[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11233113A - Manufacture of li-co complex oxide for secondary battery - Google Patents

Manufacture of li-co complex oxide for secondary battery

Info

Publication number
JPH11233113A
JPH11233113A JP10037729A JP3772998A JPH11233113A JP H11233113 A JPH11233113 A JP H11233113A JP 10037729 A JP10037729 A JP 10037729A JP 3772998 A JP3772998 A JP 3772998A JP H11233113 A JPH11233113 A JP H11233113A
Authority
JP
Japan
Prior art keywords
lithium
carbon dioxide
atmosphere
lithium carbonate
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10037729A
Other languages
Japanese (ja)
Inventor
Susumu Sato
行 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10037729A priority Critical patent/JPH11233113A/en
Publication of JPH11233113A publication Critical patent/JPH11233113A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To relatively easily increase the amount of baking by adding carbon dioxide gas into the atmosphere during cooling of a baked product and setting the concentration of the carbon dioxide gas in the atmosphere at a specific value. SOLUTION: A mixture of a lithium compound and a cobalt compound is baked using, e.g. a pusher type continuous tunnel furnace having a variable feed rate adjusting function. T o cool the baked product obtained, carbon dioxide gas is added into the atmosphere. Therefore during cooling the baked product, lithium oxide remaining in the baked product can be rapidly and readily changed into lithium carbonate. As a result, Li-Co complex oxides achieving the theoretical residual amount of lithium carbonate can be obtained. The concentration of the carbon dioxide gas in the atmosphere during cooling is set at 0.5 to 3.0 vol.%. Thus, since almost all of excess lithium can be converted into lithium carbonate, safety can be ensured and productivity is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池の正極活物質に特に適した二次電池用Li−Co
系複合酸化物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Li-Co for a secondary battery particularly suitable for a positive electrode active material of a lithium ion secondary battery.
The present invention relates to a method for producing a composite oxide.

【0002】[0002]

【従来の技術】従来、リチウムイオン二次電池の正極活
物質として、Li−Co系複合酸化物が広く使用されて
いる。
2. Description of the Related Art Hitherto, as a positive electrode active material of a lithium ion secondary battery, a Li—Co-based composite oxide has been widely used.

【0003】このようなLi−Co系複合酸化物は、リ
チウム化合物(例えば炭酸リチウム)粉末とコバルト化
合物(例えば、四三酸化コバルト)粉末とを混合し、空
気中で980℃程度に数時間保持することにより焼成
し、その後、空気中で200℃程度まで徐々に冷却する
ことにより製造されている。
[0003] Such a Li-Co-based composite oxide is prepared by mixing a lithium compound (for example, lithium carbonate) powder and a cobalt compound (for example, cobalt tetroxide) powder and keeping them at about 980 ° C for several hours in air. And then gradually cooled to about 200 ° C. in air.

【0004】ところで、リチウム化合物とコバルト化合
物とを混合する場合、リチウムがコバルトよりも化学量
論的に約10%程度過剰(例えば、Li1.11CoO2
となるように混合している。この理由は以下の通りであ
る。
When a lithium compound and a cobalt compound are mixed, lithium is stoichiometrically about 10% excess of cobalt (eg, Li 1.11 CoO 2 ).
It is mixed so that it becomes. The reason is as follows.

【0005】即ち、過剰のリチウム分の多くは焼成直後
には酸化リチウムの形態で存在するが、焼成後の冷却中
に空気中の炭酸ガスと反応して炭酸リチウムに変化す
る。このような炭酸リチウムを含有するLi−Co系複
合酸化物を使用してリチウムイオン二次電池を組上げた
場合、異常な電池反応が生ずると炭酸リチウムが分解し
て炭酸ガスを発生し、その結果、電池缶内圧が高まる。
このため、電池の安全装置を円滑に作動させることがで
きる。
[0005] That is, most of the excessive lithium content exists in the form of lithium oxide immediately after firing, but during cooling after firing, it reacts with carbon dioxide gas in the air to change to lithium carbonate. When a lithium ion secondary battery is assembled using such a Li-Co-based composite oxide containing lithium carbonate, when an abnormal battery reaction occurs, lithium carbonate is decomposed to generate carbon dioxide gas, and as a result , The internal pressure of the battery can increases.
Therefore, the battery safety device can be operated smoothly.

