 is a sectional view showing a rotor according to the second embodiment of the present invention. Punching holes 23a for embedding permanent magnets,
23b, flat permanent magnets 24a1, 24a2, 24b
Two 1, 24b2 are buried. Other configurations and operations are the same as in the first embodiment, and a description thereof will not be repeated. By using a plate magnet with good productivity, the cost can be reduced and an efficient motor can be provided.

【0036】(実施例3)図6により、実施例3を説明
する。図6は、本発明の実施例3におけるロータを示す
断面図である。
(Embodiment 3) Embodiment 3 will be described with reference to FIG. FIG. 6 is a cross-sectional view illustrating a rotor according to the third embodiment of the present invention.

【0037】本実施例における永久磁石埋め込みロータ
は2極であり、永久磁石埋設用打抜き穴33a,33b
に、平板状永久磁石34a1,34a2,34b1,3
4b2が2個埋設されている。その他の構成及び作用は
実施例1と同様であり、省略する。生産性のよい平板状
磁石を使うことにより、コストが安くでき、効率のよい
モータを提供することができる。永久磁石は、V字形に
成形してもよい。
The rotor with embedded permanent magnets in this embodiment has two poles, and the punched holes 33a, 33b for embedding permanent magnets.
The plate-shaped permanent magnets 34a1, 34a2, 34b1, 3
4b2 are buried. Other configurations and operations are the same as in the first embodiment, and a description thereof will not be repeated. By using a plate magnet with good productivity, the cost can be reduced and an efficient motor can be provided. The permanent magnet may be formed in a V shape.

【0038】2極とすることにより、駆動電流の周波数
が4極の半分となるので、鉄損を低減することができ
る。
By using two poles, the frequency of the driving current becomes half of that of four poles, so that iron loss can be reduced.

【0039】(実施例4)図7により、実施例4を説明
する。
Embodiment 4 Embodiment 4 will be described with reference to FIG.

【0040】図7は、本発明の実施例4におけるロータ
を示す断面図である。ロータ41は略円環状のステータ
(図示せず)と略同軸の略円筒形状であり、ステータ内
周面に対向して4個の磁極を有し、軸2を中心として自
在に回転するよう軸受などにより支持されている。ロー
タコア42は鉄などの高透磁率材または積層された電磁
鋼板からなり、ロータ内周側に凸の円弧形状の永久磁石
埋設用打抜き穴43a,43bを、1極あたり半径方向
に2層に有し、前記永久磁石埋設用打抜き穴43a,4
3bにはそれぞれ永久磁石埋設用打抜き穴に挿入できる
程度の隙間をもって、永久磁石44a,44bが埋設さ
れる。通常、隙間は、永久磁石幅の1〜3%程度が適し
ている。
FIG. 7 is a sectional view showing a rotor according to a fourth embodiment of the present invention. The rotor 41 has a substantially cylindrical shape that is substantially coaxial with a substantially annular stator (not shown), has four magnetic poles facing the inner peripheral surface of the stator, and has a bearing that rotates freely around the shaft 2. Supported by such. The rotor core 42 is made of a magnetically permeable material such as iron or laminated electromagnetic steel plates, and has two arc-shaped perforated holes 43a and 43b for embedding permanent magnets, which are convex on the inner peripheral side of the rotor. And the punched holes 43a, 43 for embedding the permanent magnets.
Permanent magnets 44a and 44b are buried in 3b with gaps enough to be inserted into the permanent magnet burying holes. Usually, the gap is suitably about 1 to 3% of the width of the permanent magnet.

【0041】ロータ41は、ステータに3相巻線として
施された巻線に流れる電流により形成される回転磁界に
ロータの磁極が吸引または反発することにより反時計方
向に回転している。
The rotor 41 rotates counterclockwise as the magnetic poles of the rotor are attracted or repelled by a rotating magnetic field formed by a current flowing through a winding formed as a three-phase winding on the stator.

