[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11231933A - Device for detecting deviation of stop position of mobile object and unmanned carrier - Google Patents

Device for detecting deviation of stop position of mobile object and unmanned carrier

Info

Publication number
JPH11231933A
JPH11231933A JP10036064A JP3606498A JPH11231933A JP H11231933 A JPH11231933 A JP H11231933A JP 10036064 A JP10036064 A JP 10036064A JP 3606498 A JP3606498 A JP 3606498A JP H11231933 A JPH11231933 A JP H11231933A
Authority
JP
Japan
Prior art keywords
stop position
shift amount
moving body
mobile object
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10036064A
Other languages
Japanese (ja)
Other versions
JP3978844B2 (en
Inventor
Tsukasa Sugino
司 杉野
Katsumi Yasuda
克己 安田
Susumu Nakagawa
進 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP03606498A priority Critical patent/JP3978844B2/en
Priority to US09/063,409 priority patent/US6041274A/en
Publication of JPH11231933A publication Critical patent/JPH11231933A/en
Application granted granted Critical
Publication of JP3978844B2 publication Critical patent/JP3978844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Image Processing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control Of Position Or Direction (AREA)
  • Image Analysis (AREA)
  • Numerical Control (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mobile object stop position deviation detecting device capable of finding out an accurate positional deviation even when positional relation between a vehicle body and a floor surface is three-dimensionally changed between teaching time and working time and an unmanned carrier capable of executing always accurate work by utilizing the detecting device. SOLUTION: When a mobile object 1 such as an unmanned carrier is moved while photographing featured points such as punched poles 32 of a floor surface 31 by an image pickup means 23 such as a camera loaded on the mobile object 1 and stopped on a prescribed reference position to carry a baggage by a moving arm 22 previously teached at its operation on the reference stop position, a deviation detection means 2 in the mobile object stop position deviation detecting device A1 finds out the deviation of a three-dimensional(3D) stop position of the mobile object 1 only from the relation of respective featured point positions in an image picked up at working obtained when the mobile object 1 is stopped and a reference pickup image obtained when the mobile object is stopped on the reference stop position to correct the teaching data of a working device such as the moving arm 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,例えばクリーンル
ーム等で荷物の搬送などに用いられるような移動体に搭
載され,その停止位置と,基準とする停止位置とのズレ
を検出する移動体の停止位置ズレ量検出装置,及び上記
停止位置ズレ量検出装置を搭載した無人搬送車に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of stopping a moving body which is mounted on a moving body used for transporting luggage in a clean room or the like, and detects a deviation between a stop position of the moving body and a reference stop position. The present invention relates to a position shift amount detection device and an automatic guided vehicle equipped with the stop position shift amount detection device.

【0002】[0002]

【従来の技術】半導体デバイス工場のクリーンルームな
どにおいては,装置と装置,装置とストッカ等の間でウ
ェーハ等の荷物を搬送し,移載アームなどにより移載を
行う無人搬送車が用いられている。この種の無人搬送車
では,上記移載アームなどは予め上記無人搬送車を所定
の作業位置(教示位置)に停止させた状態で教示された
教示データに従って作業を行う。従って,上記移載アー
ムなどによる作業を正確に行うためには,無人搬送車の
停止位置の上記教示位置からのズレに基づいて上記無人
搬送車の停止位置,或いは上記教示データの内容を補正
する必要があり,またそのためには上記停止位置のズレ
量を正確に求めることが不可欠である。ところで,上記
のようなクリーンルームなどでは,床材としてパンチン
グ材やグレーチング材など,全面に所定のパターンで貫
通孔を配した孔空き床材が用いられることが多い。そこ
で,床面に形成された上記パターンを利用して上記無人
搬送車の停止位置ズレ量を検出する装置について,本出
願人は既に特許出願を行っている(例えば特願平09−
338530号,特願平9−338529号など)。こ
れら床面上のパターンを利用した位置ズレ量検出装置及
びその方法について簡単に説明する。
2. Description of the Related Art In a clean room or the like of a semiconductor device factory, an unmanned transfer vehicle that transports a load such as a wafer between devices and a device, a stocker, and the like and transfers the load by a transfer arm or the like is used. . In this type of automatic guided vehicle, the transfer arm and the like perform work according to the teaching data taught in a state where the automatic guided vehicle is stopped at a predetermined work position (teaching position) in advance. Therefore, in order to accurately perform the operation using the transfer arm or the like, the stop position of the automatic guided vehicle or the content of the teaching data is corrected based on the deviation of the stopped position of the automatic guided vehicle from the teaching position. It is necessary, and for that purpose, it is indispensable to accurately determine the amount of deviation of the stop position. By the way, in the above-mentioned clean room and the like, a perforated floor material having through holes arranged in a predetermined pattern on the entire surface, such as a punching material or a grating material, is often used as a floor material. Accordingly, the present applicant has already filed a patent application for a device that detects the amount of deviation of the stop position of the automatic guided vehicle using the pattern formed on the floor surface (for example, Japanese Patent Application No. 09-90, 1993).
No. 338530, Japanese Patent Application No. 9-338529). An apparatus and a method for detecting the amount of displacement using these patterns on the floor will be briefly described.