【0006】なお、炭酸リチウムと四三酸化コバルトと
を使用してLi1.11CoO2を製造する場合、理論的に
は以下の反応式に示す量で両者を反応させる。
When Li 1.11 CoO 2 is produced using lithium carbonate and cobalt tetroxide, the two are theoretically reacted in amounts shown in the following reaction formula.

【0007】[0007]

【化1】 (3Li2CO3)1.11 + 2Co3O4 → 6LiCoO2 + (3Li2CO3)0.11 3×73.88×1.11 2×240.79 6×97.84 3×73.88×0.11 =587.04 =24.38 従って、炭酸リチウムの理論残存量は以下の式(3Li 2 CO 3 ) 1.11 + 2Co 3 O 4 → 6LiCoO 2 + (3Li 2 CO 3 ) 0.11 3 × 73.88 × 1.11 2 × 240.79 6 × 97.84 3 × 73.88 × 0.11 = 587.04 = 24.38 The theoretical remaining amount of lithium is

【0008】[0008]

【数1】 炭酸リチウム理論残存量=(3Li2CO3)0.11/(6LiCoO2+(3Li2CO3)0.11) =24.38/(587.04+24.38) =0.03987 に示すように、3.987%となる。## EQU1 ## As shown in the formula, theoretical residual amount of lithium carbonate = (3Li 2 CO 3 ) 0.11 / (6LiCoO 2 + (3Li 2 CO 3 ) 0.11) = 24.38 / (587.04 + 24.38) = 0.03987, 3.987% Becomes

【0009】[0009]

【発明が解決しようとする課題】しかしながら、過剰の
リチウム分のすべてが炭酸リチウムとはならず、一部の
リチウム分が酸化リチウムとして残ってしまうので、実
際の炭酸リチウム残存量が理論数値を大きく下回った
3.0〜3.5%という数値となってしまうという問題
がある。しかも、酸化リチウムの残存量に、使用した焼
成炉の構造の相違や焼成ロットの相違等によりバラツキ
が生じるという問題がある。このため、正極合剤塗料を
調製する際に、酸化リチウムがバインダー(PVDF)
と架橋反応し、その結果、塗料の粘度が上昇し、しかも
粘度にバラツキが生じ、塗布条件が不安定になってい
た。
However, not all of the excess lithium is converted to lithium carbonate, and part of the lithium remains as lithium oxide. There is a problem that the numerical value falls below 3.0 to 3.5%. In addition, there is a problem that the remaining amount of lithium oxide varies due to a difference in the structure of the firing furnace used or a difference in the firing lot. For this reason, when preparing a positive electrode mixture paint, lithium oxide is used as a binder (PVDF).
As a result, the viscosity of the coating material increased, and the viscosity was varied, resulting in unstable coating conditions.

【0010】また、Li−Co系複合酸化物の生産量の
拡大のために、リチウム化合物粉末及びコバルト化合物
粉末の混合物の焼成炉への投入量の増大や焼成炉への投
入搬出速度のスピードアップ等の焼成条件を変更したり
することが試みられた。しかし、このような焼成条件の
変更により、焼成後の焼成物の冷却スピードが変化し、
それにより酸化リチウム残存量が増加するという問題が
あった。従って、焼成炉1台当たりの焼成処理量の増大
を計ることは困難であった。
Further, in order to increase the production amount of the Li—Co-based composite oxide, the amount of the mixture of the lithium compound powder and the cobalt compound powder to be charged into the sintering furnace is increased and the speed of charging and unloading the mixture into the sintering furnace is increased. It has been attempted to change the firing conditions such as. However, such a change in the firing conditions changes the cooling speed of the fired product after firing,
As a result, there is a problem that the residual amount of lithium oxide increases. Therefore, it has been difficult to increase the amount of sintering treatment per one sintering furnace.

【0011】また、焼成後に、Li−Co系複合酸化物
(例えば、LiCoO2)を空気中で長時間放置し、そ
の中の残存酸化リチウム分を空気中のCO2と反応させ
て炭酸リチウムに変化させることも試みられたが、リー
ドタイムの増大や水分の吸着等の問題があった。
After calcination, the Li—Co-based composite oxide (eg, LiCoO 2 ) is left in air for a long time, and the remaining lithium oxide therein is reacted with CO 2 in air to form lithium carbonate. Attempts have been made to change them, but there have been problems such as an increase in lead time and adsorption of moisture.

