JPH11237423A - Electric potential sensor - Google Patents
Electric potential sensorInfo
- Publication number
- JPH11237423A JPH11237423A JP3763798A JP3763798A JPH11237423A JP H11237423 A JPH11237423 A JP H11237423A JP 3763798 A JP3763798 A JP 3763798A JP 3763798 A JP3763798 A JP 3763798A JP H11237423 A JPH11237423 A JP H11237423A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- vibrator
- sensor electrode
- sensor
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Control Or Security For Electrophotography (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は非接触で被測定面の
電位を測定可能な電位センサに関し、例えば電子写真方
式の複写機、プリンタ等の感光ドラム表面の電位を測定
するのに適した電位センサに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a potential sensor capable of measuring a potential of a surface to be measured in a non-contact manner, for example, a potential suitable for measuring a potential of a photosensitive drum surface of an electrophotographic copying machine, a printer or the like. It concerns a sensor.
【0002】[0002]
【従来の技術】電子写真方式の複写機、プリンタ等にお
いては、安定した印刷出力画質をえるために、感光ドラ
ムの帯電された電位を測定してフィードバックをかけ、
さまざまな環境でも均一に帯電する必要がある。そのた
めに感光ドラムの電位を測定する電位センサが用いられ
ている。2. Description of the Related Art In electrophotographic copying machines, printers, and the like, in order to obtain stable print output image quality, the charged potential of a photosensitive drum is measured and feedback is applied.
It is necessary to charge uniformly even in various environments. Therefore, a potential sensor for measuring the potential of the photosensitive drum is used.
【0003】従来この種の電位センサは、一般的に図8
に示す構成を備えていた。Conventionally, this kind of potential sensor is generally shown in FIG.
Was provided.
【0004】つまり、センサ電極120と、被測定対象
(以後、「ターゲット」と称す)200との間に図示の
様な形状のフォークと呼ばれる遮蔽板110を配置す
る。フォーク110のターゲットの被測定面200対向
部111及び112は、例えば図7に示す構造が採用さ
れていた。That is, a shielding plate 110 called a fork having a shape as shown in the figure is arranged between a sensor electrode 120 and an object to be measured (hereinafter, referred to as a “target”) 200. For example, the structure shown in FIG. 7 is adopted for the facing portions 111 and 112 of the target surface 200 of the fork 110 to be measured.
【0005】フォーク110の両腕にドライブ用圧電素
子130と振動検出用圧電素子140を取り付ける。ド
ライブ用圧電素子130に正弦波なり、方形波を加えて
メカニカルに振動を起す。その振動を振動検出用圧電素
子140にて電気信号に変換し、その電気信号の振幅が
最大になるようにドライブ用圧電素子130に加える波
形の周波数を制御することにより、フォーク110をメ
カニカルに共振させる方法などが用いられている。A drive piezoelectric element 130 and a vibration detecting piezoelectric element 140 are attached to both arms of the fork 110. A sine wave is applied to the drive piezoelectric element 130, and a square wave is applied to mechanically oscillate. The vibration is converted into an electric signal by the vibration detecting piezoelectric element 140, and the frequency of the waveform applied to the driving piezoelectric element 130 is controlled so that the amplitude of the electric signal is maximized. For example, a method of causing the same is used.
【0006】従来の電位センサの具体的な検出部の電気
回路は図6の様になり、フォーク110を圧電素子13
0等により振動させ、センサ電極120とターゲット2
00間の有効な対向面積を周期的に変化させる構造を有
している。FIG. 6 shows a specific electric circuit of a detecting section of a conventional potential sensor.
Vibration by 0, etc., the sensor electrode 120 and the target 2
It has a structure in which the effective facing area between 00 is periodically changed.
【0007】上述の構成において、フォーク110を振
動させて、フォーク110のターゲットの被測定面20
0対向部111及び112を矢印の様に振動させ、セン
サ電極120とターゲット200間の有効対向面積を周
期的に変化させる。このことは、電気的に言い換えると
センサ電極120とターゲット200間の静電容量を周
期的に変化させることと等価である。In the above-described configuration, the fork 110 is vibrated, and the target surface 20 of the fork 110 is measured.
The zero opposing portions 111 and 112 are vibrated as indicated by arrows, and the effective opposing area between the sensor electrode 120 and the target 200 is periodically changed. This is electrically equivalent to periodically changing the capacitance between the sensor electrode 120 and the target 200.
【0008】この種の電位センサによる感光ドラム表面
の被測定面電位測定制御の例を図6の例を参照して以下
に説明する。An example of the control of measuring the potential of the surface of the photosensitive drum to be measured by this type of potential sensor will be described below with reference to the example of FIG.
【0009】図6に示す例において、ターゲット200
の電位をVt、センサ電極120の電位をVsとする。In the example shown in FIG.
Is Vt, and the potential of the sensor electrode 120 is Vs.
【0010】そして、フォーク110を下式のように振
動させる。Then, the fork 110 is vibrated as shown below.
【0011】[0011]
【数1】(Equation 1)
【0012】x(t)=X*sin(2πf*t) つまり、振動周波数:f、振動振幅:X、時間:tであ
る。X (t) = X * sin (2πf * t) That is, the vibration frequency is f, the vibration amplitude is X, and the time is t.
【0013】センサ電極120とターゲット200間の
静電容量をC(t)とする。The capacitance between the sensor electrode 120 and the target 200 is represented by C (t).
【0014】そして、フォーク110が振動すると、タ
ーゲット200〜センサ電極120間には、以下のI
(t)なる電流が流れる。When the fork 110 vibrates, the following I is set between the target 200 and the sensor electrode 120.
The current (t) flows.
【0015】[0015]
【数2】(Equation 2)
【0016】 I(t)=(Vt−Vs)*{dC(t)/dt} ここで、{dC(t)/dt}は、C(t)の時間微分
である。I (t) = (Vt−Vs) * {dC (t) / dt} Here, {dC (t) / dt} is a time derivative of C (t).
【0017】簡単のために、For simplicity,
【0018】[0018]
【数3】(Equation 3)
【0019】 {dC(t)/dt}=Y*sin(2πf*t+θ) とおく。ここで、Y,θは、定数である。{DC (t) / dt} = Y * sin (2πf * t + θ) Here, Y and θ are constants.
【0020】この結果、I(t)を検出抵抗Rsを用い
て検出することにより、容易にセンサ電極電位Vsを検
出することができる。As a result, the sensor electrode potential Vs can be easily detected by detecting I (t) using the detection resistor Rs.