【0003】図4,図5に示すように,荷物移載用のア
ーム22が搭載された無人搬送車21の下部中央部付近
(照明等の影響を受けにくい位置)には,床面31に対
向するように,照明装置24を有するカメラ23が固定
的に設置されており,更に,演算装置25,記憶装置2
6,車体制御部27,及びアーム制御部28が設けられ
ている。また,半導体クリーンルーム等では通常行われ
ているように,上記床面31には,所定のパターンでパ
ンチング孔32が形成されている。上記アーム22に
は,予め,所定の基準停止位置に上記無人搬送車21を
停止させた状態で,ウェーハ(不図示)を無人搬送車2
1から作業台(不図示)へ移載する動作が教示される。
実際の移載作業時には,上記アーム22はその教示デー
タに従って作業を行う。上記カメラ23では,上述した
上記アーム22の動作教示時,及び移載作業時の所定の
作業位置での停止時に,上記パンチング床31の画像
(図6参照)が撮像される。上記演算装置25では,上
記カメラ23による撮像後,上記カメラ23から取り込
まれた撮像画像に画像処理を施すことにより,上記各パ
ンチング孔32の位置データ(撮像画像の局所座標系に
おける2次元座標値)が求められる。上記アーム22の
動作教示時に得られた上記位置データ(以下,教示時位
置データという)は,上記記憶装置26に記憶される。
上記演算装置26では,移載作業時に上記無人搬送車2
1が停止してその時の上記各パンチング孔32の位置デ
ータ(以下,作業時位置データという)を求めた後,こ
の作業時位置データと上記記憶装置26に予め記憶され
た上記教示時位置データとの1対1の対応付けが行わ
れ,該対応付けがなされた各位置データの差に基づい
て,上記無人搬送車21の停止位置の上記床面31面内
での2次元的なズレ量(dx,dy,dθ)が求められ
る。ここで,上記対応付けの方法としては,例えば上記
パンチング孔32の配列パターンから外れるマークを設
けておいて,そのマークを基準として行う方法などが考
えられる。求められたズレ量は,上記車体制御部27に
取り込まれて車体停止位置が補正されるか,或いは上記
アーム制御部28に取り込まれて上記アームの教示デー
タの補正が行われる。
As shown in FIGS. 4 and 5, near the center of the lower part of the automatic guided vehicle 21 on which an arm 22 for transferring goods is mounted (a position that is not easily affected by lighting or the like), a floor surface 31 is provided. A camera 23 having an illuminating device 24 is fixedly installed so as to face each other.
6, a vehicle body control unit 27 and an arm control unit 28 are provided. Further, punching holes 32 are formed in the floor surface 31 in a predetermined pattern, as is usually performed in a semiconductor clean room or the like. A wafer (not shown) is transferred to the arm 22 in a state where the automatic guided vehicle 21 is stopped at a predetermined reference stop position in advance.
The operation of transferring from 1 to a workbench (not shown) is taught.
During the actual transfer operation, the arm 22 performs the operation according to the teaching data. The camera 23 captures an image of the punching floor 31 (see FIG. 6) when the operation of the arm 22 is taught and when the arm 22 is stopped at a predetermined work position during the transfer operation. The arithmetic unit 25 performs image processing on the captured image captured from the camera 23 after the image capturing by the camera 23, thereby obtaining the position data of each of the punching holes 32 (two-dimensional coordinate values in the local coordinate system of the captured image). ) Is required. The position data obtained at the time of teaching the operation of the arm 22 (hereinafter, referred to as position data at the time of teaching) is stored in the storage device 26.
In the arithmetic unit 26, the automatic guided vehicle 2
1 is stopped and the position data of each of the punching holes 32 at that time (hereinafter referred to as "working position data") is obtained. Then, the working position data and the teaching position data stored in the storage device 26 in advance are obtained. Is performed, and based on the difference between the associated position data, the two-dimensional shift amount (in the floor surface 31) of the stop position of the automatic guided vehicle 21 is determined. dx, dy, dθ) are obtained. Here, as a method of the association, for example, a method in which a mark deviating from the arrangement pattern of the punching holes 32 is provided and the mark is used as a reference may be considered. The obtained deviation amount is taken into the vehicle body control section 27 to correct the vehicle stop position, or taken into the arm control section 28 to correct the teaching data of the arm.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,上記の
ような従来の位置ズレ検出方法では,平面内での2次元
的な位置ズレ量(並進方向ズレdx,dy,回転ズレd
θ)を検出しているため,例えば車輪がパンチング孔3
2に落ち込んで車体が傾いて停止した場合や,車輪の磨
耗により上記カメラ23の床面31からの高さ位置が変
化した場合のように,教示時と作業時とで車体21(及
びカメラ23)と床面31との位置関係が3次元的に変
化した場合には,正確な位置ズレ量を求めることができ
ないという問題点があった。例えば,車体が傾いて停止
した場合の教示時撮像画像と作業時撮像画像との関係は
図7(a)(上が教示時撮像画像,下が作業時撮像画
像)のようになり,カメラ23の高さ位置が変化した場
合の教示時撮像画像と作業時撮像画像との関係は図7
(b)(同上)のようになるため,いずれの場合も上記
従来の方法では正確なズレ量を求めることはできない。
本発明は上記事情に鑑みてなされたものであり,その目
的とするところは,教示時と作業時とで床面との位置関
係が3次元的に変化した場合にも正確な位置ズレ量を求
めることが可能な移動体の停止位置ズレ量検出装置,及
びその装置を利用して常に正確に作業を行うことが可能
な無人搬送車を提供することである。
However, in the above-described conventional position shift detection method, the two-dimensional position shift amount in a plane (translation direction shifts dx, dy, rotation shift d).
θ) is detected, for example, the wheel
2, the vehicle body 21 (and the camera 23) are taught and operated, such as when the vehicle body leans and stops due to inclination, or when the height position of the camera 23 from the floor 31 changes due to wear of the wheels. ) And the floor surface 31 change three-dimensionally, there is a problem that an accurate positional deviation amount cannot be obtained. For example, the relationship between the captured image at the time of teaching and the captured image at the time of work when the vehicle body is tilted and stopped is as shown in FIG. 7A (the upper image at the time of teaching and the lower image at the time of work). FIG. 7 shows the relationship between the teaching-time captured image and the work-time captured image when the height position changes.
(B) As described above, the accurate deviation cannot be obtained by the above-described conventional method in any case.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an accurate positional displacement amount even when the positional relationship with the floor surface changes three-dimensionally between teaching and working. An object of the present invention is to provide an apparatus for detecting a displacement amount of a stop position of a moving body that can be obtained, and an automatic guided vehicle that can always perform work accurately using the apparatus.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に第1の発明は,複数の特徴点を有する平面上を移動す
る移動体に固定的に設置され,上記平面上の画像を撮像
する撮像手段と,上記移動体を停止させて上記撮像手段
により撮像した作業時撮像画像上の上記各特徴点位置と
予め上記移動体を所定の基準停止位置に停止させて上記
撮像手段により撮像した基準撮像画像上の上記各特徴点
位置との関係に基づいて上記移動体の停止位置のズレ量
を検出するズレ量検出手段とを具備する移動体の停止位
置ズレ量検出装置において,上記ズレ量検出手段が,上
記作業時撮像画像と上記基準撮像画像とにおける上記各
特徴点位置の関係のみに基づいて,上記移動体の3次元
的な停止位置のズレ量を求めることを特徴とする移動体
の停止位置ズレ量検出装置として構成されている。ここ
で,上記ズレ量検出手段により,上記基準撮像画像撮像
時と上記作業時撮像画像撮像時との間での上記撮像手段
の上記平面に対する3次元的な姿勢変化を,上記基準撮
像画像上の上記各特徴点位置と上記作業時撮像画像上の
上記各特徴点位置との関係のみに基づいて求めれば,こ
れが即ち上記移動体の停止位置のズレ量となる。また,
上記平面として床面を利用し,上記床面に設けられた貫
通孔を上記特徴点として用いることが最も一般的な例と
して挙げられるが,勿論それに限定されるものではな
い。また,上記停止位置ズレ量検出装置の利用の具体例
として,第2の発明は,上記第1の発明に係るの移動体
の停止位置ズレ量検出装置,及び上記基準停止位置にお
いて動作教示される作業装置とを搭載し,上記停止位置
ズレ量検出装置により得られた停止位置ズレ量に基づい
て上記作業装置の教示データを修正する無人搬送車とし
て構成されている。この無人搬送車においては,たとえ
作業時に車輪が貫通孔などに落ちて車体が傾いたとして
も,作業装置を正確に動作させることができる。
In order to achieve the above object, a first aspect of the present invention is to fixedly install a moving body moving on a plane having a plurality of characteristic points and to take an image on the plane. An image pickup means, the moving object is stopped, and the characteristic point positions on the work-time picked-up image picked up by the image pickup means, and a reference image obtained by stopping the moving object at a predetermined reference stop position in advance and picking up an image by the image pickup means. A shift amount detection unit for detecting a shift amount of the stop position of the moving body based on a relationship with each of the feature point positions on the captured image; Means for determining a three-dimensional shift amount of a stop position of the moving body based only on a relationship between the respective characteristic point positions in the work-time captured image and the reference captured image. Stop position shift amount It is configured as a detection device. Here, the shift amount detecting means detects a three-dimensional attitude change of the imaging means with respect to the plane between the time of capturing the reference captured image and the time of capturing the work-time captured image on the reference captured image. If it is obtained based only on the relationship between each of the characteristic point positions and each of the characteristic point positions on the work-time picked-up image, this is the shift amount of the stop position of the moving body. Also,
The most common example is to use a floor surface as the flat surface and to use a through hole provided in the floor surface as the feature point, but it is needless to say that the present invention is not limited to this. Further, as a specific example of the use of the above-mentioned stop position shift amount detecting device, the second invention teaches operation at the moving object stop position shift amount detecting device according to the first invention and the reference stop position. It is configured as an automatic guided vehicle equipped with a working device and correcting the teaching data of the working device based on the stop position shift amount obtained by the stop position shift amount detecting device. In this automatic guided vehicle, even if wheels fall into through holes or the like during work and the vehicle body is tilted, the working device can be operated accurately.