【0012】本発明は、以上の従来の技術の課題を解決
しようとするものであり、二次電池用Li−Co系複合
酸化物を製造する際に、過剰に存在するリチウム分を迅
速且つ容易に炭酸リチウムに変換できるようにし、焼成
処理量の増大を比較的容易にできるようにすることを目
的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to quickly and easily remove an excessive lithium content when producing a Li—Co-based composite oxide for a secondary battery. It is an object of the present invention to make it possible to convert the amount of calcination treatment relatively easily into lithium carbonate.

【0013】[0013]

【課題を解決するための手段】本発明者は、リチウム化
合物粉末及びコバルト化合物粉末の混合物を焼成し、得
られた焼成物を冷却する際に冷却雰囲気中に炭酸ガスを
導入することにより、過剰に存在するリチウム分を迅速
且つ容易に炭酸リチウムに変換できることを見出し、本
発明を完成させるに至った。
Means for Solving the Problems The present inventors calcined a mixture of a lithium compound powder and a cobalt compound powder, and introduced carbon dioxide gas into a cooling atmosphere when cooling the calcined product. The present inventors have found that the lithium component present in the compound can be quickly and easily converted to lithium carbonate, and have completed the present invention.

【0014】即ち、本発明は、リチウム化合物とコバル
ト化合物とを混合し、焼成し、得られた焼成物を冷却す
ることにより二次電池用Li−Co系複合酸化物を製造
する方法において、焼成物を冷却する際の雰囲気中に炭
酸ガスを添加することを特徴とする製造方法を提供す
る。
That is, the present invention relates to a method for producing a Li—Co-based composite oxide for a secondary battery by mixing a lithium compound and a cobalt compound, firing and cooling the obtained fired product. Provided is a production method characterized in that carbon dioxide is added to an atmosphere in cooling an object.

【0015】[0015]

【発明の実施の形態】以下、本発明の二次電池用Li−
Co系複合酸化物の製造方法を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, Li- for a secondary battery according to the present invention will be described.
The method for producing the Co-based composite oxide will be described in detail.

【0016】本発明の二次電池用Li−Co系複合酸化
物の製造方法においては、まず、リチウム化合物とコバ
ルト化合物とを混合する。
In the method for producing a Li—Co-based composite oxide for a secondary battery according to the present invention, first, a lithium compound and a cobalt compound are mixed.

【0017】リチウム化合物としては、炭酸リチウム、
酸化リチウム等を挙げることができる。また、コバルト
化合物としては四三酸化コバルト、炭酸コバルト等を挙
げることができる。これらは、粉末状態で混合すること
が好ましい。
As the lithium compound, lithium carbonate,
Lithium oxide and the like can be given. Examples of the cobalt compound include cobalt tetroxide, cobalt carbonate and the like. These are preferably mixed in a powder state.

【0018】また、リチウム化合物とコバルト化合物の
他に、他の金属元素化合物(例えば、酸化アルミニウ
ム、酸化ニッケル、五酸化バナジウム等を混合してもよ
い。
Further, in addition to the lithium compound and the cobalt compound, other metal element compounds (for example, aluminum oxide, nickel oxide, vanadium pentoxide, etc.) may be mixed.

【0019】リチウム化合物とコバルト化合物との混合
割合としては、リチウム化合物がコバルト化合物よりも
化学量論的に過剰となるようにする。例えば、化学量論
的に均衡した状態の化合物がLiCoO2あるいはLi
Co0.96Al0.042である場合に、それぞれLi1.11
CoO2あるいはLi1.11Co0.96Al0.042と表され
る化合物を挙げることができる。
The mixing ratio of the lithium compound and the cobalt compound is such that the lithium compound is in a stoichiometric excess with respect to the cobalt compound. For example, a compound in a stoichiometrically balanced state is LiCoO 2 or LiCoO 2
In the case of Co 0.96 Al 0.04 O 2 , Li 1.11
Compounds represented by CoO 2 or Li 1.11 Co 0.96 Al 0.04 O 2 can be mentioned.