【0021】検出された電圧は、フォーク110の振動
に同期した周波数の繰り返し波形になるが、例えばその
(ピーク)−(ピーク)電圧The detected voltage has a repetitive waveform having a frequency synchronized with the vibration of the fork 110. For example, the (peak)-(peak) voltage
【0022】[0022]
【数4】(Equation 4)
【0023】Vpp=Rs*Y*(Vt−Vs) を検出する事は、容易である。It is easy to detect Vpp = Rs * Y * (Vt-Vs).
【0024】Vs=Vtの時のみ、I(t)=0、つまり
Vpp=0であるから、Vsの値を直流電圧源を用いて
Vpp=0となるように制御することにより、制御され
たVs電圧そのものが、Vtと等しくなり、非接触に
て、Vtの値を検出できる。Only when Vs = Vt, since I (t) = 0, that is, Vpp = 0, the control was performed by controlling the value of Vs so that Vpp = 0 using a DC voltage source. The Vs voltage itself becomes equal to Vt, and the value of Vt can be detected without contact.
【0025】[0025]
【発明が解決しようとする課題】近年、感光ドラムの小
径化、感光ドラム周りの高密度化により、電位センサも
小型化、薄型化が求められている。そこで、センサのフ
ォークの形状も小型フォークを用いるようになってきて
いる。しかし、センサを相対的に小型化していくと(セ
ンサ電極とフォークのサイズ比)センサのゲインが低下
し、上記VppがVt≠Vsでも小さくなってしまいS
/N比が悪化する。In recent years, as the diameter of the photosensitive drum has been reduced and the density around the photosensitive drum has been increased, the potential sensor has also been required to be reduced in size and thickness. Accordingly, a small fork has been used for the shape of the sensor fork. However, as the size of the sensor is relatively reduced (the ratio of the size of the sensor electrode to the fork), the gain of the sensor decreases, and the Vpp becomes smaller even when Vt ≠ Vs, and S
/ N ratio deteriorates.
【0026】ゲインをあげるために、電極面積を増やし
ていくと、後述するようにターゲット電位に対して、オ
フセットがついた値として、検出されてしまうという問
題点があり、各センサ毎にオフセット調整が必要であ
る。When the electrode area is increased to increase the gain, there is a problem that the target potential is detected as an offset value as described later, and the offset adjustment is performed for each sensor. is necessary.
【0027】このオフセット電圧が発生する原理を図
9、図10を用いて説明する。図9は電位センサの浮遊
容量を説明するための図、図10は電位センサの等価回
路例を示す図である。The principle of generation of this offset voltage will be described with reference to FIGS. FIG. 9 is a diagram for explaining the stray capacitance of the potential sensor, and FIG. 10 is a diagram showing an example of an equivalent circuit of the potential sensor.
【0028】図9に示すように、センサ電極20とフォ
ーク10の間には、浮遊容量Cxが存在する。浮遊容量
Cxは、フォーク110の被測定面対向部111、11
2が振動すると、センサ電極120とフォーク110の
被測定面対向部111、112との距離が振動に応じて
変化する。この結果、電気的には静電容量Cx(t)が
変化することになる。As shown in FIG. 9, a stray capacitance Cx exists between the sensor electrode 20 and the fork 10. The stray capacitance Cx is equal to the measured surface opposing portions 111 and 11 of the fork 110.
When 2 vibrates, the distance between the sensor electrode 120 and the measurement surface facing portions 111 and 112 of the fork 110 changes according to the vibration. As a result, the capacitance Cx (t) changes electrically.
【0029】ここで、着目すべき事は、センサ電極12
0とターゲット200間の静電容量C(t)と、センサ
電極120とフォーク110間の浮遊容量Cx(t)
は、逆位相にて変化するという点である。つまり、フォ
ーク110の被測定面対向部111、112間が開いて
C(t)が大きくなるタイミングではCx(t)は小さ
くなり、フォーク110の被測定面対向部111、11
2間が閉じてC(t)が小さくなるタイミングではCx
(t)は大きくなる。Here, it should be noted that the sensor electrode 12
0 and the capacitance C (t) between the target 200 and the stray capacitance Cx (t) between the sensor electrode 120 and the fork 110.
Is that they change in opposite phases. That is, Cx (t) becomes smaller at the timing when C (t) becomes larger due to the opening between the measured surface facing portions 111 and 112 of the fork 110, and the measured surface facing portions 111 and 11 of the fork 110 are increased.
At the timing when C (t) becomes smaller as the interval between the two closes, Cx
(T) increases.
【0030】これを式で表現すると以下の様になる。This can be expressed by the following equation.
【0031】[0031]
【数5】(Equation 5)
【0032】Cx(t)=Z*C(t+π) Zは定数 つまり、Cx(t)はC(t)とπだけ位相がずれてい
ることになる。Cx (t) = Z * C (t + π) Z is a constant. That is, Cx (t) is out of phase with C (t) by π.
【0033】従って、電位センサの等価回路である図6
にあてはめて考えると、センサ電極120に流れる電流
は、全て検出抵抗Rsに流れる。従って、図6で説明し
たようにもし検出抵抗Rsに電流が流れていない時には
センサ電極電位Vs(t)とフォーク電位Vfは等しく
なっていることになる。Therefore, FIG. 6 is an equivalent circuit of the potential sensor.
The current flowing through the sensor electrode 120 flows through the detection resistor Rs. Therefore, as described with reference to FIG. 6, if no current flows through the detection resistor Rs, the sensor electrode potential Vs (t) and the fork potential Vf are equal.
【0034】上記をふまえて、上述した図6を図10の
ように書き直して説明を続ける。Cx(t)がC(t)
とπだけ位相がずれているとき、ターゲット電位Vtと
フォーク電位Vf間にオフセット電圧Vfstがあった
とすると、C(t)を流れる電流は、すべてRsに流れ
るのではなく一部Cx(t)に流れる。そして、C
(t)とCx(t)がバランスするオフセット電圧のと
き、検出抵抗Rsには電流が流れなくなる。Based on the above, FIG. 6 described above is rewritten as shown in FIG. Cx (t) is C (t)
When there is an offset voltage Vfst between the target potential Vt and the fork potential Vf when the phases are shifted by π and π, the current flowing through C (t) does not entirely flow through Rs but partially flows through Cx (t). Flows. And C
When the offset voltage balances (t) and Cx (t), no current flows through the detection resistor Rs.
【0035】このとき、 Vfst≠0にてセンサ電極電位Vs(t)=一定 Rs両端の交流電圧成分=0 Vpp=0 となり、検出オフセット電圧Vfstの誤差のある値と
して、Vtが検出されてしまう。At this time, when Vfst ≠ 0, the sensor electrode potential Vs (t) = constant AC voltage component at both ends of Rs = 0 Vpp = 0, and Vt is detected as a value having an error in the detected offset voltage Vfst. .