【0006】[0006]

【作用】本発明に係る移動体の停止位置ズレ量検出装置
によれば,移動体の3次元的な停止位置のズレ量が求め
られるため,例えば車輪が脱輪するなどして移動体が傾
いて停止した場合や,車輪の磨耗により上記撮像手段の
上記平面からの高さ位置が変化した場合のように,教示
時と作業時とで移動体と上記平面との位置関係が3次元
的に変化した場合でも,正確な位置ズレ量を検出でき
る。また,上記3次元ズレ量を求める際に,上記撮像画
像上での上記特徴点の位置データのみを用いているた
め,2次元ズレ量を求める従来の停止位置ズレ量検出装
置の演算装置のプログラムを変更するだけでよく,例え
ば移動体の傾斜を計るための新たな計器類を設置する必
要がない。また,本発明に係る無人搬送車においては,
上記停止位置ズレ量検出装置により得られた3次元的な
停止位置ズレ量に基づいて上記作業装置の教示データが
修正されるため,たとえ作業時に車輪が脱輪するなどし
て車体が傾いて停止したり,或いは車輪の磨耗により上
記撮像手段の床面からの高さ位置が変化した場合のよう
に,車体の姿勢が上記作業装置の動作教示時と比べて3
次元的に変化したような場合でも,作業装置を正確に動
作させることができる。
According to the moving body stop position shift amount detecting apparatus of the present invention, the three-dimensional shift amount of the moving body stop position is obtained, and therefore, the moving body is tilted due to, for example, a wheel coming off. The position relationship between the moving body and the plane is three-dimensionally determined during teaching and work, such as when the vehicle stops and when the height of the imaging means from the plane changes due to wear of the wheels. Even in the case of a change, an accurate displacement can be detected. Further, since only the position data of the feature point on the captured image is used in obtaining the three-dimensional shift amount, the program of the arithmetic unit of the conventional stop position shift amount detecting device for obtaining the two-dimensional shift amount is used. Need only be changed, and it is not necessary to install new instruments for measuring the inclination of the moving body, for example. In the automatic guided vehicle according to the present invention,
Since the teaching data of the working device is corrected based on the three-dimensional stop position shift amount obtained by the stop position shift amount detecting device, the vehicle body is tilted and stopped, for example, when the wheels come off during work. As in the case where the height of the image pickup means from the floor surface changes due to the wear of the wheels or the wear of the wheels, the posture of the vehicle body is 3
Even in the case of a dimensional change, the working device can be operated accurately.

【0007】[0007]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は本発明を具
体化した一例であって,本発明の技術的範囲を限定する
性格のものではない。ここに,図1は本発明の実施の形
態に係る停止位置ズレ量検出装置A1及びそれを搭載す
る無人搬送車1の概略構成を示す模式図,図2は世界座
標系,カメラ座標系,画像座標系の関係を示す説明図,
図3はθ,φ,ψの定義の一例を示す説明図である。本
実施の形態に係る停止位置ズレ量検出装置A1は,無人
搬送車1(請求項4に係る無人搬送車の一例)上に搭載
されており,図1に示すように,その基本的な構成につ
いては図5に示した従来の停止位置ズレ量検出装置とほ
ぼ同様である。即ち,上記無人搬送車1には荷物移載用
のアーム22(作業装置の一例)が搭載されており,該
無人搬送車1の下部中央部付近(照明等の影響を受けに
くい位置)には,床面31(平面の一例)に対向するよ
うに,照明装置24を有するカメラ23(撮像手段の一
例)が固定的に設置されている。更に,演算装置2(ズ
レ量検出手段の一例),記憶装置26,車体制御部2
7,及びアーム制御部28が設けられている。また,半
導体クリーンルーム等では通常行われているように,上
記床面31には,所定のパターンでパンチング孔32
(複数の特徴点の一例)が形成されている。しかしなが
ら,停止位置ズレ量検出装置A1においては,演算装置
2における位置ズレ量の計算方法が上記従来の方法とは
大きく異なり,それによって位置ズレ量は3次元量(並
進方向ズレdx,dy,dz,回転ズレdθ,dφ,d
ψ)として求められる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a schematic diagram showing a schematic configuration of a stop position deviation amount detecting device A1 according to an embodiment of the present invention and an automatic guided vehicle 1 on which it is mounted, and FIG. 2 is a world coordinate system, a camera coordinate system, and an image. Explanatory diagram showing the relationship between coordinate systems,
FIG. 3 is an explanatory diagram showing an example of the definitions of θ, φ, and ψ. The stop position shift amount detecting device A1 according to the present embodiment is mounted on an automatic guided vehicle 1 (an example of an automatic guided vehicle according to claim 4), and as shown in FIG. Is substantially the same as the conventional stop position deviation amount detecting device shown in FIG. That is, an arm 22 (an example of a working device) for transferring cargo is mounted on the automatic guided vehicle 1, and is located near a lower central portion of the automatic guided vehicle 1 (a position that is not easily affected by lighting or the like). A camera 23 (an example of an imaging unit) having an illumination device 24 is fixedly installed so as to face the floor 31 (an example of a plane). Furthermore, the arithmetic unit 2 (an example of a shift amount detecting unit), the storage device 26,
7, and an arm control unit 28 are provided. Further, as is usually performed in a semiconductor clean room or the like, a punching hole 32 is formed on the floor surface 31 in a predetermined pattern.
(An example of a plurality of feature points) is formed. However, in the stop position shift amount detecting device A1, the calculation method of the position shift amount in the arithmetic unit 2 is significantly different from the above-described conventional method, whereby the position shift amount is a three-dimensional amount (translational direction shifts dx, dy, dz). , Rotation deviation dθ, dφ, d
ψ).