【0042】本構成において、永久磁石埋設用打抜き穴
43a,43bの両端がロータコア表面付近まで伸び、
同一磁極内の2層の永久磁石埋設用打抜き穴のロータコ
ア表面付近の相互間に存在する鉄45f,45bの磁路
幅のうち、ロータ回転前進側をXf、ロータ回転後進側
をXbとし、隣接する磁極のロータ内周側に位置する永
久磁石埋設用打抜き穴のロータコア表面付近の相互間に
存在する鉄45cの磁路幅をXcとしたとき、Xf>X
c>Xbである。本実施例において、ロータ内周側に位
置する永久磁石44aの円弧中心が、ロータ外周側に位
置する永久磁石44bの円弧中心に比べ、ロータ回転前
進側にある。
In this configuration, both ends of the punched holes 43a and 43b for embedding permanent magnets extend to near the rotor core surface,
Of the magnetic path widths of the irons 45f and 45b existing between the two surfaces of the punched holes for burying permanent magnets in the same magnetic pole near the surface of the rotor core, the rotor rotation forward side is defined as Xf, and the rotor rotation backward side is defined as Xb. Xf> X, where Xc is the magnetic path width of the iron 45c existing between the punched holes for embedding permanent magnets located on the inner circumferential side of the rotor and the vicinity of the rotor core surface.
c> Xb. In the present embodiment, the center of the arc of the permanent magnet 44a located on the inner peripheral side of the rotor is on the rotor rotation forward side as compared with the center of the arc of the permanent magnet 44b located on the outer peripheral side of the rotor.

【0043】また、ロータ内周側に位置する永久磁石埋
設用打抜き穴43aに埋設される永久磁石44aの磁極
面積が、ロータ外周側に位置する永久磁石埋設用打抜き
穴43bに埋設される永久磁石44bの磁極面積より大
きい。したがって、ロータ内周側に位置する永久磁石4
3aの円弧内周側から出た磁束の全てがロータ外周側に
位置する永久磁石43bの円弧外周側に行くわけでな
く、ロータ回転前進側の、2層の永久磁石埋設用打抜き
穴間の磁路からステータに渡る。したがって、ロータ回
転前進側の、2層の永久磁石埋設用打抜き穴間の磁路か
らステータに渡る磁束が多いため、Xfは大きく取る必
要がある。Xfは、Xcの1.5倍から2倍が適切であ
り、Xbは磁束がほとんど通らないため、小さくてよ
い。これにより、磁束の局所的飽和を防止し、ロータの
鉄損を低減するとともに、さらにリラクタンストルクを
大きくできる。回転方向が1方向である場合、有効であ
る。他の構成及び作用は実施例1と同様であり、省略す
る。
The magnetic pole area of the permanent magnet 44a embedded in the punched hole 43a for embedding the permanent magnet located on the inner peripheral side of the rotor is smaller than the permanent magnet embedded in the punched hole 43b for embedding the permanent magnet located on the outer peripheral side of the rotor. 44b is larger than the magnetic pole area. Therefore, the permanent magnet 4 located on the inner circumferential side of the rotor
Not all of the magnetic flux emitted from the inner peripheral side of the arc of 3a goes to the outer peripheral side of the arc of the permanent magnet 43b located on the outer peripheral side of the rotor. Cross the road to the stator. Therefore, since a large amount of magnetic flux passes from the magnetic path between the punched holes for burying permanent magnets on the rotor rotation advance side to the stator, Xf needs to be large. It is appropriate that Xf is 1.5 to 2 times Xc, and Xb can be small because magnetic flux hardly passes therethrough. As a result, local saturation of magnetic flux can be prevented, iron loss of the rotor can be reduced, and reluctance torque can be further increased. It is effective when the rotation direction is one direction. Other configurations and operations are the same as those in the first embodiment, and a description thereof will be omitted.

【0044】図8に、本実施例における永久磁石埋め込
みロータを用いたモータに電流を流し、運転したときの
磁界解析の結果を示す。
FIG. 8 shows the results of a magnetic field analysis when a current is applied to the motor using the permanent magnet embedded rotor in this embodiment and the motor is operated.