【0036】検出抵抗Rs両端電圧増幅(ソースフォロ
ア等インピーダンス変換も含む)のために、Nチャンネ
ルJ−FETを用いた場合には、 Vt=Vf−Vfst となり、必ず正の検出オフセット電圧が生じる。When an N-channel J-FET is used for amplifying the voltage across the detection resistor Rs (including impedance conversion such as source follower), Vt = Vf-Vfst, and a positive detection offset voltage always occurs.
【0037】このオフセット電圧Vfstは、フォーク
の振動状態や取り付け位置の誤差、センサ電極の取り付
け位置の誤差により決まり製造・使用環境によりさまざ
まに変化してしまう。The offset voltage Vfst is determined by the vibration state of the fork, an error in the mounting position, and an error in the mounting position of the sensor electrode, and varies in various ways depending on the manufacturing and use environment.
【0038】ここで、電位センサ形状が大きかった場合
にも同様の誤差は存在したはずだが、Cx(t)がC
(t)にくらべて十分小さかったので従来は十分許容さ
れていた。しかしながら、電位センサの小型化を進める
と、このCx(t)は無視できない値になり、オフセッ
ト電圧の影響を受けて正確なターゲット電位の測定がで
きなかった。また、Cx(t)の存在しないメカニカル
な形状、配置は実現が困難であった。Here, a similar error should have existed even when the potential sensor shape was large, but Cx (t) was
Since it was sufficiently smaller than (t), it was conventionally sufficiently accepted. However, when the size of the potential sensor is reduced, Cx (t) becomes a non-negligible value, and the target voltage cannot be measured accurately due to the influence of the offset voltage. In addition, it is difficult to realize a mechanical shape and arrangement in which Cx (t) does not exist.
【0039】[0039]
【課題を解決するための手段】本発明は、上述した課題
を解決することを目的としてなされたもので、上述した
課題を解決し、オフセット電圧が生じないようにして、
オフセット調整不要な電位センサを提供することにあ
る。係る目的を達成する一手段として例えば以下の構成
を備える。SUMMARY OF THE INVENTION The present invention has been made for the purpose of solving the above-mentioned problems, and solves the above-mentioned problems.
An object of the present invention is to provide a potential sensor that does not require offset adjustment. For example, the following configuration is provided as one means for achieving such an object.
【0040】即ち、機械的に振動する振動子と、被測定
面に対して前記振動子の被測定面対向部より所定距離離
間して配設されたセンサ電極と、前記センサ電極に流れ
る電流を検出する電流検出素子とを備え、前記振動子の
少なくとも前記被測定面対向部は、前記センサ電極と当
該振動子間の浮遊容量Cx(t)と前記センサ電極と被
測定面との容量C(t)との位相が同位相にて変動する
形状を有し、前記振動子の前記被測定面対向部を振動さ
せることにより前記センサ電極と被測定面との有効対向
面積を可変させて前記センサ電極と前記被測定面とのコ
ンデンサ容量を可変として前記センサ電極に流れる交流
電流を測定することにより、被測定面の電位を非接触に
て測定可能とすることを特徴とする。That is, a vibrator that vibrates mechanically, a sensor electrode disposed at a predetermined distance from a surface to be measured of a portion of the vibrator facing the surface to be measured, and a current flowing through the sensor electrode A current detection element for detecting, and at least the portion of the vibrator facing the surface to be measured includes a stray capacitance Cx (t) between the sensor electrode and the vibrator and a capacitance C (between the sensor electrode and the surface to be measured. t) has a shape in which the phase of the sensor fluctuates in the same phase, and vibrates the portion of the vibrator facing the surface to be measured, thereby varying the effective facing area between the sensor electrode and the surface to be measured. The potential of the surface to be measured can be measured in a non-contact manner by measuring the AC current flowing through the sensor electrode while changing the capacitance of the capacitor between the electrode and the surface to be measured.
【0041】そして例えば、前記振動子被測定面対向部
形状は、少なくとも2つの前記被測定面より所定距離離
反した被測定面対向部を備え、前記被測定面対向部が振
動により閉じるときに前記センサ電極と被測定面の有効
対向面積が大きくなり、前記振動子の前記被測定面対向
部が振動により開くときに前記センサ電極と前記被測定
面の有効対向面積が小さくなる構造をとることを特徴と
する。[0041] For example, the shape of the portion to be measured facing the vibrator includes a portion to be measured which is separated from at least two of the surfaces to be measured by a predetermined distance, and the shape when the portion to be measured is closed by vibration. The effective facing area between the sensor electrode and the measured surface is increased, and the effective facing area between the sensor electrode and the measured surface is reduced when the measured surface facing portion of the vibrator is opened by vibration. Features.
【0042】又、例えば、前記振動子被測定面対向部形
状は、互いに重なり合い略中央部近傍に打ち抜き部が形
成されていることを特徴とする。Further, for example, the shape of the portion to be measured facing the vibrator is characterized in that a punched portion is formed near the center portion of the portions which overlap with each other.
【0043】また、機械的に振動する振動子と、被測定
面に対して前記振動子の被測定面対向部より所定距離離
間して配設されたセンサ電極と、前記センサ電極に流れ
る電流を検出する電流検出素子とを備え、前記振動子の
少なくとも前記被測定面対向部は、前記センサ電極と当
該振動子間の浮遊容量Cx(t)と前記センサ電極と被
測定面との容量C(t)との位相が逆位相にて変動する
形状を有し、前記振動子の前記被測定面対向部を振動さ
せることにより前記センサ電極と被測定面との有効対向
面積を可変させて前記センサ電極と前記被測定面とのコ
ンデンサ容量を可変として前記センサ電極に流れる交流
電流を測定することにより、被測定面の電位を非接触に
て測定可能とすることを特徴とするする。Also, a vibrator that vibrates mechanically, a sensor electrode disposed at a predetermined distance from the surface to be measured of the surface to be measured of the vibrator, and a current flowing through the sensor electrode A current detection element for detecting, and at least the portion of the vibrator facing the surface to be measured includes a stray capacitance Cx (t) between the sensor electrode and the vibrator and a capacitance C (between the sensor electrode and the surface to be measured. t) has a shape in which the phase of the sensor fluctuates in the opposite phase, and vibrates the portion of the vibrator facing the surface to be measured, thereby changing the effective facing area between the sensor electrode and the surface to be measured. The potential of the surface to be measured can be measured in a non-contact manner by measuring the alternating current flowing through the sensor electrode while changing the capacitance of the capacitor between the electrode and the surface to be measured.