【0008】まず始めに,上記停止位置ズレ量検出装置
A1による位置ズレ量検出動作の概略を説明する。アー
ム22には,予め,所定の基準停止位置に上記無人搬送
車1を停止させた状態で,ウェーハ(不図示)を無人搬
送車1から作業台(不図示)へ移載する動作が教示され
る。実際の移載作業時には,上記アーム22はその教示
データに従って作業を行う。上記カメラ23では,上述
した上記アーム22の動作教示時(以下,教示時とい
う),及び移載作業時における停止時(以下,作業時と
いう)に,上記パンチング床31の画像(図6参照)が
撮像される。上記演算装置2では,上記カメラ23によ
る撮像後,上記カメラ23から取り込まれた撮像画像に
画像処理を施すことにより,上記各パンチング孔32の
位置データ(撮像画像の局所座標系における2次元座標
値)が求められる。ここで,上記位置データを求める位
置としては,上記パンチング孔32の中心位置を用いる
ことが望ましい。これは,例えば車体が傾いて図7
(a)下図のような撮像画像が得られ,各パンチング孔
32が画像上で楕円形となったような場合でも,その中
心位置については上記楕円形の形状によらず正確に特定
可能だからである。上記教示時に得られた上記位置デー
タ(以下,教示時位置データという)は,上記記憶装置
26に記憶される。上記演算装置26では,作業時に得
られた作業時撮像画像からその時の上記各パンチング孔
32の位置データ(以下,作業時位置データという)を
求めた後,この作業時位置データと上記記憶装置26に
予め記憶された上記教示時位置データとの1対1の対応
付けが行われ,該対応付けがなされた各位置データに基
づいて,上記無人搬送車1の3次元的な停止位置のズレ
量(dx,dy,dz,dθ,dφ,dψ)が求められ
る。ここで,上記対応付けの方法としては,例えば上記
パンチング孔32の配列パターンから外れるマークを設
けておいて,そのマークを基準として行う方法などが考
えられるが,本実施の形態では詳しい説明は省略する。
求められた3次元位置ズレ量は,上記車体制御部27に
取り込まれて車体停止位置が補正されるか,或いは上記
アーム制御部28に取り込まれて上記アームの教示デー
タの補正が行われる。
First, an outline of the operation of detecting the amount of displacement by the stop position displacement detecting device A1 will be described. The operation of transferring the wafer (not shown) from the automatic guided vehicle 1 to the work table (not shown) while the automatic guided vehicle 1 is stopped at a predetermined reference stop position is taught to the arm 22 in advance. You. During the actual transfer operation, the arm 22 performs the operation according to the teaching data. In the camera 23, an image of the punching floor 31 is displayed when the operation of the arm 22 is taught (hereinafter, referred to as teaching) and when the arm 22 is stopped during transfer (hereinafter, referred to as working) (see FIG. 6). Is imaged. The arithmetic unit 2 performs image processing on the captured image captured from the camera 23 after the image capturing by the camera 23, thereby obtaining the position data of each of the punching holes 32 (two-dimensional coordinate values in the local coordinate system of the captured image in the local coordinate system). ) Is required. Here, it is desirable to use the center position of the punching hole 32 as the position for obtaining the position data. This is because, for example, the vehicle body is tilted and
(A) Even if a captured image as shown in the figure below is obtained and each punching hole 32 becomes elliptical on the image, the center position can be specified accurately regardless of the elliptical shape. is there. The position data obtained at the time of the teaching (hereinafter referred to as position data at the time of teaching) is stored in the storage device 26. The arithmetic unit 26 obtains the position data of each of the punching holes 32 at that time (hereinafter referred to as “work position data”) from the work-time captured image obtained at the time of work, and then obtains the work position data and the storage device 26. One-to-one correspondence with the above-described teaching position data stored in advance is performed, and the three-dimensional stop position shift amount of the automatic guided vehicle 1 is determined based on the associated position data. (Dx, dy, dz, dθ, dφ, dψ) are obtained. Here, as a method of the association, for example, a method in which a mark deviating from the arrangement pattern of the punching holes 32 is provided and the mark is used as a reference may be considered, but a detailed description is omitted in the present embodiment. I do.
The obtained three-dimensional displacement amount is taken into the vehicle body control unit 27 to correct the vehicle stop position, or taken into the arm control unit 28 to correct the teaching data of the arm.

【0009】続いて,上記演算装置26において行われ
る3次元位置ズレ量の計算方法について詳述する。尚,
以下の説明では,図2に示すように,床面31に設定さ
れた世界座標系における座標(以下,世界座標という)
をXw (xw ,yw ,zw ),カメラ23に設定された
カメラ座標系における座標(以下,カメラ座標という)
をXc (xc ,yc ,zc ),カメラ23によって撮像
された撮像画像に設定された画像座標系における座標
(以下,画像座標という)をXg (xg ,yg )とす
る。まず,世界座標からカメラ座標への座標変換式は,
次式で表せる。
Next, a method of calculating the three-dimensional displacement amount performed by the arithmetic unit 26 will be described in detail. still,
In the following description, as shown in FIG. 2, the coordinates in the world coordinate system set on the floor 31 (hereinafter referred to as world coordinates)
To X w (x w , y w , z w ), the coordinates in the camera coordinate system set for the camera 23 (hereinafter referred to as camera coordinates).
Is defined as X c (x c , y c , z c ), and the coordinates (hereinafter referred to as image coordinates) in the image coordinate system set for the image captured by the camera 23 are defined as X g (x g , y g ). . First, the coordinate transformation formula from world coordinates to camera coordinates is
It can be expressed by the following equation.

【数1】 教示時における世界座標とカメラ座標との関係を次のよ
うに定義する。
(Equation 1) The relationship between the world coordinates and the camera coordinates at the time of teaching is defined as follows.

【数2】 上記(2)式より, xc =xw ,yc =yw ,zc =tz0 …(3) となる。カメラ座標から画像座標への射影変換式は,次
式で表せる。
(Equation 2) From the above equation (2), x c = x w , y c = y w , z c = t z0 (3) The projective transformation equation from camera coordinates to image coordinates can be expressed by the following equation.

【数3】 0 =tz0/fとおくと,上記(4)式は上記(3)式
を用いて次式のように変形できる。
(Equation 3) If m 0 = t z0 / f, the above equation (4) can be transformed into the following equation using the above equation (3).

【数4】 (Equation 4)

【0010】続いて,作業時について考えると,上記
(1),(5)式より,カメラ座標X c ′(xc ′,y
c ′,zc ′)は次のように表せる。
Next, considering the operation,
From equations (1) and (5), the camera coordinates X c′ (Xc', Y
c', Zc') Can be expressed as follows.