【0045】同一磁極内の2層の永久磁石埋設用打抜き
穴のロータコア表面付近の相互間に存在する鉄の磁路の
うち、ロータ回転前進側を通る磁束がもっとも多く、つ
いで、隣接する磁極のロータ内周側に位置する永久磁石
埋設用打抜き穴のロータコア表面付近の相互間に存在す
る鉄の磁路となっている。したがって、磁束密度が書く
磁路とも均一となり、磁気飽和が防止されていることが
分かる。本実施例により、実施例1における永久磁石埋
め込みロータと比較して、2〜3%トルクが増加し、効
率にして約0.5%程度向上した。
Among the iron magnetic paths existing between the two layers of the punched holes for burying permanent magnets in the same magnetic pole near the surface of the rotor core, the magnetic flux passing the rotor rotation forward side is the largest, and then the magnetic flux of the adjacent magnetic pole is The punched holes for embedding permanent magnets located on the inner circumferential side of the rotor are iron magnetic paths existing between the surfaces near the rotor core surface. Therefore, it can be seen that the magnetic flux density becomes uniform with the magnetic path to be written, and that magnetic saturation is prevented. According to the present embodiment, the torque is increased by 2 to 3% and the efficiency is improved by about 0.5% as compared with the permanent magnet embedded rotor in the first embodiment.

【0046】なお、本発明は、上記実施例に限定される
ものではなく、極数、永久磁石埋設用打抜き穴及び永久
磁石の形状などによらず、本発明に応じて種々の変形が
可能であり、これらを本発明の範囲から排除するもので
はない。
The present invention is not limited to the above-described embodiment, and various modifications can be made according to the present invention regardless of the number of poles, the shape of the permanent magnet burying hole, the shape of the permanent magnet, and the like. Yes, and they are not excluded from the scope of the present invention.

【0047】[0047]

【発明の効果】以上の説明から明らかなように、請求項
1記載の発明によれば、同一磁極内の2層の永久磁石埋
設用打抜き穴のロータコア表面付近の相互間に存在する
鉄の磁路のみならず、隣接する磁極のロータ内周側に位
置する永久磁石埋設用打抜き穴のロータコア表面付近の
相互間に存在する鉄の磁路をも有効に利用することがで
き、リラクタンストルクを大きくすることができる。
As is apparent from the above description, according to the first aspect of the present invention, two layers of the punched holes for embedding permanent magnets in the same magnetic pole are present between the iron cores existing near the surface of the rotor core. Not only the magnetic path, but also the iron magnetic path existing between the vicinity of the rotor core surface of the punched holes for burying permanent magnets located on the inner peripheral side of the rotor of the adjacent magnetic pole can be effectively used, and the reluctance torque can be increased. can do.

【0048】請求項2記載の発明によれば、ロータ外周
側に位置する永久磁石の端面で無効な短絡磁束の発生を
抑える作用を有する。
According to the second aspect of the present invention, an effect of suppressing generation of invalid short-circuit magnetic flux on the end face of the permanent magnet located on the outer peripheral side of the rotor is provided.

【0049】請求項3記載の発明によれば、永久磁石の
磁極表面積を大きくとることができ、永久磁石による磁
束量を大きくすることができ、2層永久磁石用打抜き穴
の間にある磁路が円弧状となるため、局部的な磁気飽和
を防ぐことができる。
According to the third aspect of the present invention, the magnetic pole surface area of the permanent magnet can be increased, the amount of magnetic flux by the permanent magnet can be increased, and the magnetic path between the punched holes for the two-layer permanent magnet can be increased. Has an arc shape, so that local magnetic saturation can be prevented.

【0050】請求項4記載の発明によれば、永久磁石の
磁束を有効に利用し、効率の高いモータを提供する。
According to the fourth aspect of the present invention, a highly efficient motor is provided by effectively utilizing the magnetic flux of the permanent magnet.

【0051】請求項5記載の発明によれば、リラクタン
ストルクを大きくし、効率の高いモータを提供すること
ができる。
According to the fifth aspect of the present invention, it is possible to provide a motor with high reluctance torque and high efficiency.

【0052】請求項6記載の発明によれば、永久磁石の
磁極面積を大きくすることにより、磁束量を多くするこ
とができる。
According to the sixth aspect of the present invention, the amount of magnetic flux can be increased by increasing the magnetic pole area of the permanent magnet.

【0053】請求項7記載の発明によれば、永久磁石が
安価な平板状であるため、効率の高いモータを安価に製
造することができる。
According to the seventh aspect of the present invention, since the permanent magnet is inexpensive flat plate, a highly efficient motor can be manufactured at low cost.

【0054】請求項8記載の発明によれば、1方向回転
のモータにおいて、リラクタンストルクを大きくするこ
とができる。
According to the eighth aspect of the invention, the reluctance torque can be increased in the one-way motor.