【0044】更に、機械的に振動する振動子と、被測定
面に対して前記振動子の被測定面対向部より所定距離離
間して配設されたセンサ電極と、前記センサ電極に流れ
る電流を検出する電流検出素子と、前記センサ電極と同
一電位の前記振動子の外部方向に所定距離離間させて配
設された追加電極とを備え、前記振動子と前記追加電極
間に前記センサ電極と当該振動子間の浮遊容量Cx
(t)と逆位相の浮遊容量Cx’(t)を発生させて前
記Cx(t)を打ち消し可能であることを特徴とする。Further, a vibrator which vibrates mechanically, a sensor electrode disposed at a predetermined distance from a surface of the vibrator facing the surface to be measured, and a current flowing through the sensor electrode A current detection element to be detected, and an additional electrode disposed at a predetermined distance in the external direction of the vibrator having the same potential as the sensor electrode, and the sensor electrode and the additional electrode are provided between the vibrator and the additional electrode. Stray capacitance Cx between oscillators
It is characterized in that a stray capacitance Cx ′ (t) having a phase opposite to that of (t) is generated to cancel the Cx (t).
【0045】さらにまた、機械的に振動する振動子と、
被測定面に対して前記振動子の被測定面対向部より所定
距離離間して配設されたセンサ電極と、前記センサ電極
に流れる電流を検出する電流検出素子と、前記センサ電
極と同一電位の前記振動子と所定距離離間させて配設さ
れた追加電極とを備え、前記振動子は、前記追加電極対
向位置に前記追加電極と所定間隙となる所定面積の突出
部を有し、前記センサ電極と当該振動子間の浮遊容量C
x(t)と逆位相の浮遊容量Cx’(t)を前記耳部と
前記追加電極間に発生させて前記Cx(t)を打ち消し
可能であることを特徴とする。Further, a vibrator which vibrates mechanically,
A sensor electrode disposed at a predetermined distance from the measured surface facing portion of the vibrator with respect to the measured surface, a current detecting element for detecting a current flowing through the sensor electrode, and a sensor electrode having the same potential as the sensor electrode. An additional electrode disposed at a predetermined distance from the vibrator, wherein the vibrator has a protruding portion having a predetermined area serving as a predetermined gap with the additional electrode at a position facing the additional electrode; And the stray capacitance C between the oscillator
A stray capacitance Cx ′ (t) having a phase opposite to that of x (t) is generated between the ear portion and the additional electrode, so that the Cx (t) can be canceled.
【0046】[0046]
【発明の実施の形態】以下、図面を参照して本発明に係
る一発明の実施の形態例を詳述する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.
【0047】[第1の実施の形態例]本発明に係る一発
明の実施の形態例においては、上述したCx(t)を完
全になくすことをめざすのではなく、フォーク形状を適
切なものとして、C(t)とCx(t)の位相が一致す
る構成として、オフセット電圧Vfstの影響を減らす
(影響をなくす)ことを目的とする。[First Embodiment] In one embodiment of the present invention according to the present invention, the above-mentioned Cx (t) is not completely eliminated, but the fork shape is appropriately set. , C (t) and Cx (t) have the same phase, to reduce the influence of the offset voltage Vfst (eliminate the influence).
【0048】C(t)とCx(t)の位相が一致する構
成として、オフセット電圧Vfstの影響を減らした本
発明に係る一発明の実施の形態例のフォーク形状を図1
に示す、本実施の形態例においても、電位センサ部の基
本構成は図6、図8に示す構成と同様であるが、フォー
ク先端のターゲット200との対向部の形状が異なり、
オフセット電圧Vfstの影響を減らすために図1に示
す形状をとしている。As a configuration in which the phases of C (t) and Cx (t) match, the fork shape of one embodiment of the present invention according to the present invention in which the influence of the offset voltage Vfst is reduced is shown in FIG.
Also in the present embodiment, the basic configuration of the potential sensor unit is the same as the configuration shown in FIGS. 6 and 8, but the shape of the portion of the tip of the fork facing the target 200 is different.
The shape shown in FIG. 1 is used to reduce the influence of the offset voltage Vfst.
【0049】即ち、従来は、フォークの正面形状が図7
に示す形状であったものを、図1に示す正面形状として
いる。That is, conventionally, the front shape of the fork is shown in FIG.
The shape shown in FIG. 1 is changed to the front shape shown in FIG.
【0050】図1の形状のフォークを以下クロス型フォ
ークと呼ぶ。クロス型フォークでは、フォークの間隔が
閉じたときにセンサ電極120とターゲット200間の
被測定面対向部の対向面積が増大し、フォークが開いた
ときにセンサ電極、ターゲット間の対向面積が減少し、
Cx(t)とC(t)の位相が一致するような、フォー
ク形状である。The fork having the shape shown in FIG. 1 is hereinafter referred to as a cross-type fork. In the cross-type fork, the facing area of the portion to be measured between the sensor electrode 120 and the target 200 increases when the interval between the forks is closed, and the facing area between the sensor electrode and the target decreases when the fork is opened. ,
It has a fork shape such that the phases of Cx (t) and C (t) match.
【0051】即ち、フォークが閉じると、基部11a、
12aが互いに接近する(閉じる)方向に移動し、セン
サ電極120とターゲット間の有効対向面11b、12
bが広がる。また、フォークが開くと、基部11a、1
2aが互いに離反する(開く)方向に移動し、センサ電
極120とターゲット間の有効対向面11b、12bが
狭まる。That is, when the fork is closed, the base 11a,
12a move in the direction of approaching (closing) each other, and the effective opposing surfaces 11b, 12b between the sensor electrode 120 and the target.
b spreads. Also, when the fork is opened, the bases 11a, 1
2a move in a direction away from each other (open), and the effective facing surfaces 11b and 12b between the sensor electrode 120 and the target become narrower.
【0052】従って、センサ電極120とターゲット間
の静電容量C(t)と、センサ電極120とフォーク間
の浮遊容量Cx(t)は、同位相にて変化する。つま
り、フォークが開いても被測定面対向部11、12の有
効対向面11a、12a間は閉じるため、C(t)が小さ
くなるタイミングでCx(t)が小さくなり、フォーク
の被測定面対向部11、12間が閉じても被測定面対向
部11、12の有効対向面11a、12a間は開くため、
C(t)が大きくなるタイミングでCx(t)が大きく
なる。Therefore, the capacitance C (t) between the sensor electrode 120 and the target and the stray capacitance Cx (t) between the sensor electrode 120 and the fork change in the same phase. That is, even if the fork is opened, the effective facing surfaces 11a and 12a of the measured surface facing portions 11 and 12 are closed, so that Cx (t) decreases at the timing when C (t) decreases, and the fork faces the measured surface. Even if the portion between the portions 11 and 12 is closed, the portion between the effective facing surfaces 11a and 12a of the portions to be measured facing 11 and 12 is open.