【数5】 また,カメラ座標から画像座標への射影変換式は次式で
表される。
(Equation 5) The projective transformation formula from camera coordinates to image coordinates is expressed by the following formula.

【数6】 上記(7)式のxに関する式は,上記(6)式より次式
で表せる。
(Equation 6) The expression relating to x in the expression (7) can be expressed by the following expression from the expression (6).

【数7】 ここで,tz =tz0(1+δ),(tz0δ:カメラ高さ
の変化量)とすると,
(Equation 7) Here, if t z = t z0 (1 + δ), (t z0 δ: the amount of change in camera height),

【数8】 となり,これより tz =fm0 (1+δ) …(10) の関係が得られる。上記(10)式を用いると,上記
(8)式は次のようになる。
(Equation 8) From this, the relationship t z = fm 0 (1 + δ) (10) is obtained. Using the above equation (10), the above equation (8) becomes as follows.

【数9】 ここで, r11=(1+δ)R11, r12=(1+δ)R1221=(1+δ)R21, r22=(1+δ)R2231=(1+δ)fR31, r32=(1+δ)fR32x =m0 (1+δ)Tx , ty =m0 (1+δ)Ty …(12) とおくと,上記(11)式は次のようになる。(Equation 9) Here, r 11 = (1 + δ) R 11 , r 12 = (1 + δ) R 12 r 21 = (1 + δ) R 21 , r 22 = (1 + δ) R 22 r 31 = (1 + δ) fR 31 , r 32 = ( 1 + δ) fR 32 t x = m 0 (1 + δ) T x , t y = m 0 (1 + δ) T y (12) The above equation (11) becomes as follows.

【数10】 (Equation 10)

【0011】同様にして上記(7)式のyに関する式を
変形すると,次式が得られる。
Similarly, when the equation relating to y in the above equation (7) is modified, the following equation is obtained.

【数11】 上記(13),(14)式に対して,対応する教示時位
置データと作業時位置データの組(xg ,yg
g ′,yg ′)を4組適用すれば,上記R11,R12
21,R22,R31,R32,Tx ,Ty の値が求められ
る。ところで,上記(1)式においては, r11 2 +r21 2 +r31 2 =1 r12 2 +r22 2 +r32 2 =1 …(15) の関係が成り立つので,上記(12)式と上記(15)
式より, (1+δ)2 (R11 2 +R21 2 +f2 31 2 )=1 (1+δ)2 (R12 2 +R22 2 +f2 32 2 )=1 …(16) となり,これよりfは次式で表せる。
[Equation 11] For the above equations (13) and (14), a set of corresponding teaching position data and working position data (x g , y g ,
x g ′, y g ′), four sets of R 11 , R 12 ,
R 21, R 22, R 31 , R 32, T x, the value of T y is determined. Incidentally, in the above (1), since r 11 2 + r 21 2 + r 31 2 = 1 r 12 2 + r 22 2 + r 32 2 = 1 ... the relationship of (15) holds, equation (12) and the ( 15)
The equation, (1 + δ) 2 ( R 11 2 + R 21 2 + f 2 R 31 2) = 1 (1 + δ) 2 (R 12 2 + R 22 2 + f 2 R 32 2) = 1 ... (16) next to this than f Can be expressed by the following equation.

【数12】 更に,上記(17)式を上記(16)式に代入すると,
δは次式で表せる。
(Equation 12) Further, when the above equation (17) is substituted into the above equation (16),
δ can be expressed by the following equation.

【数13】 上記(17),(18)式を上記(12)の各式に代入
すれば,r11〜r32,tx ,ty を求めることができ
る。ここで求められたtx ,ty がそれぞれ平面内のx
方向,y方向の位置ズレ量dx,dyであり,tz0δが
z方向,即ち高さ方向への位置ズレ量dzである。
(Equation 13) Above (17), Substituting (18) into the above equation (12), r 11 ~r 32 , t x, can be obtained t y. T x and t y obtained here are x in the plane, respectively.
Are the positional deviation amounts dx and dy in the direction and the y direction, and t z0 δ is the positional deviation amount dz in the z direction, that is, the height direction.

【0012】続いて,上記求められたr11〜r32を用い
て,各座標軸に対する回転ズレ量dθ,dφ,dψを求
める方法の一例を説明する。θ,φ,ψをぞれぞれ図3
に示すように定義する。また,
Next, an example of a method of calculating the rotational displacement amounts dθ, dφ, dψ with respect to each coordinate axis using r 11 to r 32 obtained above will be described. Figure 3 for θ, φ, and ψ
Defined as shown below. Also,

【数14】 とすると,次式の関係が得られる。[Equation 14] Then, the following relationship is obtained.

【数15】 上記(20)式と上記r11〜r32の関係より,回転ズレ
量dθ,dφ,dψは次のように求めることができる。
(Equation 15) From the relationship between the above equation (20) and the above r 11 to r 32 , the rotational deviation amounts dθ, dφ, dψ can be obtained as follows.

【数16】 以上説明した3次元位置ズレ量の計算方法から,上記演
算装置26における実際の位置ズレ量の算出処理をまと
めると,上記演算装置26は,まず対応する教示時位置
データと作業時位置データの組(xg ,yg ,xg ′,
g ′)を4組取り出し,これを上記(13),(1
4)式に適用して上記R11,R12,R21,R22,R31
32,Tx ,Ty の値を求める。続いて,上記(1
7),(18)式よりf,δを求め,上記(12)の各
式に代入すれば,r11〜r32,tx ,t y が得られる。
ここで求められたtx ,ty がそれぞれ平面内のx方
向,y方向の位置ズレ量dx,dyであり,tz0δがz
方向,即ち高さ方向への位置ズレ量dzである。更に,
上記r11〜r32を上記(21)式に代入すれば,回転ズ
レ量dθ,dφ,dψが求められる。
(Equation 16)From the calculation method of the three-dimensional position shift amount described above,
Calculation processing of the actual position shift amount in the arithmetic unit 26
In other words, the arithmetic unit 26 first determines the corresponding teaching position.
Data and work position data set (xg, Yg, Xg′,
yg') And take out four sets, and use them in the above (13), (1)
4) The above R11, R12, Rtwenty one, Rtwenty two, R31,
R32, Tx, TyFind the value of Then, the above (1)
7), f and δ are obtained from the equations (18), and
Substituting into the equation, r11~ R32, Tx, T yIs obtained.
T found herex, TyAre x directions in the plane respectively
Are the displacement amounts dx and dy in the direction y and the direction t, respectively.z0δ is z
Direction, that is, the amount of positional deviation dz in the height direction. Furthermore,
The above r11~ R32Is substituted into the above equation (21), the rotation shift
The amounts dθ, dφ, dψ are obtained.