【0020】次に、リチウム化合物とコバルト化合物と
の混合物を公知の手法にて焼成する。例えば可変送り速
度調節機能を備えたプッシャー式連続トンネル炉を使用
して焼成することができる。一般的なプッシャー式連続
トンネル炉について、図1(概略断面図)及び図2
(a)(長手方向概略構造図)を参照しながら説明す
る。
Next, the mixture of the lithium compound and the cobalt compound is fired by a known method. For example, firing can be performed using a pusher-type continuous tunnel furnace having a variable feed rate adjusting function. FIG. 1 (schematic sectional view) and FIG. 2 show a general pusher type continuous tunnel furnace.
This will be described with reference to (a) (schematic view in the longitudinal direction).

【0021】このトンネル炉においては、図1に示すよ
うに、耐熱壁Wで囲われた空間(トンネル炉内空間)の
中をコンベアにより移動可能な台盤Cが配されており、
その台盤C上には、焼成物を収容する耐熱ボートBが置
かれている。更に、トンネル炉には、トンネル炉内を加
熱するためのヒータhと、トンネル炉内空間にガスを供
給するためのガス供給口Gと、炉内雰囲気ガス濃度を測
定するためのガス検知孔Sと、炉内ガス濃度を調節する
ためのダンパーDとが設けられている。
In this tunnel furnace, as shown in FIG. 1, a bed C which is movable by a conveyor in a space surrounded by a heat-resistant wall W (space in the tunnel furnace) is provided.
On the platform C, a heat-resistant boat B for storing a fired product is placed. Further, the tunnel furnace has a heater h for heating the inside of the tunnel furnace, a gas supply port G for supplying gas to the space inside the tunnel furnace, and a gas detection hole S for measuring the concentration of the atmosphere gas in the furnace. And a damper D for adjusting the gas concentration in the furnace.

【0022】このようなトンネル炉は、長手方向に、例
えば図2(a)に示すように、まず入口のスタートゾー
ンFと、温度設定可能なヒーティングゾーンH1〜H1
5と、それに続いて、焼成物を冷却するクーリングゾー
ンC1、C2と、更に焼成物を水冷できる出口の最終ゾ
ーンZとを有する。特に最終ゾーンZでは、焼成物を2
00℃以下で炉出できるように設定してある。
In such a tunnel furnace, first, as shown in FIG. 2A, for example, a start zone F at an entrance and heating zones H1 to H1 at which temperatures can be set are arranged in a longitudinal direction.
5, followed by cooling zones C1 and C2 for cooling the fired material, and a final zone Z at an outlet where the fired material can be further water-cooled. Particularly in the final zone Z, the fired product is
It is set so that the furnace can be discharged at a temperature of 00 ° C or less.

【0023】また、各ゾーンには適宜、ガス供給口G1
〜G17と、ガス検知孔S1〜S17と、ダンパーD1
〜D13とが設けられている。また、各ゾーン内のガス
濃度は、各ガス供給口からのガスの供給量と各ダンパー
からのガスの排気量とにより調節可能となっている。ま
た、焼成温度条件は、各ヒーティングゾーンの加熱温度
と被焼成物の送り速度との調整により設定できるように
なっている。
In each zone, gas supply ports G1
To G17, the gas detection holes S1 to S17, and the damper D1
To D13. The gas concentration in each zone can be adjusted by the amount of gas supplied from each gas supply port and the amount of gas exhausted from each damper. The firing temperature conditions can be set by adjusting the heating temperature of each heating zone and the feed rate of the object to be fired.

【0024】なお、耐熱ボートBは、リターンコンベア
システムにより再利用可能となっている。
The heat-resistant boat B can be reused by a return conveyor system.

【0025】このトンネル炉の長手方向の各ゾーンと内
部温度との一般的な関係図を図2(b)に示す。この図
からわかるように、Li−Co系複合酸化物の焼成は、
被焼成物の温度を徐々に980℃前後まで昇温させ、そ
の温度で一定時間(例えば、2〜5時間)保持すること
により行う。焼成時の雰囲気は、大気雰囲気でよく、焼
成炉の外部から内部へ空気以外の特別なガスを導入する
必要はない。
FIG. 2B shows a general relation diagram between each zone in the longitudinal direction of the tunnel furnace and the internal temperature. As can be seen from this figure, the firing of the Li—Co-based composite oxide
This is performed by gradually raising the temperature of the object to be fired to around 980 ° C. and maintaining the temperature for a certain time (for example, 2 to 5 hours). The atmosphere during firing may be an air atmosphere, and it is not necessary to introduce a special gas other than air from the outside to the inside of the firing furnace.