【0055】請求項9記載の発明によれば、1方向回転
のモータにおいて、ロータ外周側に位置する永久磁石の
端面で無効な短絡磁束の発生を抑える作用を有する。
According to the ninth aspect of the present invention, in a one-way rotating motor, an effect of suppressing generation of an invalid short-circuit magnetic flux at an end face of a permanent magnet located on the outer peripheral side of the rotor is provided.

【0056】請求項10記載の発明によれば、1方向回
転のモータにおいて、永久磁石の磁極表面積を大きくと
ることができ、永久磁石による磁束量を大きくすること
ができ、2層永久磁石用打抜き穴の間にある磁路が円弧
状となるため、局部的な磁気飽和を防ぐことができる。
According to the tenth aspect of the present invention, in the motor rotating in one direction, the magnetic pole surface area of the permanent magnet can be increased, the amount of magnetic flux by the permanent magnet can be increased, and punching for a two-layer permanent magnet can be performed. Since the magnetic path between the holes has an arc shape, local magnetic saturation can be prevented.

【0057】請求項11記載の発明によれば、1方向回
転のモータにおいて、永久磁石の磁束を有効に利用し、
効率の高いモータを提供する。
According to the eleventh aspect of the present invention, in the one-way motor, the magnetic flux of the permanent magnet is effectively used,
Provide a highly efficient motor.

【0058】請求項12記載の発明によれば、1方向回
転のモータにおいて、リラクタンストルクを大きくし、
効率の高いモータを提供することができる。
According to the twelfth aspect of the present invention, in the one-way motor, the reluctance torque is increased,
A highly efficient motor can be provided.

【0059】請求項13記載の発明によれば、1方向回
転のモータにおいて、永久磁石の磁極面積を大きくする
ことにより、磁束量を多くすることができる。
According to the thirteenth aspect of the present invention, in the motor rotating in one direction, the amount of magnetic flux can be increased by increasing the magnetic pole area of the permanent magnet.

【0060】請求項14記載の発明によれば、1方向回
転のモータにおいて、永久磁石が安価な平板状であるた
め、効率の高いモータを安価に製造することができる。
According to the fourteenth aspect of the present invention, in the one-way rotating motor, since the permanent magnet is inexpensive flat plate, a highly efficient motor can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における永久磁石埋め込みロ
ータの断面図
FIG. 1 is a cross-sectional view of a permanent magnet embedded rotor according to a first embodiment of the present invention.

【図2】ロータ中心から円弧中心までの距離と磁極面積
の関係を示す図
FIG. 2 is a diagram showing a relationship between a distance from a rotor center to a circular arc center and a magnetic pole area;

【図3】ロータ中心から円弧中心までの距離と磁極開き
角度の関係を示す図
FIG. 3 is a diagram showing a relationship between a distance from a rotor center to a circular arc center and a magnetic pole opening angle.

【図4】本発明の実施例1における永久磁石埋め込みロ
ータの磁束線図
FIG. 4 is a magnetic flux diagram of the permanent magnet embedded rotor according to the first embodiment of the present invention.

【図5】本発明の実施例2における永久磁石埋め込みロ
ータの断面図
FIG. 5 is a sectional view of a permanent magnet embedded rotor according to a second embodiment of the present invention.

【図6】本発明の実施例3における永久磁石埋め込みロ
ータの断面図
FIG. 6 is a sectional view of a permanent magnet embedded rotor according to a third embodiment of the present invention.

【図7】本発明の実施例4における永久磁石埋め込みロ
ータの断面図
FIG. 7 is a sectional view of a permanent magnet embedded rotor according to a fourth embodiment of the present invention.

【図8】本発明の実施例4における永久磁石埋め込みロ
ータの磁束線図
FIG. 8 is a magnetic flux diagram of a permanent magnet embedded rotor according to a fourth embodiment of the present invention.

【図9】従来の永久磁石埋め込みロータの断面図FIG. 9 is a cross-sectional view of a conventional permanent magnet embedded rotor.

【図10】従来の永久磁石埋め込みロータの磁束線図FIG. 10 is a magnetic flux diagram of a conventional permanent magnet embedded rotor.