【0013】以上のようにして,上記演算装置26にお
いて上記無人搬送車1の3次元的な停止位置のズレ量
(dx,dy,dz,dθ,dφ,dψ)が求められる
と,これらの位置ズレ量は上記車体制御部27に取り込
まれて車体停止位置が補正されるか,或いは上記アーム
制御部28に取り込まれて上記アームの教示データが補
正される。以上説明したように,本実施の形態に係る停
止位置ズレ量検出装置A1は,無人搬送車1の3次元的
な停止位置のズレ量(dx,dy,dz,dθ,dφ,
dψ)を求めることができるため,例えば車輪がパンチ
ング孔32に落ち込んで車体が傾いて停止した場合や,
車輪の磨耗により上記カメラ23の床面31からの高さ
位置が変化した場合のように,教示時と作業時とで車体
1(及びカメラ23)と床面31との位置関係が3次元
的に変化した場合でも,正確な位置ズレ量を検出でき
る。また,上記3次元すれ量を求める際に,床面の撮像
画像上でのパンチング孔の位置データのみを用いている
ため,2次元ズレ量を求める従来の停止位置ズレ量検出
装置の演算装置のプログラムを変更するだけでよく,例
えば車体の傾斜を計るための新たな計器類を設置する必
要がない。
As described above, when the displacement amounts (dx, dy, dz, dθ, dφ, dψ) of the three-dimensional stop position of the automatic guided vehicle 1 are obtained by the arithmetic unit 26, these positions are determined. The displacement amount is taken into the vehicle body control unit 27 to correct the vehicle stop position, or is taken into the arm control unit 28 to correct the teaching data of the arm. As described above, the stop position shift amount detecting device A1 according to the present embodiment is configured to shift the three-dimensional stop position of the automatic guided vehicle 1 (dx, dy, dz, dθ, dφ,
dψ) can be obtained, for example, when the wheels fall into the punching holes 32 and the vehicle body leans and stops,
As in the case where the height position of the camera 23 from the floor surface 31 changes due to the wear of the wheels, the positional relationship between the vehicle body 1 (and the camera 23) and the floor surface 31 during the teaching and the work is three-dimensional. , The position displacement amount can be accurately detected. Also, since only the position data of the punched hole on the captured image of the floor surface is used when calculating the three-dimensional shift amount, the calculation unit of the conventional stop position shift amount detecting device for calculating the two-dimensional shift amount is used. It is only necessary to change the program, and for example, there is no need to install new instruments for measuring the inclination of the vehicle body.

【0014】[0014]

【実施例】上記実施の形態では,床面上にパンチング孔
が規則的に配列していることを前提に説明したが,必ず
しも規則的に配列している必要はない。また,特徴点は
上記パンチング孔に限られるものではなく,特定可能な
マークなどを用いてもよいことは言うまでもない。ま
た,上記実施の形態においては無人搬送車(移動体)が
床面(平面)上を走行する場合について説明したが,上
記移動体と上記平面とは無人搬送車と床面とに限られる
ものではない。例えば,作業台(平面)上に複数のマー
クを形成し,上記作業台上を移動するロボットアームの
先端(移動体)にカメラを取り付けて位置決めを行う場
合や,作業装置によって取り扱うワーク自体に複数のマ
ークを形成し,ワークに対する作業装置の位置決めを行
う場合などにも適用できる。
[Embodiment] In the above embodiment, the description has been made on the assumption that the punching holes are regularly arranged on the floor surface, but it is not always necessary to arrange them regularly. In addition, it is needless to say that the characteristic points are not limited to the above-described punching holes, and a mark that can be specified may be used. Further, in the above embodiment, the case where the automatic guided vehicle (moving body) travels on the floor (plane) has been described, but the moving body and the plane are limited to the automatic guided vehicle and the floor. is not. For example, when a plurality of marks are formed on a worktable (plane) and a camera is attached to the tip (moving body) of a robot arm that moves on the worktable, positioning is performed. It can also be applied to the case of forming a mark and positioning the working device with respect to the work.

【0015】[0015]

【発明の効果】以上説明したように,上記第1の発明
は,複数の特徴点を有する平面上を移動する移動体に固
定的に設置され,上記平面上の画像を撮像する撮像手段
と,上記移動体を停止させて上記撮像手段により撮像し
た作業時撮像画像上の上記各特徴点位置と予め上記移動
体を所定の基準停止位置に停止させて上記撮像手段によ
り撮像した基準撮像画像上の上記各特徴点位置との関係
に基づいて上記移動体の停止位置のズレ量を検出するズ
レ量検出手段とを具備する移動体の停止位置ズレ量検出
装置において,上記ズレ量検出手段が,上記作業時撮像
画像と上記基準撮像画像とにおける上記各特徴点位置の
関係のみに基づいて,上記移動体の3次元的な停止位置
のズレ量を求めることを特徴とする移動体の停止位置ズ
レ量検出装置として構成されているため,例えば車輪が
脱輪するなどして移動体が傾いて停止した場合や,車輪
の磨耗により上記撮像手段の上記平面からの高さ位置が
変化した場合のように,教示時と作業時とで移動体と上
記平面との位置関係が3次元的に変化した場合でも,正
確な位置ズレ量を検出できる。また,上記3次元ズレ量
を求める際に,上記撮像画像上での上記特徴点の位置デ
ータのみを用いているため,2次元ズレ量を求める従来
の停止位置ズレ量検出装置の演算装置のプログラムを変
更するだけでよく,例えば移動体の傾斜を計るための新
たな計器類を設置する必要がない。また,上記第2の発
明は,上記第1の発明に係る移動体の停止位置ズレ量検
出装置,及び上記基準停止位置において動作教示される
作業装置とを搭載し,上記停止位置ズレ量検出装置によ
り得られた停止位置ズレ量に基づいて上記作業装置の教
示データを修正する無人搬送車として構成されているた
め,たとえ作業時に車輪が脱輪するなどして車体が傾い
て停止したり,或いは車輪の磨耗により上記撮像手段の
床面からの高さ位置が変化した場合のように,車体の姿
勢が上記作業装置の動作教示時と比べて3次元的に変化
したような場合でも,作業装置を正確に動作させること
ができる。
As described above, the first aspect of the present invention is an imaging means which is fixedly installed on a moving body which moves on a plane having a plurality of feature points, and which captures an image on the plane, The moving object is stopped and the respective characteristic point positions on the work-time picked-up image picked up by the image pickup means and the moving object is stopped in advance at a predetermined reference stop position and the reference picked-up image is picked up by the image pickup means. A shift amount detection device for detecting a shift amount of the stop position of the moving body based on a relationship with each of the feature point positions, wherein the shift amount detection means includes: A displacement amount of a stop position of the moving body, wherein a displacement amount of a three-dimensional stop position of the moving body is obtained based only on a relationship between each of the feature point positions in the work-time captured image and the reference captured image. As a detection device In the case of teaching, as in the case where the moving body is tilted and stopped due to, for example, the wheels coming off, or the height position of the above-mentioned imaging means from the plane is changed due to wear of the wheels. Even when the positional relationship between the moving body and the plane changes three-dimensionally between the time of the operation and the time of the operation, an accurate positional shift amount can be detected. Further, since only the position data of the feature point on the captured image is used in obtaining the three-dimensional shift amount, the program of the arithmetic unit of the conventional stop position shift amount detecting device for obtaining the two-dimensional shift amount is used. Need only be changed, and it is not necessary to install new instruments for measuring the inclination of the moving body, for example. Further, the second invention is provided with the moving body stop position displacement amount detection device according to the first invention and a working device that is taught to operate at the reference stop position, and the stop position displacement amount detection device Is configured as an automatic guided vehicle that corrects the teaching data of the working device based on the stop position shift amount obtained by the method described above. Even when the posture of the vehicle body changes three-dimensionally compared to when the operation of the work device is taught, such as when the height position of the imaging means from the floor surface changes due to wear of the wheels, the work device Can be operated accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る停止位置ズレ量検
出装置A1及びそれを搭載する無人搬送車1の概略構成
を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of a stop position deviation amount detection device A1 according to an embodiment of the present invention and an automatic guided vehicle 1 on which the device A1 is mounted.