Cx (t) increases at the timing when C (t) increases.
【0053】従って、第1の実施の形態例によれば、C
(t)を流れる電流の一部がCx(t)に流れることが
なくなり(あるいは大きく減少するため)、C(t)を
流れる電流の全部(あるいはほとんど)を検出抵抗Rs
に流すことができ、精度の高い、ターゲット電位Vtを
検出できる。Therefore, according to the first embodiment, C
Part of the current flowing through (t) does not flow into Cx (t) (or greatly decreases), and all (or most) of the current flowing through C (t) is detected by the detection resistor Rs.
And the target potential Vt can be detected with high accuracy.
【0054】[第2の実施の形態例]以上の説明は、ク
ロス型フォークによりオフセット電圧の発生を防止する
例を説明した。しかし、本発明は以上の例に限定される
ものではなく、フォーク形状を適切なものとして、C
(t)とCx(t)の位相が一致する構成として、オフ
セット電圧Vfstの影響を減らす(影響をなくす)も
のであれば良い。[Second Embodiment] In the above description, an example in which the cross type fork is used to prevent the generation of the offset voltage has been described. However, the present invention is not limited to the above-described example.
The configuration in which the phases of (t) and Cx (t) coincide with each other is only required to reduce (eliminate) the influence of the offset voltage Vfst.
【0055】穴空き型のフォーク形状によりC(t)と
Cx(t)の位相が一致する様に構成した本発明に係る
第2の実施の形態例を図2を参照して以下に説明する。
図2は本発明に係る第2の実施の形態例の電位センサの
フォーク形状の正面図である。第2の実施の形態例にお
いても、電位センサ部の基本構成は図6、図8に示す構
成と同様であるが、フォーク先端のターゲット200と
の対向部の形状が異なり、オフセット電圧Vfstの影
響を減らすために図2に示す形状をとしている。A second embodiment according to the present invention will be described below with reference to FIG. 2 in which the phases of C (t) and Cx (t) are matched by the shape of a forked hole. .
FIG. 2 is a front view of a fork shape of a potential sensor according to a second embodiment of the present invention. Also in the second embodiment, the basic configuration of the potential sensor section is the same as the configuration shown in FIGS. 6 and 8, but the shape of the portion of the tip of the fork facing the target 200 is different, and the influence of the offset voltage Vfst is different. The shape shown in FIG.
【0056】図2に示す穴空き型フォークは、フォーク
の間隔が閉じたときにセンサ電極120とターゲット2
00間の被測定面対向部の対向面積が増大し、フォーク
が開いたときにセンサ電極、ターゲット間の対向面積が
減少し、Cx(t)とC(t)の位相が一致するよう
な、フォーク形状である。The forked type fork shown in FIG. 2 has a sensor electrode 120 and a target 2 when the fork interval is closed.
The opposing area of the portion to be measured between 00 increases, the opposing area between the sensor electrode and the target decreases when the fork is opened, and the phases of Cx (t) and C (t) match. It has a fork shape.
【0057】即ち、フォークが開くと、図2に示す状態
より被測定面対向部21、22が互いに外側に移動する
ため、窓21a、22aが重なり合う面積が増大するた
め、センサ電極120とターゲット間の有効対向面が狭
まる。また、フォークが閉じると、図2に示す状態とな
り、より窓21a、22aが重なり合う面積が減少するた
め、センサ電極120とターゲット間の有効対向面11
b、12bが広がる。That is, when the fork is opened, the portions 21 and 22 to be measured move outward from each other from the state shown in FIG. 2, so that the area where the windows 21a and 22a overlap with each other increases. The effective opposing surface becomes narrower. When the fork is closed, the state shown in FIG. 2 is obtained, and the area where the windows 21a and 22a overlap with each other is reduced, so that the effective facing surface 11 between the sensor electrode 120 and the target is reduced.
b and 12b spread.
【0058】従って、センサ電極120とターゲット間
の静電容量C(t)と、センサ電極120とフォーク間
の浮遊容量Cx(t)は、同位相にて変化する。つま
り、C(t)が小さくなるタイミングでCx(t)が小
さくなり、C(t)が大きくなるタイミングでCx
(t)が大きくなる。Accordingly, the capacitance C (t) between the sensor electrode 120 and the target and the stray capacitance Cx (t) between the sensor electrode 120 and the fork change in the same phase. That is, Cx (t) decreases at the timing when C (t) decreases, and Cx at the timing when C (t) increases.
(T) increases.
【0059】従って、第2の実施の形態例によれば、C
(t)を流れる電流の一部がCx(t)に流れることが
なくなり(あるいは大きく減少するため)、C(t)を
流れる電流の全部(あるいはほとんど)を検出抵抗Rs
に流すことができ、精度の高い、ターゲット電位Vtを
検出できる。Therefore, according to the second embodiment, C
Part of the current flowing through (t) does not flow into Cx (t) (or greatly decreases), and all (or most) of the current flowing through C (t) is detected by the detection resistor Rs.
And the target potential Vt can be detected with high accuracy.
【0060】[第3の実施の形態例]以上の説明は、ク
ロス型フォーク、あるいは、穴空き型フォーク形状とし
てオフセット電圧の発生を防止する例を説明した。しか
し、本発明は以上の例に限定されるものではなく、Cx
(t)の発生を防止すればオフセット電圧Vfstの影
響を減らす(影響をなくす)ことができる。[Third Embodiment] In the above description, the cross-shaped fork or the hole-shaped fork is used to prevent the generation of the offset voltage. However, the present invention is not limited to the above example, and Cx
If the occurrence of (t) is prevented, the influence of the offset voltage Vfst can be reduced (eliminated).
【0061】Cx(t)の発生を防止した本発明に係る
第3の実施の形態例を図3を参照して以下に説明する。
図3は本発明に係る第3の実施の形態例の電位センサの
フォーク構造を示す図である。第3の実施の形態例にお
いては、フォーク先端のターゲット200との対向部の
形状は問わず、例えば図7に示す構造であってもよい。A third embodiment of the present invention in which the generation of Cx (t) is prevented will be described below with reference to FIG.
FIG. 3 is a diagram showing a fork structure of a potential sensor according to a third embodiment of the present invention. In the third embodiment, regardless of the shape of the portion of the tip of the fork facing the target 200, the structure shown in FIG. 7 may be used.