【0026】焼成した後、本発明においては、得られた
焼成物を冷却するが、その際の雰囲気中に炭酸ガスを添
加する。これにより、焼成物の冷却中に、焼成物中に残
存する酸化リチウムを迅速に且つ簡便に炭酸リチウムに
変化させることができ、結果的に炭酸リチウムの理論残
存量を達成したLi−Co系複合酸化物を得ることがで
きる。
After firing, in the present invention, the obtained fired product is cooled, and carbon dioxide is added to the atmosphere at that time. As a result, during cooling of the fired product, the lithium oxide remaining in the fired product can be quickly and easily changed to lithium carbonate, and as a result, the Li—Co-based composite that has achieved the theoretical remaining amount of lithium carbonate An oxide can be obtained.

【0027】冷却する際の雰囲気中の炭酸ガス濃度の好
ましい濃度は、低すぎると酸化リチウムの炭酸リチウム
への変換が十分でなく、多すぎると無駄となるので、好
ましくは0.5〜3.0容量%に設定する。
When the concentration of carbon dioxide in the atmosphere at the time of cooling is preferably too low, the conversion of lithium oxide to lithium carbonate is not sufficient, and when it is too high, it is wasteful. Set to 0% by volume.

【0028】このようにして得られたLi−Co系複合
酸化物は、リチウムイオン二次電池の正極活物質として
好ましく利用することができる。
The Li—Co-based composite oxide thus obtained can be preferably used as a positive electrode active material of a lithium ion secondary battery.

【0029】[0029]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0030】実施例1 Li1.11Co0.96Al0.042を調製するために、炭酸
リチウム1.11モルに対し、四三酸化コバルト0.6
4モルとアルミナ0.04モルとの混合物(被焼成物)
4.5Kgを、高純度アルミナ製耐熱ボートに投入し、
図3に示すような炉内温度と炉内炭酸ガス濃度とになる
ように、図1及び図2(a)に示すプッシャー式連続ト
ンネル炉で焼成と冷却とを行った。これによりLi−C
o系複合酸化物(Li1.11Co0.96Al0.042)を得
た。
EXAMPLE 1 To prepare Li 1.11 Co 0.96 Al 0.04 O 2 , 1.11 mol of lithium carbonate and 0.6 mol of cobalt tetroxide were mixed with 1.11 mol of lithium carbonate.
Mixture of 4 mol and 0.04 mol of alumina (substance to be fired)
4.5 Kg is put into a high-purity alumina heat-resistant boat,
Firing and cooling were performed in a pusher-type continuous tunnel furnace shown in FIGS. 1 and 2A so that the furnace temperature and the carbon dioxide concentration in the furnace as shown in FIG. 3 were obtained. Thereby, Li-C
An o-based composite oxide (Li 1.11 Co 0.96 Al 0.04 O 2 ) was obtained.

【0031】なお、図3においては、昇温の際に炭酸ガ
ス濃度が高まっているが、これは被焼成物の昇温の際に
炭酸リチウムの炭酸残基が分解したためであった。被焼
成物の温度が900℃程度になると、大部分の炭酸残基
が分解してしまっているので、炭酸ガス濃度の低下が観
察された。本実施例では、冷却を開始した時点で炭酸ガ
ス濃度が約4%程度になるまで炉内に炭酸ガスを導入
し、その後、図3に示すような炭酸ガス濃度曲線になる
ようにした。即ち、表1に示すような温度領域に応じて
炭酸ガス濃度を調整した。
In FIG. 3, the carbon dioxide gas concentration is increased when the temperature is raised, because the carbonic acid residue of lithium carbonate is decomposed when the temperature of the material to be fired is raised. When the temperature of the material to be fired was about 900 ° C., most of the carbonic acid residues had been decomposed, so that a decrease in carbon dioxide gas concentration was observed. In this embodiment, at the time of starting the cooling, the carbon dioxide gas was introduced into the furnace until the carbon dioxide gas concentration became about 4%, and thereafter, a carbon dioxide gas concentration curve as shown in FIG. 3 was obtained. That is, the carbon dioxide concentration was adjusted according to the temperature range as shown in Table 1.