【図2】 世界座標系,カメラ座標系,画像座標系の関
係を示す説明図。
FIG. 2 is an explanatory diagram showing a relationship among a world coordinate system, a camera coordinate system, and an image coordinate system.

【図3】 θ,φ,ψの定義の一例を示す説明図。FIG. 3 is an explanatory diagram showing an example of definitions of θ, φ, and ψ.

【図4】 従来技術に係る停止位置ズレ量検出装置を搭
載する無人搬送車21の概略構成を示す模式図。
FIG. 4 is a schematic diagram showing a schematic configuration of an automatic guided vehicle 21 equipped with a stop position shift amount detection device according to the related art.

【図5】 従来技術に係る停止位置ズレ量検出装置,及
びそれを搭載する無人搬送車21の概略構成を示す模式
図。
FIG. 5 is a schematic diagram showing a schematic configuration of a stop position shift amount detection device according to the related art and an automatic guided vehicle 21 equipped with the same.

【図6】 カメラ23による床面撮像画像の一例を示す
図。
FIG. 6 is a diagram showing an example of a floor image captured by a camera 23.

【図7】 車体が傾いて停止した場合(a),及びカメ
ラ23の高さ位置が変化した場合(b)における教示時
撮像画像(上)と作業時撮像画像(下)の関係を示す
図。
FIG. 7 is a diagram showing a relationship between a captured image during teaching (upper) and a captured image during work (lower) in a case where the vehicle body tilts and stops (a) and a case where the height position of the camera 23 changes (b). .

【符号の説明】[Explanation of symbols]

1,21…無人搬送車 2,25…演算装置(ズレ量検出手段の一例) 22…アーム(作業装置の一例) 23…カメラ(撮像手段の一例) 24…照明装置 26…記憶装置 27…車体制御部 28…アーム制御部 31…パンチング床(平面の一例) 32…パンチング孔(特徴点の一例) Reference numerals 1, 21: automatic guided vehicle 2, 25: arithmetic unit (an example of a deviation detecting unit) 22: arm (an example of a working device) 23: camera (an example of an imaging unit) 24: lighting device 26: storage device 27: body Control unit 28: Arm control unit 31: Punching floor (example of plane) 32: Punching hole (example of feature point)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G05D 3/12 G05D 3/12 L G06T 7/00 H01L 21/68 F H01L 21/68 G06F 15/62 415 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI G05D 3/12 G05D 3/12 L G06T 7/00 H01L 21/68 F H01L 21/68 G06F 15/62 415

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の特徴点を有する平面上を移動する
移動体に固定的に設置され,上記平面上の画像を撮像す
る撮像手段と,上記移動体を停止させて上記撮像手段に
より撮像した作業時撮像画像上の上記各特徴点位置と予
め上記移動体を所定の基準停止位置に停止させて上記撮
像手段により撮像した基準撮像画像上の上記各特徴点位
置との関係に基づいて上記移動体の停止位置のズレ量を
検出するズレ量検出手段とを具備する移動体の停止位置
ズレ量検出装置において,上記ズレ量検出手段が,上記
作業時撮像画像と上記基準撮像画像とにおける上記各特
徴点位置の関係のみに基づいて,上記移動体の3次元的
な停止位置のズレ量を求めることを特徴とする移動体の
停止位置ズレ量検出装置。
1. An image pickup means fixedly mounted on a moving body moving on a plane having a plurality of feature points and taking an image on the plane, and an image taken by the imaging means after stopping the moving body. The moving based on the relationship between each of the characteristic point positions on the captured image at the time of work and the respective characteristic point positions on the reference captured image captured by the imaging unit by previously stopping the moving body at a predetermined reference stop position. In a moving body stop position shift amount detecting device, comprising: a shift amount detecting unit configured to detect a shift amount of a body stop position, the shift amount detecting unit includes: An apparatus for detecting a displacement of a stop position of a moving body, wherein the amount of displacement of a three-dimensional stop position of the moving body is obtained based only on a relationship between characteristic point positions.
【請求項2】 上記ズレ量検出手段が,上記基準撮像画
像上の上記各特徴点位置と上記作業時撮像画像上の上記
各特徴点位置との関係に基づいて,上記基準撮像画像撮
像時と上記作業時撮像画像撮像時との間での上記撮像手
段の上記平面に対する3次元的な姿勢変化により上記移
動体の停止位置のズレ量を検出する請求項1記載の移動
体の停止位置ズレ量検出装置。
2. The method according to claim 1, wherein the shift amount detecting means detects a time when the reference captured image is captured based on a relationship between each of the feature point positions on the reference captured image and each of the feature point positions on the work captured image. The stop position shift amount of the moving body according to claim 1, wherein the shift amount of the stop position of the moving body is detected by a three-dimensional posture change of the imaging unit with respect to the plane between the time of the work-time captured image and the time of the work-time captured image. Detection device.
【請求項3】 上記平面が床面であり,上記特徴点が上
記床面に設けられた貫通孔である請求項1又は2記載の
移動体の停止位置ズレ量検出装置。
3. The apparatus according to claim 1, wherein the plane is a floor, and the feature point is a through hole provided in the floor.
【請求項4】 上記請求項3記載の移動体の停止位置ズ
レ量検出装置,及び上記基準停止位置において動作教示
される作業装置とを搭載し,上記停止位置ズレ量検出装
置により得られた停止位置ズレ量に基づいて上記作業装
置の教示データを修正する無人搬送車。
4. A stop position displacement amount detecting device for a moving body according to claim 3, and a working device for performing operation teaching at the reference stop position, wherein the stop obtained by the stop position displacement amount detection device is provided. An automatic guided vehicle that corrects the teaching data of the working device based on the displacement amount.
JP03606498A 1997-04-21 1998-02-18 Device for detecting displacement amount of stop position of moving body and automatic guided vehicle Expired - Fee Related JP3978844B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03606498A JP3978844B2 (en) 1998-02-18 1998-02-18 Device for detecting displacement amount of stop position of moving body and automatic guided vehicle
US09/063,409 US6041274A (en) 1997-04-21 1998-04-21 Positional deviation detecting device for a mobile body and position correcting apparatus for a working machine mounted on a mobile body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03606498A JP3978844B2 (en) 1998-02-18 1998-02-18 Device for detecting displacement amount of stop position of moving body and automatic guided vehicle