【0062】第4の実施の形態例においては、フォーク
110の外側に、Cx(t)を積極的にキャンセルする
ための第2の電極30を追加する。そして、第2の電極
30は、センサ電極120と同電位になるように結線す
る。この結果、フォーク110と第2の電極間30間に
は、浮遊容量Cx’(t)が発生する。この浮遊容量C
x’(t)は、Cx(t)とは逆位相であるため、互い
に打ち消しあうことのなる。従ってオフセット電圧の発
生が防止できる。In the fourth embodiment, a second electrode 30 for positively canceling Cx (t) is added outside the fork 110. Then, the second electrode 30 is connected so as to have the same potential as the sensor electrode 120. As a result, a stray capacitance Cx ′ (t) is generated between the fork 110 and the second electrode 30. This stray capacitance C
Since x ′ (t) has an opposite phase to Cx (t), they cancel each other. Therefore, generation of an offset voltage can be prevented.
【0063】以上説明した様に第4の実施の形態例によ
れば、Cx(t)と逆位相のCx’(t)を積極的に発
生させることで、Cx(t)をキャンセルすることがで
き、C(t)を流れる電流の一部がCx(t)に流れる
ことがなくなり(あるいは大きく減少するため)、C
(t)を流れる電流の全部(あるいはほとんど)を検出
抵抗Rsに流すことができ、精度の高い、ターゲット電
位Vtを検出できる。As described above, according to the fourth embodiment, Cx (t) can be canceled by positively generating Cx '(t) having a phase opposite to that of Cx (t). And part of the current flowing through C (t) does not flow into Cx (t) (or greatly decreases),
All (or most) of the current flowing through (t) can flow through the detection resistor Rs, and the target potential Vt can be detected with high accuracy.
【0064】[第4の実施の形態例]上述した第3の実
施の形態例においては、Cx(t)を積極的にキャンセ
ルするための第2の電極30を追加してCx(t)の発
生を防止する例について説明した。しかし、Cx(t)
を積極的にキャンセルする構造は以上の例に限定される
ものではなく、Cx(t)を積極的にキャンセルするこ
とができるものであれば種々の構造、方法を採用するこ
とができる。[Fourth Embodiment] In the third embodiment described above, the second electrode 30 for positively canceling Cx (t) is added, and Cx (t) is reduced. An example of preventing occurrence has been described. However, Cx (t)
Is not limited to the above example, and various structures and methods can be adopted as long as Cx (t) can be positively canceled.
【0065】例えば、フォークに別途一定面積突出した
“耳”を追加し、その下面にセンサ電極120と同電位
になるように結線した電極、例えばプリント基板に配設
された導電性金属パターンを備える構成とする。そし
て、フォークの“耳”と下面のパターン間に第3実施の
形態例と同様にセンサ電極120とフォーク110間に
発生するCx(t)と逆位相の浮遊容量Cx’(t)を
積極的に発生させ、Cx(t)をキャンセルする様の構
成してもよい。For example, an “ear” protruding from the fork by a certain area is separately added to the fork, and an electrode connected to be at the same potential as the sensor electrode 120 on the lower surface thereof, for example, a conductive metal pattern disposed on a printed circuit board is provided. Configuration. Then, similarly to the third embodiment, a stray capacitance Cx ′ (t) having a phase opposite to that of Cx (t) generated between the sensor electrode 120 and the fork 110 is positively applied between the “ear” of the fork and the pattern on the lower surface. And Cx (t) may be cancelled.
【0066】このように構成した本発明に係る第4の発
明の実施の形態例を図4及び図5に示す。図4は本発明
に係る第4の発明の実施の形態例の電位センサの構造を
説明するための図、図5は図4に示す電位センサの具体
的な構成例を示す図である。以下、図5及び図5を参照
して本発明に係る第4の発明の実施の形態例を詳細に説
明する。FIGS. 4 and 5 show a fourth embodiment of the present invention having the above-described structure. FIG. 4 is a view for explaining the structure of a potential sensor according to a fourth embodiment of the present invention, and FIG. 5 is a view showing a specific configuration example of the potential sensor shown in FIG. Hereinafter, an embodiment of the fourth invention according to the present invention will be described in detail with reference to FIGS.
【0067】第4の実施の形態例においては、フォーク
110にフォーク部分より所定量突出した“耳”部40
を追加で備え、その耳部40の対向下面にセンサ電極1
20と同電位になるように例えばプリント基板46表面
に配設された導電性金属パターン(追加電極)45を備
える構成とする。In the fourth embodiment, the "ear" portion 40 protrudes from the fork portion by a predetermined amount on the fork 110.
Are additionally provided, and the sensor electrode 1
For example, a conductive metal pattern (additional electrode) 45 provided on the surface of the printed board 46 so as to have the same potential as that of the printed circuit board 46 is provided.
【0068】例えば耳部40を図4に示すようにフォー
ク110下部に突出する四角形の形状とし、追加電極4
5をフォーク110の外側(図4の下側)に行くほど面
積の広い電極パターンとし、センサ電極120とフォー
ク110間に発生する浮遊容量Cx(t)と逆位相の浮
遊容量Cx’(t)を耳部40との追加電極45との間
に積極的に発生させて、Cx(t)を打ち消す。For example, as shown in FIG. 4, the ear portion 40 has a rectangular shape projecting below the fork 110, and the additional electrode 4
5 is an electrode pattern having a larger area toward the outside of the fork 110 (the lower side in FIG. 4), and a floating capacitance Cx ′ (t) having a phase opposite to that of the floating capacitance Cx (t) generated between the sensor electrode 120 and the fork 110. Is positively generated between the ear portion 40 and the additional electrode 45 to cancel Cx (t).
【0069】このように、センサ電極120と結線され
た例えばプリント板パターンをつくる。そして、フォー
クの“耳”と下面のパターン間に浮遊容量Cx’(t)
を積極的に作り、Cx(t)をキャンセルするように構
成したため、C(t)を流れる電流の一部がCx(t)
に流れることがなくなり(あるいは大きく減少するた
め)、C(t)を流れる電流の全部(あるいはほとん
ど)を検出抵抗Rsに流すことができ、精度の高い、タ
ーゲット電位Vtを検出できる。In this way, for example, a printed board pattern connected to the sensor electrode 120 is formed. The stray capacitance Cx ′ (t) is placed between the “ear” of the fork and the pattern on the lower surface.
Is positively formed to cancel Cx (t), so that a part of the current flowing through C (t) becomes Cx (t).
Does not flow (or greatly decreases), all (or most) of the current flowing through C (t) can flow through the detection resistor Rs, and the target potential Vt can be detected with high accuracy.
【0070】なお、以上の説明においては、追加電極を
プリント基板46条に配設した導電性パターンで形成し
たが、この追加電極は導電性金属板で構成してもよい。
また、耳部の形状及び追加電極の形状も上記形状に限定
されるものではなく、Cx(t)をキャンセル又は減少
させるCx’(t)を発生させるものであれば種々のも
のとできる。In the above description, the additional electrode is formed by the conductive pattern disposed on the printed circuit board 46. However, the additional electrode may be formed by a conductive metal plate.
Further, the shape of the ear portion and the shape of the additional electrode are not limited to the above shapes, and various shapes can be used as long as Cx ′ (t) that cancels or reduces Cx (t) is generated.
【0071】[0071]
【発明の効果】以上に説明したように本発明によれば、
センサ電極と振動子間に発生する浮遊容量の影響を抑え
て、例え電位センサを小型化しても、測定対象の電位を
高精度で測定することができる。According to the present invention as described above,
Even if the potential sensor is reduced in size by suppressing the effect of the stray capacitance generated between the sensor electrode and the vibrator, the potential of the measurement target can be measured with high accuracy.
【0072】しかも、これを振動子の形状を最適化する
等の簡単な構成で実現できる電位センサを提供できる。Further, it is possible to provide a potential sensor that can realize this with a simple configuration such as optimizing the shape of the vibrator.
【0073】即ち、振動子とセンサ電極間に発生する浮
遊容量Cx(t)を打ち消したり、Cx(t)をセンサ
電極と測定対象との間に発生する浮遊容量C(t)と同
位相にしたりする事で、オフセット電圧が生じない(非
常に少ない)、オフセット調整不要な電位センサを低コ
ストにて実現することができる。That is, the stray capacitance Cx (t) generated between the vibrator and the sensor electrode is canceled or Cx (t) is made in phase with the stray capacitance C (t) generated between the sensor electrode and the object to be measured. As a result, a potential sensor that does not generate (very little) offset voltage and does not require offset adjustment can be realized at low cost.
【0074】[0074]
【図1】本発明に係る一発明の実施の形態例の電位セン
サのフォーク形状を示す正面図であるFIG. 1 is a front view showing a fork shape of a potential sensor according to an embodiment of the present invention;
【図2】本発明に係る第2の実施の形態例の電位センサ
のフォーク形状を示す正面図である。FIG. 2 is a front view showing a fork shape of a potential sensor according to a second embodiment of the present invention.
【図3】本発明に係る第3の実施の形態例の電位センサ
のフォーク構造を示す図である。FIG. 3 is a diagram showing a fork structure of a potential sensor according to a third embodiment of the present invention.
【図4】本発明に係る第4の実施の形態例の電位センサ
のフォーク構造を示す図である。FIG. 4 is a diagram showing a fork structure of a potential sensor according to a fourth embodiment of the present invention.
【図5】本発明に係る第4の実施の形態例の電位センサ
のフォーク構造を示す図である。FIG. 5 is a view showing a fork structure of a potential sensor according to a fourth embodiment of the present invention.
【図6】電位センサの原理を説明するための図である。FIG. 6 is a diagram for explaining the principle of a potential sensor.
【図7】従来のフォークの被測定面対向部の構造を示す
図である。FIG. 7 is a diagram showing a structure of a portion of a conventional fork opposed to a surface to be measured.
【図8】電位センサの実体図である。FIG. 8 is a substantial diagram of a potential sensor.
【図9】電位センサの浮遊容量を説明するための図であ
る。FIG. 9 is a diagram for explaining the stray capacitance of the potential sensor.
【図10】電位センサの等価回路例を示す図である。FIG. 10 is a diagram illustrating an example of an equivalent circuit of a potential sensor.
11、12、21、22、111、112 被測定面対
向部 30、45 Cx(t)キャンセル用電極 40 耳部 110 遮蔽板(フォーク) 120 センサ電極 130 ドライブ用圧電素子 140 振動検出用圧電素子 150 支点 200 被測定対象(ターゲット)11, 12, 21, 22, 111, 112 Surface to be measured 30, 45 Cx (t) canceling electrode 40 Ear 110 Shielding plate (fork) 120 Sensor electrode 130 Drive piezoelectric element 140 Vibration detection piezoelectric element 150 Fulcrum 200 Object to be measured (target)
Claims (6)
距離離間して配設されたセンサ電極と、 前記センサ電極に流れる電流を検出する電流検出素子と
を備え、 前記振動子の少なくとも前記被測定面対向部は、前記セ
ンサ電極と当該振動子間の浮遊容量Cx(t)と前記セ
ンサ電極と被測定面との容量C(t)との位相が同位相
にて変動する形状を有し、 前記振動子の前記被測定面対向部を振動させることによ
り前記センサ電極と被測定面との有効対向面積を可変さ
せて前記センサ電極と前記被測定面とのコンデンサ容量
を可変として前記センサ電極に流れる交流電流を測定す
ることにより、被測定面の電位を非接触にて測定可能と
することを特徴とする電位センサ。A vibrator that vibrates mechanically; a sensor electrode disposed at a predetermined distance from a surface of the vibrator facing the surface to be measured; and a current flowing through the sensor electrode. A current detection element for detecting, and at least the portion of the vibrator facing the surface to be measured includes a stray capacitance Cx (t) between the sensor electrode and the vibrator and a capacitance C (between the sensor electrode and the surface to be measured. t) having a shape that fluctuates in phase with the same phase, and vibrating the portion of the vibrator facing the surface to be measured, thereby changing the effective facing area between the sensor electrode and the surface to be measured. A potential sensor wherein the potential of the surface to be measured can be measured in a non-contact manner by measuring the alternating current flowing through the sensor electrode while changing the capacitance of the capacitor between the electrode and the surface to be measured.
測定面対向部を備え、前記被測定面対向部が振動により
閉じるときに前記センサ電極と被測定面の有効対向面積
が大きくなり、 前記振動子の前記被測定面対向部が振動により開くとき
に前記センサ電極と前記被測定面の有効対向面積が小さ
くなる構造をとることを特徴とする請求項1記載の電位
センサ。2. The shape of the vibrator surface-to-be-measured portion includes a surface-to-be-measured portion that is separated from at least two of the surface-to-be-measured by a predetermined distance, and the sensor when the surface-to-be-measured portion is closed by vibration. The effective facing area between the electrode and the measured surface is increased, and the effective facing area between the sensor electrode and the measured surface is reduced when the measured surface facing portion of the vibrator is opened by vibration. The potential sensor according to claim 1, wherein
に重なり合い略中央部近傍に打ち抜き部が形成されてい
ることを特徴とする請求項2記載の電位センサ。3. The potential sensor according to claim 2, wherein the shape of the portion to be measured facing the transducer overlaps with each other, and a punched portion is formed near a substantially central portion.
距離離間して配設されたセンサ電極と、 前記センサ電極に流れる電流を検出する電流検出素子と
を備え、 前記振動子の少なくとも前記被測定面対向部は、前記セ
ンサ電極と当該振動子間の浮遊容量Cx(t)と前記セ
ンサ電極と被測定面との容量C(t)との位相が逆位相
にて変動する形状を有し、 前記振動子の前記被測定面対向部を振動させることによ
り前記センサ電極と被測定面との有効対向面積を可変さ
せて前記センサ電極と前記被測定面とのコンデンサ容量
を可変として前記センサ電極に流れる交流電流を測定す
ることにより、被測定面の電位を非接触にて測定可能と
することを特徴とするする電位センサ。4. A vibrator that vibrates mechanically, a sensor electrode disposed at a predetermined distance from a surface to be measured of a portion facing the surface to be measured of the vibrator, and a current flowing through the sensor electrode. A current detection element for detecting, and at least the portion of the vibrator facing the surface to be measured includes a stray capacitance Cx (t) between the sensor electrode and the vibrator and a capacitance C (between the sensor electrode and the surface to be measured. t) has a shape that fluctuates in the opposite phase, and vibrates the portion of the vibrator facing the surface to be measured, thereby changing the effective facing area between the sensor electrode and the surface to be measured. A potential sensor characterized in that the capacitance of a capacitor between an electrode and the surface to be measured is made variable and an alternating current flowing through the sensor electrode is measured so that the potential of the surface to be measured can be measured in a non-contact manner.
距離離間して配設されたセンサ電極と、 前記センサ電極に流れる電流を検出する電流検出素子
と、 前記センサ電極と同一電位の前記振動子の外部方向に所
定距離離間させて配設された追加電極とを備え、 前記振動子と前記追加電極間に前記センサ電極と当該振
動子間の浮遊容量Cx(t)と逆位相の浮遊容量Cx’
(t)を発生させて前記Cx(t)を打ち消し可能であ
ることを特徴とする電位センサ。5. A vibrator that vibrates mechanically, a sensor electrode disposed at a predetermined distance from a surface to be measured of a portion facing the surface to be measured of the vibrator, and a current flowing through the sensor electrode. A current detecting element to be detected, and an additional electrode disposed at a predetermined distance in an external direction of the vibrator having the same potential as the sensor electrode, the sensor electrode being provided between the vibrator and the additional electrode. A stray capacitance Cx ′ having a phase opposite to that of the stray capacitance Cx (t) between the vibrators.
A potential sensor capable of generating (t) and canceling Cx (t).
距離離間して配設されたセンサ電極と、 前記センサ電極に流れる電流を検出する電流検出素子
と、 前記センサ電極と同一電位の前記振動子と所定距離離間
させて配設された追加電極とを備え、 前記振動子は、前記追加電極対向位置に前記追加電極と
所定間隙となる所定面積の突出部を有し、前記センサ電
極と当該振動子間の浮遊容量Cx(t)と逆位相の浮遊
容量Cx’(t)を前記耳部と前記追加電極間に発生さ
せて前記Cx(t)を打ち消し可能であることを特徴と
する電位センサ。6. A vibrator that vibrates mechanically, a sensor electrode disposed at a predetermined distance from a surface to be measured of a portion facing the surface to be measured of the vibrator, and a current flowing through the sensor electrode. A current detecting element to be detected; and an additional electrode disposed at a predetermined distance from the vibrator having the same potential as the sensor electrode. The vibrator is provided at a position facing the additional electrode and at a predetermined gap from the additional electrode. And a stray capacitance Cx ′ (t) having a phase opposite to that of the stray capacitance Cx (t) between the sensor electrode and the vibrator is generated between the ear portion and the additional electrode. A potential sensor capable of canceling the Cx (t).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3763798A JPH11237423A (en) | 1998-02-19 | 1998-02-19 | Electric potential sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3763798A JPH11237423A (en) | 1998-02-19 | 1998-02-19 | Electric potential sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11237423A true JPH11237423A (en) | 1999-08-31 |
Family
ID=12503174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3763798A Withdrawn JPH11237423A (en) | 1998-02-19 | 1998-02-19 | Electric potential sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11237423A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007240393A (en) * | 2006-03-10 | 2007-09-20 | Dainippon Screen Mfg Co Ltd | Surface electrometer and surface potential measuring method |
JP2013224904A (en) * | 2012-04-23 | 2013-10-31 | Koganei Corp | Electrical potential measurement device |
-
1998
- 1998-02-19 JP JP3763798A patent/JPH11237423A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007240393A (en) * | 2006-03-10 | 2007-09-20 | Dainippon Screen Mfg Co Ltd | Surface electrometer and surface potential measuring method |
JP2013224904A (en) * | 2012-04-23 | 2013-10-31 | Koganei Corp | Electrical potential measurement device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4993349B2 (en) | Potential measuring apparatus and image forming apparatus | |
JP5027984B2 (en) | Potential measuring apparatus using oscillator, potential measuring method, and image forming apparatus | |
US5212451A (en) | Single balanced beam electrostatic voltmeter modulator | |
US6600323B2 (en) | Sensor for non-contacting electrostatic detector | |
US4625176A (en) | Electrostatic probe | |
US7548066B2 (en) | Potential measuring device and image forming apparatus using the same | |
KR20060096063A (en) | Rotational speed sensor | |
JPH0792486B2 (en) | Electrostatic capacity monitor-device | |
JP3481720B2 (en) | Surface potential measuring device | |
US6573725B2 (en) | Sensor for non-contacting electrostatic detector | |
US7372278B2 (en) | Electric potential measuring apparatus electrostatic capacitance measuring apparatus, electric potential measuring method, electrostatic capacitance measuring method, and image forming apparatus | |
JPH11237423A (en) | Electric potential sensor | |
US6316942B1 (en) | Electrical potential sensor | |
JP6613599B2 (en) | Permeability / dielectric constant sensor and permeability / dielectric constant detection method | |
JPH109944A (en) | Vibration sensor | |
JPH08178986A (en) | Potential sensor | |
JP2003029504A (en) | Surface potential controller and image forming device | |
JP2000039458A (en) | Potential measuring apparatus and image forming apparatus | |
JP2591907Y2 (en) | Surface potential detector | |
JPH07104019A (en) | Method and device for measuring surface potential | |
JP2000065877A (en) | Electric potential sensor | |
JP2018155504A (en) | Dielectric constant sensor and dielectric constant detection method | |
JP2730361B2 (en) | Surface potential detector | |
JPS631547B2 (en) | ||
JPH11237424A (en) | Electric potential sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050510 |