【0032】[0032]

【表1】 温度領域 炭酸ガス濃度 950〜900℃: 3.0%以上 900〜700℃: 2.0%以上 700〜400℃: 1.0%以上 400〜200℃: 0.5%以上 [Table 1] Temperature range CO2 concentration 950-900 ° C: 3.0% or more 900-700 ° C: 2.0% or more 700-400 ° C: 1.0% or more 400-200 ° C: 0.5% or more

【0033】実施例2 被焼成物の送り速度を実施例1の1.5倍とし、ヒーテ
ィングゾーンを拡げ、焼成温度980℃を3.0時間維
持するように設定し、且つ冷却ゾーンの炭酸ガス濃度を
図4に示すように調整すること以外は、実施例1と同様
にしてLi−Co系複合酸化物(Li1.11Co0.96Al
0.042)を得た。
Example 2 The feed rate of the object to be fired was 1.5 times that of Example 1, the heating zone was expanded, the firing temperature was set to 980 ° C. for 3.0 hours, and the carbon dioxide in the cooling zone was set. Except that the gas concentration was adjusted as shown in FIG. 4, a Li—Co-based composite oxide (Li 1.11 Co 0.96 Al
0.04 O 2 ).

【0034】実施例3 高純度アルミナ製の耐熱ボートを、スペーサー(25m
m)を介して2段積みとする以外は、実施例1と同様
(図3参照)にしてLi−Co系複合酸化物(Li1.11
Co0.96Al0.042)を得た。
Example 3 A heat-resistant boat made of high-purity alumina was placed on a spacer (25 m
except that the double stack through m) are similar to Example 1 (with reference FIG. 3) Li-Co-based composite oxide (Li 1.11
Co 0.96 Al 0.04 O 2 ) was obtained.

【0035】比較例1 図5に示すように、焼成の際の温度を980℃にて3.
0時間維持するようにし、且つ冷却ゾーンにAirを流
すること以外は実施例1と同様にしてLi−Co系複合
酸化物(Li1.11Co0.96Al0.042)を得た。この
時の冷却ゾーン950℃以下の炭酸ガス濃度2.0%以
下であった。
Comparative Example 1 As shown in FIG. 5, the firing temperature was 980 ° C.
A Li—Co-based composite oxide (Li 1.11 Co 0.96 Al 0.04 O 2 ) was obtained in the same manner as in Example 1 except that the temperature was maintained for 0 hour and Air was flowed through the cooling zone. At this time, the carbon dioxide concentration in the cooling zone at 950 ° C. or less was 2.0% or less.

【0036】(評価)実施例1〜3及び比較例1のLi
−Co系複合酸化物の残存炭酸リチウム分を測定した。
その結果を表2に示す。
(Evaluation) Li of Examples 1-3 and Comparative Example 1
The residual lithium carbonate content of the -Co-based composite oxide was measured.
Table 2 shows the results.

【0037】なお、この複合酸化物の炭酸リチウム残存
量は、以下の式に示すようにその理論残存量が4.03
7%である。
The theoretical amount of lithium carbonate remaining in this composite oxide was 4.03 as shown in the following equation.
7%.

【0038】[0038]

【数2】炭酸リチウム理論残存量=3(LiCO
0.11/(6LiCo0.96Al0.04
(3LiCO)0.11)=0.04037
## EQU2 ## Theoretical residual amount of lithium carbonate = 3 (Li 2 CO 3 )
0.11 / (6LiCo 0.96 Al 0.04 O 2 +
(3Li 2 CO 3) 0.11) = 0.04037

【0039】[0039]

【表2】 残存炭酸リチウム% 残存率% 残存炭酸リチウム(換算) 実施例1 4.03 99.83 LiCO30.1098 実施例2 4.01 99.33 Li2CO30.1093 実施例3/下段 3.98 98.59 Li2CO30.1084 /上段 4.02 99.58 Li2CO30.1095 比較例1 3.60 89.12 Li2CO30.0980 [Table 2] Residual lithium carbonate% Residual rate% Residual lithium carbonate (converted) Example 1 4.03 99.83 Li 2 CO 3 0.1098 Example 2 4.01 99.33 Li 2 CO 3 0.1093 Example 3 / Lower 3.98 98 .59 Li 2 CO 3 0.1084 / Upper 4.02 99.58 Li 2 CO 3 0.1095 Comparative Example 1 3.60 89.12 Li 2 CO 3 0.0980

【0040】表2から明らかなように、実施例1〜3の
Li−Co系複合酸化物は、過剰のリチウム分のほとん
どが炭酸リチウムとして存在していた。
As is evident from Table 2, most of the excess lithium was present as lithium carbonate in the Li-Co-based composite oxides of Examples 1 to 3.

【0041】一方、比較例1のLi−Co系複合酸化物
の場合、過剰のリチウム分の10%程度が酸化リチウム
として残存していることがわかった。
On the other hand, in the case of the Li—Co-based composite oxide of Comparative Example 1, it was found that about 10% of excess lithium remained as lithium oxide.

【0042】以上の結果から、焼成物を冷却する際の雰
囲気中の炭酸ガス濃度を0.5〜3.0%に設定するこ
とで、過剰のリチウム分のほとんどすべてを炭酸リチウ
ムに変換することができた。その結果、二次電池に要求
される安全性の確保が可能となり、しかも安定した特質
の材料の供給が可能となり、生産性の向上も可能とな
る。
From the above results, it is possible to convert almost all of the excess lithium into lithium carbonate by setting the concentration of carbon dioxide in the atmosphere at the time of cooling the fired product to 0.5 to 3.0%. Was completed. As a result, safety required for the secondary battery can be ensured, and moreover, stable supply of characteristic materials can be achieved, and productivity can be improved.

【0043】[0043]

【発明の効果】本発明によれは、二次電池用Li−Co
系複合酸化物を製造する際に、過剰に存在するリチウム
分を迅速且つ容易に炭酸リチウムに変換でき、従って焼
成処理量の増産が比較的容易に可能になる。
According to the present invention, Li-Co for a secondary battery is provided.
In producing a system-based composite oxide, an excessive amount of lithium can be quickly and easily converted to lithium carbonate, so that it is relatively easy to increase the amount of calcination treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用する焼成炉の概略断面図である。FIG. 1 is a schematic sectional view of a firing furnace used in the present invention.

【図2】本発明で使用する焼成炉の長手方向概略構造図
(同図(a))、及び焼成炉の長手方向の各ゾーンと内
部温度との関係図(同図(b))である。
FIG. 2 is a schematic diagram of the longitudinal direction of the firing furnace used in the present invention (FIG. (A)), and a diagram showing the relationship between each zone in the longitudinal direction of the firing furnace and the internal temperature (FIG. (B)). .

【図3】実施例1及び3の焼成条件説明図である。FIG. 3 is an explanatory view of firing conditions in Examples 1 and 3.

【図4】実施例2の焼成条件説明図である。FIG. 4 is an explanatory view of firing conditions in Example 2.

【図5】比較例1の焼成条件説明図である。FIG. 5 is an explanatory view of firing conditions of Comparative Example 1.

【符号の説明】[Explanation of symbols]

W 耐熱壁、C 台盤、B 耐熱ボート、h ヒータ、
G ガス供給口、Sガス検知孔、D ダンパー
W heat-resistant wall, C baseboard, B heat-resistant boat, h heater,
G gas supply port, S gas detection hole, D damper

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム化合物とコバルト化合物とを混
合し、焼成し、得られた焼成物を冷却することにより二
次電池用Li−Co系複合酸化物を製造する方法におい
て、焼成物を冷却する際の雰囲気中に炭酸ガスを添加す
ることを特徴とする製造方法。
1. A method for producing a Li-Co-based composite oxide for a secondary battery by mixing a lithium compound and a cobalt compound, firing and cooling the obtained fired product, wherein the fired product is cooled. A production method characterized by adding carbon dioxide gas to the atmosphere at the time.
【請求項2】 冷却する際の雰囲気中の炭酸ガス濃度を
0.5〜3.0容量%に設定する請求項1記載の製造方
法。
2. The method according to claim 1, wherein the concentration of carbon dioxide in the atmosphere at the time of cooling is set to 0.5 to 3.0% by volume.
【請求項3】 リチウム化合物として炭酸リチウムを使
用し、コバルト化合物として四三酸化コバルトを使用す
る請求項1又は2記載の製造方法。
3. The method according to claim 1, wherein lithium carbonate is used as the lithium compound, and cobalt tetroxide is used as the cobalt compound.
【請求項4】 リチウム化合物がコバルト化合物よりも
化学量論的に過剰に使用されている請求項1〜3のいず
れかに記載の製造方法。
4. The method according to claim 1, wherein the lithium compound is used in a stoichiometric excess relative to the cobalt compound.
JP10037729A 1998-02-19 1998-02-19 Manufacture of li-co complex oxide for secondary battery Pending JPH11233113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10037729A JPH11233113A (en) 1998-02-19 1998-02-19 Manufacture of li-co complex oxide for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10037729A JPH11233113A (en) 1998-02-19 1998-02-19 Manufacture of li-co complex oxide for secondary battery

Publications (1)

Publication Number Publication Date
JPH11233113A true JPH11233113A (en) 1999-08-27

Family

ID=12505591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10037729A Pending JPH11233113A (en) 1998-02-19 1998-02-19 Manufacture of li-co complex oxide for secondary battery

Country Status (1)

Country Link
JP (1) JPH11233113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2011204596A (en) * 2010-03-26 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Raw material calcination method and raw material calcination device
US20130122363A1 (en) * 2010-04-30 2013-05-16 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US20130177816A1 (en) * 2010-09-17 2013-07-11 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2011204596A (en) * 2010-03-26 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Raw material calcination method and raw material calcination device
US20130122363A1 (en) * 2010-04-30 2013-05-16 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US9786911B2 (en) * 2010-04-30 2017-10-10 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US10559821B2 (en) 2010-04-30 2020-02-11 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US20130177816A1 (en) * 2010-09-17 2013-07-11 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US9780371B2 (en) * 2010-09-17 2017-10-03 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
AU733390B2 (en) Method of preparing li1+xmn2-xo4 for use as secondary battery electrode
US20080247931A1 (en) Method for Producing Multi-Constituent, Metal Oxide Compounds Containing Alkali Metals,and thus Produced Metal Oxide Compounds
WO2012132072A1 (en) Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US5874058A (en) Method of preparing Li1+x MN2-x O4 for use as secondary battery electrode
JP6349957B2 (en) Slag filling for producing lithium transition metal composite oxide and method for producing lithium transition metal composite oxide
KR100555261B1 (en) Method for Producing Lithium Transition Metalates
JPH11292542A (en) Production of li-mn double oxide
EP2724397B1 (en) Process for synthesis of a layered oxide cathode composition
JPH11233113A (en) Manufacture of li-co complex oxide for secondary battery
JP2001220145A (en) Method for manufacturing lithium manganese oxide powder for lithium secondary battery
JP5353125B2 (en) Method for producing lithium nickel composite oxide
JP5534657B2 (en) Method for producing lithium nickel composite oxide
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP6996262B2 (en) A method for producing lithium hydroxide for producing a lithium nickel composite oxide, a raw material for lithium hydroxide for producing a lithium nickel composite oxide, and a method for producing a lithium nickel composite oxide.
CA2787373C (en) Producing oxidic compounds
ZA200501931B (en) Method of producing crystalline lithium/vanadium oxide powder
JP6089896B2 (en) Method for producing lithium iron phosphate
JP2003100295A (en) Positive electrode material for lithium secondary battery and manufacturing method thereof
CN113661590A (en) Method and apparatus for preparing ternary cathode materials
JP2001076728A (en) Manufacture of positive electrode active material for lithium secondary battery
KR20010056566A (en) Method for preparing lithium manganese oxide for lithium cell and battery
JP2003267729A (en) Method for producing compound oxide containing lithium and use of it
KR102406391B1 (en) Method for manufacturing cathode material of secondary battery
EP0931022A1 (en) METHOD OF PREPARING Li 1+x?Mn 2-x?O 4? FOR USE AS SECONDARY BATTERY ELECTRODE
JP2004123488A (en) Method for manufacturing nickel oxide powder