【符号の説明】[Explanation of symbols]

2 シャフト 3 リベットピン 11 ロータ 12 ロータコア 13a,13b 永久磁石埋設用打抜き穴 14a,14b 永久磁石 15b,15c 磁路 16 平坦部 2 Shaft 3 Riveted pin 11 Rotor 12 Rotor core 13a, 13b Perforated hole for embedding permanent magnet 14a, 14b Permanent magnet 15b, 15c Magnetic path 16 Flat part

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】鉄などの高透磁率材または積層された電磁
鋼板からなる略円筒形のロータコア内部に、1極あたり
半径方向に2層の永久磁石埋設用打抜き穴を軸方向に有
し、前記永久磁石埋設用打抜き穴にはそれぞれ1個以上
の永久磁石が埋設されてなる永久磁石埋め込みロータに
おいて、前記永久磁石埋設用打抜き穴の両端がロータコ
ア表面付近まで伸び、同一磁極内の2層の永久磁石埋設
用打抜き穴のロータコア表面付近の相互間に存在する鉄
の磁路幅が、隣接する磁極のロータ内周側に位置する永
久磁石埋設用打抜き穴のロータコア表面付近の相互間に
存在する鉄の磁路幅と、略同一である永久磁石埋め込み
ロータ。
1. A substantially cylindrical rotor core made of a high magnetic permeability material such as iron or laminated electromagnetic steel sheets, and having two layers of perforated holes for burying permanent magnets in the axial direction in the radial direction per pole, In the permanent magnet embedded rotor in which one or more permanent magnets are embedded in each of the permanent magnet embedded holes, both ends of the permanent magnet embedded holes extend to near the rotor core surface, and two layers of the same magnetic pole are formed. The magnetic path width of the iron present between the punched holes for embedding permanent magnets near the rotor core surface exists between the punched holes for embedding permanent magnets located on the rotor inner peripheral side of the adjacent magnetic poles and near the rotor core surface. A permanent magnet embedded rotor that is almost the same as the magnetic path width of iron.
【請求項2】ロータ内周側に位置する永久磁石埋設用打
抜き穴に埋設される永久磁石の磁極面積が、ロータ外周
側に位置する永久磁石埋設用打抜き穴に埋設される永久
磁石の磁極面積より大きい請求項1記載の永久磁石埋め
込みロータ。
2. The magnetic pole area of a permanent magnet embedded in a punched hole for embedding permanent magnets located on the inner peripheral side of the rotor is equal to the magnetic pole area of a permanent magnet embedded in a punched hole for embedding permanent magnets located on the outer peripheral side of the rotor. 2. The permanent magnet embedded rotor according to claim 1, which is larger.
【請求項3】永久磁石埋設用打抜き穴が、ロータ内周側
に凸である円弧形状である請求項1記載の永久磁石埋め
込みロータ。
3. The permanent magnet embedded rotor according to claim 1, wherein the punched holes for embedding permanent magnets have an arc shape that is convex on the inner peripheral side of the rotor.
【請求項4】永久磁石が永久磁石埋設用打抜き穴に挿入
できる程度の隙間を有したロータ内周側に凸である円弧
形状である請求項3記載の永久磁石埋め込みロータ。
4. The permanent magnet embedded rotor according to claim 3, wherein the rotor has a circular arc shape having a gap large enough to allow the permanent magnet to be inserted into the punched hole for embedding the permanent magnet.
【請求項5】隣接する磁極のロータ内周側に位置する永
久磁石埋設用打抜き穴のロータコア表面付近の相互間に
存在する鉄の磁路幅が一定となるように、永久磁石埋設
用打抜き穴の円弧外側の端部付近に平坦部を設けた請求
項3記載の永久磁石埋め込みロータ。
5. A perforated hole for burying a permanent magnet so that a magnetic path width of iron existing between adjacent holes near the rotor core of a perforated hole for burying a permanent magnet located on the inner peripheral side of the rotor of the adjacent magnetic pole is constant. 4. The rotor with embedded permanent magnets according to claim 3, wherein a flat portion is provided near an outer end of the arc.
【請求項6】ロータ磁極数Pが4以上であり、ロータ外
径をrとしたとき、前記永久磁石埋設用打抜き穴の円弧
中心が、ロータ中心から0.85r/cos(180/
P)以下0.7r/cos(180/P)以上の位置に
ある請求項5記載の永久磁石埋め込みロータ。
6. When the number P of rotor magnetic poles is 4 or more and the outer diameter of the rotor is r, the arc center of the punched hole for embedding the permanent magnet is 0.85 r / cos (180 / cm) from the center of the rotor.
6. The permanent magnet embedded rotor according to claim 5, wherein the rotor is located at a position of 0.7 r / cos (180 / P) or less.
【請求項7】永久磁石埋設用打抜き穴に板状の永久磁石
を1または2以上埋設した請求項1記載の永久磁石埋め
込みロータ。
7. The permanent magnet embedded rotor according to claim 1, wherein one or more plate-shaped permanent magnets are embedded in the punched holes for embedding permanent magnets.
【請求項8】鉄などの高透磁率材または積層された電磁
鋼板からなる略円筒形のロータコア内部に、1極あたり
半径方向に2層の永久磁石埋設用打抜き穴を軸方向に有
し、前記永久磁石埋設用打抜き穴にはそれぞれ1個以上
の永久磁石が埋設されてなる永久磁石埋め込みロータに
おいて、前記永久磁石埋設用打抜き穴の両端がロータコ
ア表面付近まで伸び、同一磁極内の2層の永久磁石埋設
用打抜き穴のロータコア表面付近の相互間に存在する鉄
の磁路幅のうち、ロータ回転前進側をXf、ロータ回転
後進側をXbとし、隣接する磁極のロータ内周側に位置
する永久磁石埋設用打抜き穴のロータコア表面付近の相
互間に存在する鉄の磁路幅をXcとしたとき、Xf>X
c>Xbである永久磁石埋め込みロータ。
8. A substantially cylindrical rotor core made of a material having high magnetic permeability such as iron or laminated electromagnetic steel sheets, and having two layers of punched holes for burying permanent magnets in a radial direction per pole in the axial direction, In the permanent magnet embedded rotor in which one or more permanent magnets are embedded in each of the permanent magnet embedded holes, both ends of the permanent magnet embedded holes extend to near the rotor core surface, and two layers of the same magnetic pole are formed. Of the iron magnetic path widths existing between the punched holes for embedding permanent magnets near the rotor core surface, the rotor rotation advance side is Xf, the rotor rotation reverse side is Xb, and the magnetic pole width is located on the rotor inner peripheral side of the adjacent magnetic pole. Xf> X, where Xc is the magnetic path width of the iron existing between the punched holes for embedding the permanent magnet and near the rotor core surface.
A permanent magnet embedded rotor in which c> Xb.
【請求項9】ロータ内周側に位置する永久磁石埋設用打
抜き穴に埋設される永久磁石の磁極面積が、ロータ外周
側に位置する永久磁石埋設用打抜き穴に埋設される永久
磁石の磁極面積より大きい請求項8記載の永久磁石埋め
込みロータ。
9. The magnetic pole area of a permanent magnet embedded in a punched hole for embedding permanent magnets located on the inner peripheral side of the rotor is equal to the magnetic pole area of a permanent magnet embedded in a punched hole for embedding permanent magnets located on the outer peripheral side of the rotor. The permanent magnet embedded rotor according to claim 8, which is larger.
【請求項10】永久磁石埋設用打抜き穴が、ロータ内周
側に凸である円弧形状である請求項8記載の永久磁石埋
め込みロータ。
10. The rotor with embedded permanent magnets according to claim 8, wherein the punched holes for embedding permanent magnets have an arc shape that is convex on the inner peripheral side of the rotor.
【請求項11】永久磁石が永久磁石埋設用打抜き穴に挿
入できる程度の隙間を有したロータ内周側に凸である円
弧形状である請求項10記載の永久磁石埋め込みロー
タ。
11. A permanent magnet embedded rotor according to claim 10, wherein the permanent magnet has a circular arc shape having a gap large enough to allow the permanent magnet to be inserted into the permanent magnet embedded hole.
【請求項12】隣接する磁極のロータ内周側に位置する
永久磁石埋設用打抜き穴のロータコア表面付近の相互間
に存在する鉄の磁路幅が一定となるように、永久磁石埋
設用打抜き穴の円弧外側の端部付近に平坦部を設けた請
求項10記載の永久磁石埋め込みロータ。
12. A punched hole for burying a permanent magnet so that a magnetic path width of iron existing between adjacent holes near the rotor core surface of the punched hole for burying a permanent magnet located on the inner peripheral side of the rotor is constant. The permanent magnet embedded rotor according to claim 10, wherein a flat portion is provided near an outer end of the circular arc.
【請求項13】ロータ磁極数Pが4以上であり、ロータ
外径をrとしたとき、前記永久磁石埋設用打抜き穴の円
弧中心が、ロータ中心から0.85r/cos(180
/P)以下0.7r/cos(180/P)以上の位置
にある請求項12記載の永久磁石埋め込みロータ。
13. When the number P of rotor magnetic poles is 4 or more and the outer diameter of the rotor is r, the arc center of the punched hole for embedding the permanent magnet is 0.85 r / cos (180) from the center of the rotor.
13. The permanent magnet embedded rotor according to claim 12, wherein the rotor is located at a position of 0.7 r / cos (180 / P) or less.
【請求項14】永久磁石埋設用打抜き穴に板状の永久磁
石を1または2以上埋設した請求項7記載の永久磁石埋
め込みロータ。
14. The permanent magnet embedded rotor according to claim 7, wherein one or more plate-shaped permanent magnets are embedded in the punched holes for embedding permanent magnets.
JP10072122A 1998-03-20 1998-03-20 Permanent magnet embedded rotor Withdrawn JPH11275783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10072122A JPH11275783A (en) 1998-03-20 1998-03-20 Permanent magnet embedded rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10072122A JPH11275783A (en) 1998-03-20 1998-03-20 Permanent magnet embedded rotor

Publications (1)

Publication Number Publication Date
JPH11275783A true JPH11275783A (en) 1999-10-08

Family

ID=13480233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10072122A Withdrawn JPH11275783A (en) 1998-03-20 1998-03-20 Permanent magnet embedded rotor

Country Status (1)

Country Link
JP (1) JPH11275783A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314152A (en) * 2005-05-06 2006-11-16 Nissan Motor Co Ltd Permanent-magnet motor
JP2008301610A (en) * 2007-05-31 2008-12-11 Toyota Motor Corp Rotating electric machine
JP2009044860A (en) * 2007-08-08 2009-02-26 Toyota Industries Corp Rotator, and rotary electric machine
CN102801235A (en) * 2011-08-05 2012-11-28 珠海格力电器股份有限公司 Motor rotor and motor with same
JP2013251948A (en) * 2012-05-30 2013-12-12 Mitsubishi Electric Corp Permanent magnet embedded type electric motor
US20140167549A1 (en) * 2011-08-05 2014-06-19 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Motor rotor and motor having same
WO2015092925A1 (en) * 2013-12-20 2015-06-25 三菱電機株式会社 Permanent magnet embedded electric motor, compressor, and refrigerating and air-conditioning device
EP2741402A4 (en) * 2011-08-05 2015-09-09 Gree Electric Appliances Inc Motor and rotor thereof
US9502933B2 (en) 2011-08-05 2016-11-22 Gree Electric Appliances, Inc. Of Zhuhai Permanent magnet synchronous electric machine
CN107181337A (en) * 2017-06-14 2017-09-19 珠海格力节能环保制冷技术研究中心有限公司 Asymmetric rotor structure, method to set up and the synchronous magnetic resistance motor of motor
JP2018038161A (en) * 2016-08-31 2018-03-08 株式会社ダイドー電子 IPM motor
CN109818441A (en) * 2019-03-18 2019-05-28 东南大学 A kind of magnetic barrier formula permanent-magnet magnetic resistance synchronous motor rotor structure
CN109818440A (en) * 2019-03-18 2019-05-28 东南大学 A kind of powder low-torque pulsation permanent magnet reluctance-synchronous machine rotor structure
CN110943558A (en) * 2019-12-09 2020-03-31 珠海格力电器股份有限公司 Motor rotor, reluctance motor and electric automobile
JP2020178387A (en) * 2019-04-15 2020-10-29 株式会社ミツバ Motor, and wiper motor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314152A (en) * 2005-05-06 2006-11-16 Nissan Motor Co Ltd Permanent-magnet motor
JP2008301610A (en) * 2007-05-31 2008-12-11 Toyota Motor Corp Rotating electric machine
WO2008149865A1 (en) * 2007-05-31 2008-12-11 Toyota Jidosha Kabushiki Kaisha Rotary machine
JP4719183B2 (en) * 2007-05-31 2011-07-06 トヨタ自動車株式会社 Rotating electric machine
JP2009044860A (en) * 2007-08-08 2009-02-26 Toyota Industries Corp Rotator, and rotary electric machine
EP2741400B1 (en) 2011-08-05 2018-02-21 Gree Electric Appliances, Inc. of Zhuhai Motor rotor and motor having same
CN102801235A (en) * 2011-08-05 2012-11-28 珠海格力电器股份有限公司 Motor rotor and motor with same
US20140167549A1 (en) * 2011-08-05 2014-06-19 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Motor rotor and motor having same
US20140191607A1 (en) * 2011-08-05 2014-07-10 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Motor rotor and motor having same
JP2014522225A (en) * 2011-08-05 2014-08-28 グリー エレクトリック アプライアンシーズ インク オブ ズーハイ Motor rotor and motor equipped with the same
US9515526B2 (en) 2011-08-05 2016-12-06 Gree Electric Appliances, Inc. Of Zhuhai Motor and rotor thereof
EP2741402A4 (en) * 2011-08-05 2015-09-09 Gree Electric Appliances Inc Motor and rotor thereof
EP2741399A4 (en) * 2011-08-05 2016-01-06 Gree Electric Appliances Inc Motor rotor and motor having same
US9502933B2 (en) 2011-08-05 2016-11-22 Gree Electric Appliances, Inc. Of Zhuhai Permanent magnet synchronous electric machine
US9502930B2 (en) 2011-08-05 2016-11-22 Gree Electric Appliances, Inc. Of Zhuhai Motor rotor and motor having same
US9502934B2 (en) * 2011-08-05 2016-11-22 Gree Electric Appliances, Inc. Of Zhuhai Motor rotor and motor having same
JP2013251948A (en) * 2012-05-30 2013-12-12 Mitsubishi Electric Corp Permanent magnet embedded type electric motor
WO2015092925A1 (en) * 2013-12-20 2015-06-25 三菱電機株式会社 Permanent magnet embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2018038161A (en) * 2016-08-31 2018-03-08 株式会社ダイドー電子 IPM motor
CN107181337A (en) * 2017-06-14 2017-09-19 珠海格力节能环保制冷技术研究中心有限公司 Asymmetric rotor structure, method to set up and the synchronous magnetic resistance motor of motor
CN107181337B (en) * 2017-06-14 2023-06-30 珠海格力节能环保制冷技术研究中心有限公司 Asymmetric rotor structure of motor, setting method and synchronous reluctance motor
CN109818441A (en) * 2019-03-18 2019-05-28 东南大学 A kind of magnetic barrier formula permanent-magnet magnetic resistance synchronous motor rotor structure
CN109818440A (en) * 2019-03-18 2019-05-28 东南大学 A kind of powder low-torque pulsation permanent magnet reluctance-synchronous machine rotor structure
JP2020178387A (en) * 2019-04-15 2020-10-29 株式会社ミツバ Motor, and wiper motor
CN110943558A (en) * 2019-12-09 2020-03-31 珠海格力电器股份有限公司 Motor rotor, reluctance motor and electric automobile

Similar Documents

Publication Publication Date Title
JPH11275783A (en) Permanent magnet embedded rotor
JP5259927B2 (en) Permanent magnet rotating electric machine
JPH11103546A (en) Permanent magnet motor
JPH11206049A (en) Permanent magnet motor
JP2006050745A (en) Axial gap rotary electric machine
JP6196864B2 (en) Permanent magnet rotating electric machine
JPH11299131A (en) Motor with gap having various shape
JP2008148391A (en) Rotor for rotary electric machine, and the rotary electric machine
WO2019039413A1 (en) Rotary electric device
JPH11234931A (en) Permanent magnet-incorporated rotary electric machine
JP4244111B2 (en) Permanent magnet synchronous motor rotor
JP2011097783A (en) Rotor of rotary electric machine
JPH11113198A (en) Permanent magnet motor
JP2000316241A (en) Motor with embedded permanent magnet
JP2000188837A (en) Permanent magnet rotor and its manufacture
JP6466612B1 (en) Rotating electric machine
JPH09266646A (en) Brushless dc motor
WO2019181001A1 (en) Rotary electric machine
JP2002101629A (en) Permanent magnet rotating electric machine
JP5904188B2 (en) Multi-gap rotating electric machine
JPH11103547A (en) Permanent magnet motor
JP2005117858A (en) Motor
JP2005045986A (en) Permanent magnet dynamoelectric machine
JP2005039909A (en) Permanent magnet embedded type motor
JP2008067574A (en) Embedded magnet type motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070413