Publications (2)

Publication Number Publication Date
JPH11231933A true JPH11231933A (en) 1999-08-27
JP3978844B2 JP3978844B2 (en) 2007-09-19

Family

ID=12459298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03606498A Expired - Fee Related JP3978844B2 (en) 1997-04-21 1998-02-18 Device for detecting displacement amount of stop position of moving body and automatic guided vehicle

Country Status (1)

Country Link
JP (1) JP3978844B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001134318A (en) * 1999-11-05 2001-05-18 Murata Mach Ltd Unmanned carrier system
KR100632242B1 (en) * 2000-11-22 2006-10-11 삼성광주전자 주식회사 Path correction method of mobile robot
KR100632241B1 (en) * 2000-11-17 2006-10-11 삼성광주전자 주식회사 Mobile robot
JP2008275340A (en) * 2007-04-25 2008-11-13 Canon Inc Apparatus and method for processing information
JP2015517675A (en) * 2012-05-24 2015-06-22 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Non-contact optical encoding scheme for intelligent automation pack
JP2018092532A (en) * 2016-12-07 2018-06-14 株式会社ディスコ Automatic carrier vehicle control system, and travel area coordinate setting method
JP2019194757A (en) * 2018-05-01 2019-11-07 Ikomaロボテック株式会社 Unmanned carrier and control method thereof
CN113478487A (en) * 2021-07-13 2021-10-08 苏州市汇邦自动化系统有限公司 Automatic deviation rectifying method, device and system for manipulator and storage medium
US20230173670A1 (en) * 2021-12-07 2023-06-08 Canon Kabushiki Kaisha Information processing apparatus, system, information processing method, method of manufacturing products, and recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941216B (en) * 2019-11-25 2021-03-12 江苏徐工工程机械研究院有限公司 Wireless emergency stop system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120088A (en) * 1986-11-06 1988-05-24 神鋼電機株式会社 Method of correcting position of unmanned cart loading robot
JPS63158619A (en) * 1986-12-23 1988-07-01 Nec Corp Unmanned vehicle
JPH0448304A (en) * 1990-06-18 1992-02-18 Hitachi Ltd Method and device for correcting position of self-traveling robot
JPH07229716A (en) * 1993-12-24 1995-08-29 Mazda Motor Corp Object measuring device and method
JPH08294887A (en) * 1995-04-25 1996-11-12 Mazda Motor Corp Method and device for control of operation of automated machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120088A (en) * 1986-11-06 1988-05-24 神鋼電機株式会社 Method of correcting position of unmanned cart loading robot
JPS63158619A (en) * 1986-12-23 1988-07-01 Nec Corp Unmanned vehicle
JPH0448304A (en) * 1990-06-18 1992-02-18 Hitachi Ltd Method and device for correcting position of self-traveling robot
JPH07229716A (en) * 1993-12-24 1995-08-29 Mazda Motor Corp Object measuring device and method
JPH08294887A (en) * 1995-04-25 1996-11-12 Mazda Motor Corp Method and device for control of operation of automated machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001134318A (en) * 1999-11-05 2001-05-18 Murata Mach Ltd Unmanned carrier system
KR100632241B1 (en) * 2000-11-17 2006-10-11 삼성광주전자 주식회사 Mobile robot
KR100632242B1 (en) * 2000-11-22 2006-10-11 삼성광주전자 주식회사 Path correction method of mobile robot
JP2008275340A (en) * 2007-04-25 2008-11-13 Canon Inc Apparatus and method for processing information
JP2015517675A (en) * 2012-05-24 2015-06-22 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Non-contact optical encoding scheme for intelligent automation pack
JP2018092532A (en) * 2016-12-07 2018-06-14 株式会社ディスコ Automatic carrier vehicle control system, and travel area coordinate setting method
JP2019194757A (en) * 2018-05-01 2019-11-07 Ikomaロボテック株式会社 Unmanned carrier and control method thereof
CN113478487A (en) * 2021-07-13 2021-10-08 苏州市汇邦自动化系统有限公司 Automatic deviation rectifying method, device and system for manipulator and storage medium
CN113478487B (en) * 2021-07-13 2023-12-29 苏州市汇邦自动化系统有限公司 Automatic deviation correcting method, device and system for mechanical arm and storage medium
US20230173670A1 (en) * 2021-12-07 2023-06-08 Canon Kabushiki Kaisha Information processing apparatus, system, information processing method, method of manufacturing products, and recording medium

Also Published As

Publication number Publication date
JP3978844B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US11046530B2 (en) Article transfer apparatus, robot system, and article transfer method
JP4257570B2 (en) Transfer robot teaching device and transfer robot teaching method
US6041274A (en) Positional deviation detecting device for a mobile body and position correcting apparatus for a working machine mounted on a mobile body
US20200118853A1 (en) Transport system and transport method
US20170066133A1 (en) Coordinate system setting method, coordinate system setting apparatus, and robot system provided with coordinate system setting apparatus
US20150127162A1 (en) Apparatus and method for picking up article randomly piled using robot
CN105514011B (en) The manipulator and method of safe transmission silicon chip
JPH11231933A (en) Device for detecting deviation of stop position of mobile object and unmanned carrier
US20140081458A1 (en) Robot system and article manufacturing method
JP3533066B2 (en) Work device position correction apparatus and method
CN113692335B (en) Adsorption pad and deformation measuring device
US11826919B2 (en) Work coordinate generation device
JP3684799B2 (en) Device for detecting displacement amount of stop position of moving object
WO2020100522A1 (en) Mark detection system, signal processing circuit, computer program, and method
KR20210027455A (en) System and method for detection and correction of robot payload position
WO2022075303A1 (en) Robot system
CN113727817B (en) Controller for controlling a power supply
JP2008260599A (en) Method for adjusting conveying face of semiconductor wafer conveying system, semiconductor wafer conveying system using it, and semiconductor manufacturing device
JPH0934552A (en) Mobile object controller, position detection device, mobile object device and their control method
JPH11254362A (en) Position correcting system for robot hand
US20240269853A1 (en) Calibration method, calibration device, and robotic system
JP3870526B2 (en) Device for detecting displacement amount of stop position of moving body
WO2024019105A1 (en) Picking control system
TW201923498A (en) Control method of self-propelled equipment achieving the aim of improving the location precision of the self-propelled equipment by utilizing an optical tracing technology
JP3271689B2 (en) Article position detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees