[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1122905A - Return flow type convection crude gas cooler - Google Patents

Return flow type convection crude gas cooler

Info

Publication number
JPH1122905A
JPH1122905A JP9178446A JP17844697A JPH1122905A JP H1122905 A JPH1122905 A JP H1122905A JP 9178446 A JP9178446 A JP 9178446A JP 17844697 A JP17844697 A JP 17844697A JP H1122905 A JPH1122905 A JP H1122905A
Authority
JP
Japan
Prior art keywords
crude gas
gas
cooler
flow
gas cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9178446A
Other languages
Japanese (ja)
Inventor
Tadayoshi Adachi
忠由 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9178446A priority Critical patent/JPH1122905A/en
Publication of JPH1122905A publication Critical patent/JPH1122905A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a duct preventive against choking, highly efficient in recovery of heat, and economize on the heat-transfer area of a heating tube. SOLUTION: In this crude gas cooler 7 crude gas obtained by gasification of fuel such as coal is put in contact with a vaporizer 3 and an economizer 4 and the heat of gasification is recovered by transfer of heat. In this instance the cooler body 2 is demarcated into an upward flow side water-cooled wall part 5a through which the crude gas is passed upward and a downward flow side water-cooled wall part 5b through which the crude gas is passed downward and discharged. The upward flow side water-cooled wall part 5a is provided with a vaporizer 3 and the downward flow side water-cooled wall part 5b, with an economizer 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭等の燃料をガ
ス化した粗ガスを伝熱管に接触させ伝熱によりガス化熱
を回収する対流型粗ガス冷却器に係り、特に、蒸発管を
冷却器の入口部付近に設置して上昇流で熱回収すると共
に節炭器を冷却器の下降流部分に設置して下降流で熱回
収する対流型粗ガス冷却器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a convection-type crude gas cooler for recovering gasification heat by contacting a crude gas obtained by gasifying a fuel such as coal with a heat transfer tube, and in particular, relates to an evaporative tube. The present invention relates to a convection-type crude gas cooler which is installed near an inlet of a cooler to recover heat by an upward flow and installs a economizer at a downward flow portion of the cooler to recover heat by a downward flow.

【0002】[0002]

【従来の技術】石炭等の燃料をガス化炉でガス化して高
温の粗ガスを発生させ、これを発電等に利用する石炭ガ
ス化複合発電システム(IGCC: Integrated Coal Gasifi
cationCombined Cycle )においては、粗ガスからガス
化熱を回収する粗ガス冷却器が、ガス化炉の出口に接続
されて設けられる。
2. Description of the Related Art An integrated coal gasification combined cycle (IGCC) system is used in which a fuel such as coal is gasified in a gasifier to generate a high-temperature crude gas, which is used for power generation and the like.
In the cation Combined Cycle, a crude gas cooler for recovering gasification heat from the crude gas is provided connected to the outlet of the gasification furnace.

【0003】図4に、テキサコ(Texaco)法の石炭ガス
化設備(符号40参照)を有する従来の石炭ガス化複合
発電システム60が示されている。このタイプの石炭ガ
ス化設備40の場合、粗ガス冷却器は、図示されるよう
に輻射型粗ガス冷却器6と対流型粗ガス冷却器27とか
ら構成され、ガス化炉5の下流側にこれらの輻射型粗ガ
ス冷却器6,対流型粗ガス冷却器27が順に接続され
る。
FIG. 4 shows a conventional integrated coal gasification combined cycle system 60 having a Texaco method coal gasification facility (see reference numeral 40). In the case of this type of coal gasification equipment 40, the crude gas cooler is composed of a radiation type crude gas cooler 6 and a convection type crude gas cooler 27 as shown, and is provided downstream of the gasification furnace 5. The radiation type crude gas cooler 6 and the convection type crude gas cooler 27 are connected in order.

【0004】テキサコ型の石炭ガス化設備40の輻射型
粗ガス冷却器6の粗ガス出口6aは、図示されるよう
に、輻射型粗ガス冷却器6の下部に設置される。このた
め、輻射型粗ガス冷却器6の下流側に接続される対流型
粗ガス冷却器27がリターンフロー式(冷却器の下部か
ら導入された粗ガスが上昇後、冷却器の頂部付近でリタ
ーンして再び冷却器下部から排出される構造)に構成さ
れる場合、対流型粗ガス冷却器27の内部構造は、一般
に図3Aまたは図3Bに示されるような構造になる(図
3Bにおいては、対流型粗ガス冷却器37として示され
ている)。
The crude gas outlet 6a of the radiant crude gas cooler 6 of the Texaco type coal gasification facility 40 is installed below the radiant crude gas cooler 6, as shown in the figure. For this reason, the convection type crude gas cooler 27 connected downstream of the radiation type crude gas cooler 6 is of a return flow type (after the crude gas introduced from the lower part of the cooler rises, it returns near the top of the cooler). 3A or 3B, the internal structure of the convective crude gas cooler 27 is generally as shown in FIG. 3A or 3B (in FIG. 3B, Convection type crude gas cooler 37).

【0005】つまり、例えば図3Aに示されるタイプの
対流型粗ガス冷却器27の場合、対流型粗ガス冷却器2
7は、その下部に設けられた粗ガス導入口28及び粗ガ
ス排出口29と、軸方向に延びた上昇流側ダクト25a
及び下降流側水冷壁25bとを有し、粗ガス導入口28
から導入された粗ガスが上昇流側ダクト25aを上昇し
た後、冷却器本体の頂部付近でリターンして下降流側水
冷壁25bを下降して粗ガス排出口29から排出される
ように構成されている。
That is, for example, in the case of a convection type coarse gas cooler 27 of the type shown in FIG.
7 is provided with a coarse gas inlet 28 and a coarse gas outlet 29 provided at the lower part thereof and an ascending flow side duct 25a extending in the axial direction.
And a downflow-side water cooling wall 25b.
After the coarse gas introduced from the ascending flow rises in the upflow duct 25a, it returns near the top of the cooler body, descends the downflow water cooling wall 25b, and is discharged from the coarse gas discharge port 29. ing.

【0006】下降流側水冷壁25bには、粗ガスのガス
化熱を伝熱により回収する伝熱管としての蒸発管23,
節炭器24が図示されるように設けられる。上昇流側ダ
クト25aの幅は、冷却器本体の幅をなるべく小さくす
る必要上、比較的小さく取られる。
The evaporating tube 23 as a heat transfer tube for recovering the gasification heat of the crude gas by heat transfer is provided on the downflow side water cooling wall 25b.
A economizer 24 is provided as shown. The width of the upflow duct 25a is relatively small because the width of the cooler body needs to be as small as possible.

【0007】一方、図3Bに示されるタイプの対流型粗
ガス冷却器37の場合、対流型粗ガス冷却器37は、そ
の下部に設けられた粗ガス導入口38及び粗ガス排出口
39と、軸方向に延びた上昇流側水冷壁35a及び下降
流側ダクト35bとを有し、粗ガス導入口38から導入
された粗ガスが上昇流側水冷壁35aを上昇した後、冷
却器本体の頂部付近でリターンして下降流側ダクト35
bを下降して粗ガス排出口39から排出されるように構
成されている。
On the other hand, in the case of a convection-type crude gas cooler 37 of the type shown in FIG. 3B, the convection-type crude gas cooler 37 has a coarse gas inlet 38 and a coarse gas outlet 39 provided at its lower part. It has an upflow-side water cooling wall 35a and a downflow-side duct 35b extending in the axial direction, and after the coarse gas introduced from the coarse gas inlet 38 rises up the upflow-side water cooling wall 35a, the top of the cooler body Return near the descending duct 35
The gas is discharged from the crude gas discharge port 39 by descending the b.

【0008】上昇流側水冷壁35aには、粗ガスのガス
化熱を伝熱により回収する伝熱管としての蒸発管33,
節炭器34が図示されるように設けられる。下降流側ダ
クト35bの幅は、冷却器本体の幅をなるべく小さくす
る必要上、比較的小さく取られる。
The evaporating tube 33 as a heat transfer tube for recovering the gasification heat of the crude gas by heat transfer is provided on the upflow side water cooling wall 35a.
A economizer 34 is provided as shown. The width of the downflow duct 35b is relatively small because the width of the cooler body needs to be as small as possible.

【0009】対流型粗ガス冷却器27(又は37)の下
流側には、図4に示されるようにガス精製設備41が接
続され、ガス精製設備41の下流側には複合発電設備4
2が設けられる。又、空気から酸素を分離する空気分離
設備43が、石炭ガス化設備40及び複合発電設備42
に接続して図示されるように設けられる。
As shown in FIG. 4, a gas purification facility 41 is connected downstream of the convection type crude gas cooler 27 (or 37), and a combined power generation facility 4 is located downstream of the gas purification facility 41.
2 are provided. Further, an air separation facility 43 for separating oxygen from air is provided by a coal gasification facility 40 and a combined power generation facility 42.
Is provided as shown in the figure.

【0010】ガス精製設備41は、湿式の場合、例えば
図4に示されるようにフィルタ17,サチュレータ1
8,熱交換器19及び脱硫塔12から主に構成され、フ
ィルタ17が対流型粗ガス冷却器27の下流側に接続さ
れると共に、ガス化炉5で生成された粗ガスがフィルタ
17から熱交換器19及び脱硫塔12に導入された後、
サチュレータ18を介して複合発電設備42のガスター
ビン8(下記参照)に送られるように構成されている。
尚、ガス精製設備41を乾式脱硫塔,再生塔及びフィル
タ(いずれも図示されず)等を備えた乾式タイプに構成
してよいのは、勿論である。
[0010] In the case of a wet type, the gas purifying equipment 41 includes, for example, a filter 17 and a saturator 1 as shown in FIG.
8, a heat exchanger 19 and a desulfurization tower 12. The filter 17 is connected to the downstream side of the convective crude gas cooler 27, and the crude gas generated in the gasifier 5 After being introduced into the exchanger 19 and the desulfurization tower 12,
It is configured to be sent to the gas turbine 8 (see below) of the combined cycle power plant 42 via the saturator 18.
The gas purification equipment 41 may be of a dry type provided with a dry desulfurization tower, a regeneration tower, a filter (all not shown), and the like.

【0011】複合発電設備42は、ガスタービン8(そ
の燃焼器8a及びコンプレッサ29を含む),蒸気ター
ビン9,排熱回収ボイラ31等から構成される。ガスタ
ービン8は、上述のようにサチュレータ18の下流側に
接続され、ガスタービン8の下流側には排熱回収ボイラ
31及び蒸気タービン9が設置されて、ガスタービン8
からの排ガスの余熱を排熱回収ボイラ31で回収して蒸
気タービン9を駆動するように構成されている。
The combined power generation facility 42 includes the gas turbine 8 (including the combustor 8a and the compressor 29), the steam turbine 9, the exhaust heat recovery boiler 31, and the like. The gas turbine 8 is connected to the downstream side of the saturator 18 as described above, and the exhaust heat recovery boiler 31 and the steam turbine 9 are installed downstream of the gas turbine 8.
The exhaust heat from the exhaust gas is recovered by an exhaust heat recovery boiler 31 to drive the steam turbine 9.

【0012】排熱回収ボイラ31の下流側には、煙突3
2が接続される。
Downstream of the heat recovery boiler 31, a chimney 3
2 are connected.

【0013】空気分離設備43は、深冷法などにより空
気から高純度の酸素を分離する空気分離器(精留塔)3
8を有し、空気分離器38は、空気導入ライン25によ
ってガスタービン8のコンプレッサ29の下流側に接続
されると共に、酸素供給ライン13を介してガス化炉5
の上流側に接続される。又、空気分離器38で酸素を分
離した残りの空気成分(主に窒素)をガスタービン8の
燃焼器8aあるいはガス精製設備41の再生塔(乾式の
場合)に送れるように、空気分離器38を燃焼器8aあ
るいは再生塔に接続してよい。
The air separation equipment 43 is an air separator (rectification tower) 3 for separating high-purity oxygen from air by a cryogenic method or the like.
The air separator 38 is connected to the downstream side of the compressor 29 of the gas turbine 8 by the air introduction line 25 and is connected to the gasification furnace 5 via the oxygen supply line 13.
Connected upstream. Further, the air separator 38 is separated so that the remaining air component (mainly nitrogen) from which oxygen has been separated by the air separator 38 can be sent to the combustor 8a of the gas turbine 8 or the regeneration tower (in the case of a dry type) of the gas purification facility 41. May be connected to the combustor 8a or the regeneration tower.

【0014】石炭等の燃料がガス化設備40のバンカ1
4,湿式ミル15を介してスラリ化され、スラリ化され
た石炭(以下スラリと称する)は、スラリ貯槽タンク1
6を介してガス化炉5に導入される。ドライ燃料を用い
る場合は、ドライ燃料がガス化炉5に導入される。
The fuel such as coal is used in the bunker 1 of the gasification facility 40.
4. Coal slurried through the wet mill 15 and slurried (hereinafter referred to as slurry) is supplied to the slurry storage tank 1
It is introduced into the gasification furnace 5 through 6. When using a dry fuel, the dry fuel is introduced into the gasification furnace 5.

【0015】一方、空気分離設備43では、外気及び空
気導入ライン25を介してガスタービン8のコンプレッ
サ29から導入された空気から、深冷法等の方法により
高純度の酸素が分離される。分離された高純度の酸素
は、精留塔38及び酸素供給ライン13を介してガス化
炉5に供給される。酸素を分離された残りの空気成分
(主に窒素)は、ガスタービン8の燃焼器8aあるいは
ガス精製設備41の再生塔に送られる。
On the other hand, in the air separation equipment 43, high-purity oxygen is separated from the outside air and the air introduced from the compressor 29 of the gas turbine 8 through the air introduction line 25 by a method such as a deep cooling method. The separated high-purity oxygen is supplied to the gasification furnace 5 via the rectification column 38 and the oxygen supply line 13. The remaining air component (mainly nitrogen) from which oxygen has been separated is sent to the combustor 8a of the gas turbine 8 or the regeneration tower of the gas purification facility 41.

【0016】ガス化炉5では、上述のように空気分離設
備43の空気分離器38から酸素供給ライン13を介し
て高純度の酸素が供給され、これによりスラリ(もしく
はドライ燃料)が部分酸化されると共にガス化して、粗
ガス(主にH2 ,CO,CO2 )が生成される。
In the gasification furnace 5, high-purity oxygen is supplied from the air separator 38 of the air separation equipment 43 via the oxygen supply line 13 as described above, whereby the slurry (or dry fuel) is partially oxidized. And gasification to generate a crude gas (mainly H 2 , CO, CO 2 ).

【0017】ガス化炉5で生成された粗ガスは、その
後、輻射型粗ガス冷却器6及び対流型粗ガス冷却器27
(又は37)を介してガス精製設備41に送られる。こ
のとき、輻射型冷却器6においては主に輻射によって、
対流型粗ガス冷却器27(37)においては主に伝熱に
よって粗ガスから熱を回収する。
The crude gas generated in the gasifier 5 is then supplied to the radiant crude gas cooler 6 and the convective crude gas cooler 27.
(Or 37) to the gas purification facility 41. At this time, the radiation type cooler 6 mainly emits radiation.
In the convection type crude gas cooler 27 (37), heat is recovered from the crude gas mainly by heat transfer.

【0018】すなわち、リターンフロー式対流型粗ガス
冷却器27においては(図3A参照)、輻射型粗ガス冷
却器6からの粗ガスが粗ガス導入口28を介して導入さ
れると共に上昇流側ダクト25a内を上昇し、頂部付近
でリターンして下降流側水冷壁ト25b内を下降した
後、粗ガス排出口29を介してガス精製設備41に送ら
れる。粗ガスは、下降流側水冷壁25bを下降するとき
蒸発器23及び節炭器24に順に接触し、これにより粗
ガスのガス化熱が蒸発器23及び節炭器24に伝熱し
て、粗ガスが冷却される。
That is, in the return flow type convection type coarse gas cooler 27 (see FIG. 3A), the coarse gas from the radiation type coarse gas cooler 6 is introduced through the coarse gas inlet 28 and the upward flow side. After ascending in the duct 25a, returning near the top and descending in the descending water cooling wall 25b, it is sent to the gas purification facility 41 through the crude gas discharge port 29. The crude gas comes into contact with the evaporator 23 and the economizer 24 sequentially when descending the descending water cooling wall 25b, whereby the heat of gasification of the crude gas is transferred to the evaporator 23 and economizer 24, The gas is cooled.

【0019】このとき、蒸発器23及び節炭器24内で
は熱媒が下方から上方に流れるので(図3A参照)、双
方において熱媒の流れる方向が粗ガスの流方向と反対、
すなわち対向流になる。
At this time, since the heat medium flows upward from below in the evaporator 23 and the economizer 24 (see FIG. 3A), the flow direction of the heat medium is opposite to the flow direction of the crude gas.
That is, the flow becomes countercurrent.

【0020】又、粗ガスが上昇流ダクト25aを上昇す
るとき、粗ガスに含まれる固形分によって上昇流側ダク
ト25aが閉塞することがある(図3Aの部分A参
照)。
When the crude gas rises in the upflow duct 25a, the upflow-side duct 25a may be blocked by solids contained in the crude gas (see the part A in FIG. 3A).

【0021】一方、別のタイプのリターンフロー式対流
型粗ガス冷却器37においては(図3B参照)、輻射型
粗ガス冷却器6からの粗ガスが粗ガス導入口38を介し
て導入されると共に上昇流側水冷壁35a内を上昇し、
頂部付近でリターンして下降流側ダクト35b内を下降
した後、粗ガス排出口39を介してガス精製設備41に
送られる。粗ガスは、上昇流側水冷壁35a内を上昇す
るとき蒸発器33及び節炭器34に順に接触し、これに
より粗ガスのガス化熱が蒸発器33及び節炭器34に伝
熱して、粗ガスが冷却される。
On the other hand, in another type of return flow type convection type crude gas cooler 37 (see FIG. 3B), the crude gas from the radiation type crude gas cooler 6 is introduced through a crude gas inlet 38. Together with the ascending flow side water cooling wall 35a,
After returning near the top and descending in the downflow duct 35b, it is sent to the gas purification facility 41 via the crude gas outlet 39. The crude gas comes into contact with the evaporator 33 and the economizer 34 in order when ascending in the ascending water cooling wall 35a, whereby the heat of gasification of the crude gas is transferred to the evaporator 33 and economizer 34, The crude gas is cooled.

【0022】このとき、蒸発器33及び節炭器34内で
は熱媒が下方から上方に流れるので(図3B参照)、双
方において熱媒の流れる方向が粗ガスの流方向と同じ、
すなわち並行流になる。
At this time, since the heat medium flows upward from below in the evaporator 33 and the economizer 34 (see FIG. 3B), the flow direction of the heat medium is the same as the flow direction of the crude gas in both.
That is, it becomes a parallel flow.

【0023】対流型粗ガス冷却器27(37)から排出
されてガス精製設備41のフィルタ17に導入された粗
ガスは、フィルタ17で脱塵された後、熱交換器19を
介して脱硫塔12に送られて脱硫され、精製ガスにな
る。脱硫塔12から排出された精製ガスは、脱硫塔12
の頂部からサチュレータ18を介してガスタービン8に
送られる。ガス精製設備41が乾式の場合は、粗ガスは
乾式脱硫塔で脱硫されて精製ガスとなり、フィルタを介
してガスタービン8に送られる。
The crude gas discharged from the convection type crude gas cooler 27 (37) and introduced into the filter 17 of the gas purifying facility 41 is dedusted by the filter 17 and then passed through the heat exchanger 19 to the desulfurization tower. It is sent to 12 and desulfurized to become a purified gas. The purified gas discharged from the desulfurization tower 12 is
From the top through the saturator 18 to the gas turbine 8. When the gas purification equipment 41 is of a dry type, the crude gas is desulfurized in a dry desulfurization tower to become a purified gas, which is sent to the gas turbine 8 via a filter.

【0024】ガスタービン8に送られた精製ガスは、燃
焼器8aで燃焼され、発電が行われる。このとき、空気
分離器38から酸素分離後の空気(窒素)を燃焼器8a
に送り、発電効率の向上を図ってもよい。
The purified gas sent to the gas turbine 8 is burned in a combustor 8a to generate power. At this time, the air (nitrogen) after oxygen separation from the air separator 38 is supplied to the combustor 8a.
To improve power generation efficiency.

【0025】ガスタービン8の燃焼器8aでの燃焼によ
り発生した排ガスは、排熱回収ボイラ31及び煙突32
を介して大気排出される。このとき、排熱回収ボイラ3
1で回収された排熱により、蒸気タービン9でさらに発
電が行われる。
The exhaust gas generated by the combustion in the combustor 8a of the gas turbine 8 is supplied to an exhaust heat recovery boiler 31 and a chimney 32.
Is released to the atmosphere through At this time, the heat recovery boiler 3
The steam turbine 9 further generates power by the exhaust heat recovered in 1.

【0026】[0026]

【発明が解決しようとする課題】さて、上述のような従
来のリターンフロー式対流型粗ガス冷却器においては、
その2つのタイプの各々が欠点を有していた。
In the conventional return-flow convection-type crude gas cooler as described above,
Each of the two types had drawbacks.

【0027】すなわち、先ず蒸発器及び節炭器が共に下
降流側の水冷壁に設置されているタイプのリターンフロ
ー式対流型粗ガス冷却器においては、その上昇流側のダ
クトが固形分により閉塞しやすいという問題があった。
That is, in a return-flow convection-type crude gas cooler in which both the evaporator and the economizer are installed on the water cooling wall on the downflow side, the duct on the upflow side is blocked by solids. There was a problem that it was easy to do.

【0028】又、このタイプの対流型粗ガス冷却器の場
合、対流型粗ガス冷却器内で最も高温となるその入口に
近い部分で伝熱による熱回収ができず、従って熱回収の
効率が悪いという問題があった。
In the case of this type of convective crude gas cooler, heat cannot be recovered by heat transfer at a portion near the inlet where the temperature is the highest in the convective coarse gas cooler. There was a problem of bad.

【0029】一方、蒸発器及び節炭器が共に上昇流側の
水冷壁に設置されているタイプのリターンフロー式対流
型粗ガス冷却器においては、蒸発器及び節炭器内の熱媒
の流れがガス流と並行流になるため伝熱効率が悪く、対
向流のタイプより伝熱面積を広く取る必要があるという
問題があった。
On the other hand, in a return flow type convective crude gas cooler of a type in which both the evaporator and the economizer are installed on the water cooling wall on the upflow side, the flow of the heat medium in the evaporator and the economizer is reduced. However, there is a problem that the heat transfer efficiency is poor because the gas flows in parallel with the gas flow, and the heat transfer area needs to be larger than that of the counter flow type.

【0030】又、このタイプの対流型粗ガス冷却器の場
合、節炭器内の熱媒がガス流と並行に流れる関係上、節
炭器内の熱媒の出口温度を対流型粗ガス冷却器出口の粗
ガスの温度より(ある程度)低い温度までしか昇温でき
ないという問題や、対流型粗ガス冷却器出口の粗ガス温
度が比較的高くなってしまうという問題があった。
In the case of this type of convective crude gas cooler, the outlet temperature of the heat medium in the economizer is reduced by the convective coarse gas cooling because the heat medium in the economizer flows in parallel with the gas flow. There is a problem that the temperature can be raised only to a temperature (to some extent) lower than the temperature of the crude gas at the outlet of the vessel, and that the temperature of the crude gas at the outlet of the convective crude gas cooler becomes relatively high.

【0031】そこで、本発明の目的は、ダクトの閉塞を
防止できると共に熱回収の効率が高く、伝熱管の伝熱面
積も節減できるリターンフロー式対流型粗ガス冷却器を
提供することである。
Accordingly, an object of the present invention is to provide a return-flow convection-type crude gas cooler that can prevent blockage of a duct, increase the efficiency of heat recovery, and reduce the heat transfer area of a heat transfer tube.

【0032】[0032]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、石炭等の燃料をガス化した粗ガス
を蒸発器及び節炭器に接触させ伝熱によりガス化熱を回
収する対流型粗ガス冷却器において、冷却器本体を粗ガ
スが導入されて上昇する上昇流側水冷壁部分と粗ガスが
下降して排出される下降流側水冷壁部分とに区分し、上
記上昇流側水冷壁部分に蒸発器を設けると共に上記下降
流側水冷壁部分に節炭器を設けて構成される。
In order to achieve the above object, the invention of claim 1 is to provide a crude gas obtained by gasifying a fuel such as coal into contact with an evaporator and a economizer to reduce the heat of gasification by heat transfer. In the convection type crude gas cooler to be recovered, the cooler body is divided into a rising flow side water cooling wall part in which the crude gas is introduced and rising and a descending flow side water cooling wall part in which the crude gas descends and is discharged. An evaporator is provided on the upflow-side water cooling wall, and a economizer is provided on the downflow-side water cooling wall.

【0033】請求項2の発明は、上記節炭器と上記蒸発
管とを上記冷却器本体内でなるべく軸方向に重なり合う
ように上下に配置して構成される。
According to a second aspect of the present invention, the economizer and the evaporator pipe are arranged vertically so as to overlap in the cooler body as much as possible in the axial direction.

【0034】[0034]

【発明の実施の形態】本発明は、石炭等の燃料をガス化
炉でガス化して高温の粗ガスを発生させ、これを発電等
に利用する石炭ガス化複合発電システム(IGCC: Integr
ated Coal Gasification Combined Cycle ,図2参照)
における改良されたリターンフロー式対流型粗ガス冷却
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated coal gasification combined cycle system (IGCC: Integr.) In which a fuel such as coal is gasified in a gasifier to generate a high-temperature crude gas which is used for power generation and the like.
ated Coal Gasification Combined Cycle, see Fig. 2)
The present invention relates to an improved return flow type convection type crude gas cooler.

【0035】図2に、本発明のリターンフロー式対流型
粗ガス冷却器7を組み込んだ石炭ガス化複合発電システ
ム50が示されている。尚、石炭ガス複合発電システム
50において、対流型粗ガス冷却器7以外の構成要素
は、図4に示される従来の石炭ガス化複合発電システム
60のそれと同一である。
FIG. 2 shows an integrated coal gasification combined cycle system 50 incorporating the return-flow convection crude gas cooler 7 of the present invention. Components other than the convective crude gas cooler 7 in the integrated coal gas combined cycle system 50 are the same as those of the conventional combined coal gasification combined cycle system 60 shown in FIG.

【0036】つまり、図2に示される石炭ガス化複合発
電システム50は、テキサコ(Texaco)法の石炭ガス化
設備51を有する石炭ガス化複合発電システムであり、
この石炭ガス化設備51において、粗ガス冷却器は、図
示されるように輻射型粗ガス冷却器6と対流型粗ガス冷
却器7とから構成され、ガス化炉5の下流側にこれらの
輻射型粗ガス冷却器6,対流型粗ガス冷却器7が順に接
続される。
That is, the integrated coal gasification combined cycle system 50 shown in FIG. 2 is a combined coal gasification combined cycle system having a Texaco method coal gasification facility 51,
In this coal gasification facility 51, the crude gas cooler is composed of a radiation type crude gas cooler 6 and a convection type crude gas cooler 7, as shown in the figure. The crude gas cooler 6 and the convective crude gas cooler 7 are connected in order.

【0037】石炭ガス化設備51(テキサコ型)におい
て、その輻射型粗ガス冷却器6の粗ガス出口6aは、輻
射型粗ガス冷却器6の下部に設置される。そして、この
粗ガス出口6aの下流側に、本発明のリターンフロー式
対流型粗ガス冷却器7が図示されるように接続される。
In the coal gasification facility 51 (Texaco type), the crude gas outlet 6 a of the radiant crude gas cooler 6 is installed below the radiant crude gas cooler 6. The return flow type convection type crude gas cooler 7 of the present invention is connected to the downstream side of the crude gas outlet 6a as shown.

【0038】尚、図1は、この本発明のリターンフロー
式対流型粗ガス冷却器7を、その上流側に接続された輻
射型粗ガス冷却器6及びガス化炉5と共に拡大して示し
た略側断面図である。
FIG. 1 is an enlarged view of the return-flow convection-type crude gas cooler 7 of the present invention, together with a radiation-type crude gas cooler 6 and a gasification furnace 5 connected upstream thereof. It is an approximate side sectional view.

【0039】図1に示されるように、本発明のリターン
フロー式対流型粗ガス冷却器7は、圧力容器としての冷
却器本体2を有する。冷却器本体2の下部には粗ガス導
入口2a及び粗ガス排出口2bが形成され、一方、冷却
器本体2の内部には、上昇流側水冷壁5a及び下降流側
水冷壁5bが図示されるように形成されて、粗ガス導入
口2aから冷却器本体2内に導入された粗ガスが、上昇
流側水冷壁5aを上昇後、冷却器本体2の頂部付近でリ
ターンして下降流側水冷壁5bを下降して粗ガス排出口
2bから排出されるように構成されている。
As shown in FIG. 1, the return-flow convective crude gas cooler 7 of the present invention has a cooler main body 2 as a pressure vessel. A coarse gas inlet 2a and a coarse gas outlet 2b are formed in the lower portion of the cooler main body 2, while an upflow side water cooling wall 5a and a downward flow side water cooling wall 5b are shown inside the cooler main body 2. The coarse gas introduced into the cooler main body 2 from the coarse gas inlet 2a rises up the upflow-side water cooling wall 5a and returns near the top of the cooler main body 2 to descend on the downflow side. It is configured to descend from the water cooling wall 5b and be discharged from the crude gas discharge port 2b.

【0040】上昇流側水冷壁5a内には、伝熱管として
の蒸発器3が図示されるように設置され、一方、下降流
側水冷壁5b内には、伝熱管としての節炭器4が図示さ
れるように接続される。
The evaporator 3 as a heat transfer tube is installed in the upflow side water cooling wall 5a as shown in the figure, while the economizer 4 as the heat transfer tube is installed in the downflow side water cooling wall 5b. Connected as shown.

【0041】尚、上昇流側水冷壁5a内の蒸発器3を収
容する部分は、蒸発器3を収容するのに充分なだけ太く
構成され、同様に、下降流側水冷壁5b内の節炭器4を
収容する部分は、節炭器4を収容するのに充分なだけ太
く構成される。一方、伝熱管を収容しない上昇流側水冷
壁5aの上部及び下降流側水冷壁5bの下部は比較的細
く構成され、各水冷壁5a,5bの比較的太い部分と比
較的細い部分とを垂直方向に互いに噛み合わせて(図1
参照)、冷却器本体2全体がなるべく細くなるように構
成されている。
The portion for housing the evaporator 3 in the upflow-side water cooling wall 5a is configured to be thick enough to accommodate the evaporator 3, and similarly, the coal saving in the downflow-side water cooling wall 5b. The part accommodating the vessel 4 is configured to be thick enough to accommodate the economizer 4. On the other hand, the upper part of the ascending water cooling wall 5a that does not accommodate the heat transfer tubes and the lower part of the descending water cooling wall 5b are relatively thin, and the relatively thick and relatively thin parts of each of the water cooling walls 5a and 5b are vertically formed. In the direction (Fig. 1
), So that the entire cooler main body 2 is made as thin as possible.

【0042】対流型粗ガス冷却器7の下流側には、図2
に示されるようにガス精製設備41が接続され、ガス精
製設備41の下流側には複合発電設備42が設けられ
る。又、空気から酸素を分離する空気分離設備43が、
石炭ガス化設備51及び複合発電設備42に接続して図
示されるように設けられる。
At the downstream side of the convection type crude gas cooler 7, FIG.
, A gas purification facility 41 is connected, and a combined power generation facility 42 is provided downstream of the gas purification facility 41. Further, the air separation equipment 43 for separating oxygen from air is
It is connected to the coal gasification facility 51 and the combined cycle power generation facility 42 and provided as shown.

【0043】ガス精製設備41は、湿式の場合、例えば
図2に示されるようにフィルタ17,サチュレータ1
8,熱交換器19及び脱硫塔12から主に構成され、フ
ィルタ17が対流型粗ガス冷却器7の下流側に接続され
ると共に、ガス化炉5で生成された粗ガスがフィルタ1
7から熱交換器19及び脱硫塔12に導入された後、サ
チュレータ18を介して複合発電設備42のガスタービ
ン8(下記参照)に送られるように構成されている。
尚、ガス精製設備41を乾式脱硫塔,再生塔及びフィル
タ(いずれも図示されず)等を備えた乾式タイプに構成
してよいのは、勿論である。
In the case of a wet type, the gas purifying equipment 41 includes, for example, a filter 17 and a saturator 1 as shown in FIG.
8, a heat exchanger 19 and a desulfurization tower 12, a filter 17 is connected downstream of the convective crude gas cooler 7, and the crude gas generated in the gasifier 5
After being introduced into the heat exchanger 19 and the desulfurization tower 12 from the gas turbine 7, the gas is sent to the gas turbine 8 (see below) of the combined cycle power plant 42 via the saturator 18.
The gas purification equipment 41 may be of a dry type provided with a dry desulfurization tower, a regeneration tower, a filter (all not shown), and the like.

【0044】複合発電設備42は、ガスタービン8(そ
の燃焼器8a及びコンプレッサ29を含む),蒸気ター
ビン9,排熱回収ボイラ31等から構成される。ガスタ
ービン8は、上述のようにサチュレータ18の下流側に
接続され、ガスタービン8の下流側には排熱回収ボイラ
31及び蒸気タービン9が設置されて、ガスタービン2
8からの排ガスの余熱を排熱回収ボイラ31で回収して
蒸気タービン9を駆動するように構成されている。
The combined power generation facility 42 includes the gas turbine 8 (including the combustor 8a and the compressor 29), the steam turbine 9, the exhaust heat recovery boiler 31, and the like. The gas turbine 8 is connected to the downstream side of the saturator 18 as described above, and the exhaust heat recovery boiler 31 and the steam turbine 9 are installed downstream of the gas turbine 8.
The exhaust heat from the exhaust gas 8 is recovered by an exhaust heat recovery boiler 31 to drive the steam turbine 9.

【0045】排熱回収ボイラ31の下流側には、煙突3
2が接続される。
Downstream of the exhaust heat recovery boiler 31, a chimney 3
2 are connected.

【0046】空気分離設備43は、深冷法などにより空
気から高純度の酸素を分離する空気分離器38を有し、
空気分離器38は、空気導入ライン25によってガスタ
ービン8のコンプレッサ29の下流側に接続されると共
に、酸素供給ライン13を介してガス化炉5の上流側に
接続される。又、空気分離器38で酸素を分離した残り
の空気成分(主に窒素)をガスタービン8の燃焼器8a
あるいはガス精製設備41の再生塔(乾式の場合)に送
れるように、空気分離器38を燃焼器8aあるいは再生
塔に接続してよい。
The air separation equipment 43 has an air separator 38 for separating high-purity oxygen from air by a cryogenic method or the like.
The air separator 38 is connected to the downstream side of the compressor 29 of the gas turbine 8 by the air introduction line 25 and is connected to the upstream side of the gasification furnace 5 via the oxygen supply line 13. The remaining air component (mainly nitrogen) from which oxygen has been separated by the air separator 38 is converted into a combustor 8 a of the gas turbine 8.
Alternatively, the air separator 38 may be connected to the combustor 8a or the regeneration tower so that the air can be sent to the regeneration tower (in the case of a dry type) of the gas purification facility 41.

【0047】石炭塔の燃料がガス化設備51のバンカ1
4,湿式ミル15を介してスラリ化され、スラリ化され
た石炭(以下スラリと称する)は、スラリ貯槽タンク1
6を介してガス化炉5に導入される。ドライ燃料を用い
る場合は、ドライ燃料がガス化炉5に導入される。
The fuel of the coal tower is the bunker 1 of the gasification facility 51.
4. Coal slurried through the wet mill 15 and slurried (hereinafter referred to as slurry) is supplied to the slurry storage tank 1
It is introduced into the gasification furnace 5 through 6. When using a dry fuel, the dry fuel is introduced into the gasification furnace 5.

【0048】一方、空気分離設備43では、外気及び空
気導入ライン25を介してガスタービン8のコンプレッ
サ29から導入された空気から、深冷法等の方法により
高純度の酸素が分離される。分離された高純度の酸素
は、酸素供給ライン13を介してガス化炉5に供給され
る。酸素を分離された残りの空気成分(主に窒素)は、
ガスタービン8の燃焼器8aあるいはガス精製設備41
の再生塔に送られる。
On the other hand, in the air separation equipment 43, high-purity oxygen is separated from the outside air and the air introduced from the compressor 29 of the gas turbine 8 through the air introduction line 25 by a method such as a deep cooling method. The separated high-purity oxygen is supplied to the gasification furnace 5 via the oxygen supply line 13. The remaining air components (mainly nitrogen) from which oxygen has been separated
Combustor 8a of gas turbine 8 or gas purification facility 41
Sent to the regeneration tower.

【0049】ガス化炉5では、上述のように空気分離設
備43の空気分離器38から酸素供給ライン13を介し
て高純度の酸素が供給され、これによりスラリ(もしく
はドライ燃料)が部分酸化されると共にガス化して、こ
の結果、粗ガス(主にH2 ,CO,CO2 )が生成され
る。
In the gasification furnace 5, high-purity oxygen is supplied from the air separator 38 of the air separation equipment 43 via the oxygen supply line 13 as described above, whereby the slurry (or dry fuel) is partially oxidized. As a result, crude gas (mainly H 2 , CO, CO 2 ) is generated.

【0050】ガス化炉5で生成された粗ガスは、その
後、輻射型粗ガス冷却器6及び本発明の対流型粗ガス冷
却器7を介してガス精製設備41に送られる。このと
き、輻射型冷却器6においては主に輻射によって、対流
型粗ガス冷却器7においては主に伝熱によって粗ガスか
ら熱を回収する。
The crude gas generated in the gasification furnace 5 is then sent to the gas purification facility 41 via the radiant crude gas cooler 6 and the convective crude gas cooler 7 of the present invention. At this time, heat is recovered from the crude gas mainly by radiation in the radiation type cooler 6 and mainly by heat transfer in the convective coarse gas cooler 7.

【0051】すなわち、本発明のリターンフロー式対流
型粗ガス冷却器7においては、輻射型粗ガス冷却器6か
らの粗ガスが冷却器本体2の粗ガス導入口2a(図1参
照)を介して導入されると共に上昇流側水冷壁5a内を
上昇し、頂部付近でリターンして下降流側水冷壁5b内
を下降した後、粗ガス排出口2bを介してガス精製設備
41に送られる。粗ガスは、上昇流側水冷壁5a内を上
昇するとき蒸発器3に接触した後、下降流側水冷壁5b
内を下降するとき節炭器4に接触し、これにより粗ガス
のガス化熱が蒸発器3及び節炭器4に伝熱して、粗ガス
が冷却される。
That is, in the return flow type convection type crude gas cooler 7 of the present invention, the crude gas from the radiation type crude gas cooler 6 passes through the crude gas inlet 2a of the cooler main body 2 (see FIG. 1). After being introduced and rising inside the rising water cooling wall 5a, returning near the top and descending inside the falling water cooling wall 5b, it is sent to the gas purification facility 41 via the crude gas outlet 2b. The crude gas comes into contact with the evaporator 3 when ascending in the ascending flow side water cooling wall 5a, and then descends as the descending flow side water cooling wall 5b.
When descending inside, it comes into contact with the economizer 4, whereby the heat of gasification of the crude gas is transferred to the evaporator 3 and the economizer 4, thereby cooling the crude gas.

【0052】このとき、蒸発器3内では熱媒が下方から
上方に(すなわち粗ガスと並行に)流れるが、蒸発器3
は上述のように粗ガス導入口2a(対流型粗ガス冷却器
7内で最も高温となる部分)付近に設置されているた
め、高い熱回収効率を達成できる。その上、粗ガスの流
速が蒸発器3内で遅くなって固形分が落下し易くなるの
で、上昇流側水冷壁5aの細くなっている部分において
固形分による閉塞が発生しにくい。つまり、上述の従来
の対流型粗ガス冷却器27における欠点がほぼ克服され
る。
At this time, in the evaporator 3, the heat medium flows upward from below (ie, in parallel with the crude gas).
Is installed near the coarse gas inlet 2a (the highest temperature portion in the convection type coarse gas cooler 7) as described above, so that high heat recovery efficiency can be achieved. In addition, since the flow rate of the crude gas is slowed down in the evaporator 3 and the solid content is easily dropped, the solid portion is less likely to be clogged in the narrow portion of the upflow side water cooling wall 5a. In other words, the above-mentioned disadvantages of the conventional convective crude gas cooler 27 are almost overcome.

【0053】一方、節炭器4内では熱媒の流れる方向が
粗ガスの流方向と反対、すなわち対向流になるため伝率
効率が良く、従って節炭器4の伝熱面積を比較的小さく
できる。又、対向流であるため、節炭器4内の熱媒の出
口温度を比較的高くできると共に、対流型粗ガス冷却器
出口の粗ガス温度を比較的低くでき、並行流の場合より
高い効率で熱回収を達成できる。つまり、上述の対流型
粗ガス冷却器37における欠点がほぼ克服される。
On the other hand, in the economizer 4, the flow direction of the heat medium is opposite to the flow direction of the crude gas, that is, the flow direction is opposite, so that the efficiency of conductivity is good. Therefore, the heat transfer area of the economizer 4 is relatively small. it can. In addition, because of the counter flow, the outlet temperature of the heat medium in the economizer 4 can be relatively high, and the crude gas temperature at the convection type coarse gas cooler outlet can be relatively low. To achieve heat recovery. That is, the above-described disadvantage of the convective crude gas cooler 37 is almost overcome.

【0054】対流型粗ガス冷却器7から排出されてガス
精製設備41のフィルタ17に導入されたガス化ガス
は、フィルタ17で脱塵された後、熱交換器19を介し
て脱硫塔12に送られて脱硫され、精製ガスになる。脱
硫塔12から排出された精製ガスは、脱硫塔12の頂部
からサチュレータ18を介してガスタービン8に送られ
る。ガス精製設備41が乾式の場合は、燃焼ガスは乾式
脱硫塔で脱硫されて精製ガスとなり、フィルタを介して
ガスタービン8に送られる。
The gasified gas discharged from the convective crude gas cooler 7 and introduced into the filter 17 of the gas purification facility 41 is subjected to dust removal by the filter 17 and then to the desulfurization tower 12 via the heat exchanger 19. It is sent and desulfurized to become a purified gas. The purified gas discharged from the desulfurization tower 12 is sent from the top of the desulfurization tower 12 to the gas turbine 8 via the saturator 18. When the gas purification equipment 41 is of a dry type, the combustion gas is desulfurized in a dry desulfurization tower to become a purified gas, which is sent to the gas turbine 8 via a filter.

【0055】ガスタービン8に送られた精製ガスは、燃
焼器8aで燃焼され、発電が行われる。このとき、空気
分離器38から酸素分離後の空気(窒素)を燃焼器8a
に送り、発電効率の向上を図ってもよい。
The purified gas sent to the gas turbine 8 is burned in a combustor 8a to generate power. At this time, the air (nitrogen) after oxygen separation from the air separator 38 is supplied to the combustor 8a.
To improve power generation efficiency.

【0056】ガスタービン8の燃焼器8aでの燃焼によ
り発生した排ガスは、排熱回収ボイラ31及び煙突32
を介して大気排出される。このとき、排熱回収ボイラ3
1で回収された排熱により、蒸気タービン9でさらに発
電が行われる。
The exhaust gas generated by the combustion in the combustor 8 a of the gas turbine 8 is supplied to an exhaust heat recovery boiler 31 and a chimney 32.
Is released to the atmosphere through At this time, the heat recovery boiler 3
The steam turbine 9 further generates power by the exhaust heat recovered in 1.

【0057】以上、要するに、本発明によれば、リター
ンフロー式対流型粗ガス冷却器内部の上昇流側水冷壁の
下部(ガス導入口付近)に蒸発器を設置することによ
り、粗ガスの流速が蒸発器内で遅くなって固形分が落下
し易くなり、ゆえに上昇流側水冷壁の閉塞を防止でき
る。又、蒸発器による熱回収を、対流型粗ガス冷却器内
の最も高温となる部分(ガス導入口付近)で効果的に行
うことができる。
In summary, according to the present invention, the flow rate of the crude gas is reduced by installing an evaporator below the rising water cooling wall (near the gas inlet) inside the return-flow convective crude gas cooler. Is slowed down in the evaporator, so that the solid content easily falls, and therefore, it is possible to prevent the upflow side water cooling wall from being blocked. Further, the heat recovery by the evaporator can be effectively performed in the highest temperature portion (near the gas inlet) in the convective crude gas cooler.

【0058】又、リターンフロー式対流型粗ガス冷却器
内部の下降流側水冷壁の上部に節炭器を設置することに
より、節炭器内で熱媒の流れる方向が粗ガスの流方向と
反対、すなわち対向流になって伝率効率が良くなり、従
って節炭器の伝熱面積を比較的小さくできる。又、対向
流であるため、節炭器内の熱媒の出口温度を比較的高く
できると共に、対流型粗ガス冷却器出口の粗ガス温度を
比較的低くでき、並行流の場合より高い効率で熱回収を
達成できる。
By installing the economizer above the descending water cooling wall inside the return-flow convection-type crude gas cooler, the flow direction of the heat medium in the economizer is the same as that of the coarse gas. On the contrary, the flow efficiency is improved due to the counter flow, and the heat transfer area of the economizer can be relatively small. In addition, because of the counterflow, the outlet temperature of the heat medium in the economizer can be relatively high, and the crude gas temperature at the convective crude gas cooler outlet can be relatively low. Heat recovery can be achieved.

【0059】つまり、本発明によれば、対流型粗ガス冷
却の水冷壁の閉塞を防止できると共に、蒸発器及び節炭
器の両方において高い効率で熱回収でき、さらに、節炭
器の伝熱面積を節減できる。
That is, according to the present invention, it is possible to prevent the water cooling wall of the convection type coarse gas cooling from being clogged, to recover heat with high efficiency in both the evaporator and the economizer, and to further reduce the heat transfer of the economizer. The area can be saved.

【0060】又、上昇流側水冷壁,下降流側水冷壁各々
の比較的太い部分と比較的細い部分とを垂直方向に互い
に噛み合わせることにより、冷却器本体全体を従来のも
のと同程度にコンパクトに構成できる。
Further, the relatively thick portion and the relatively narrow portion of each of the upflow-side water cooling wall and the downflow-side water cooling wall are engaged with each other in the vertical direction, so that the entire cooler main body is almost the same as the conventional one. It can be made compact.

【0061】[0061]

【発明の効果】以上、要するに、本発明のリターンフロ
ー式対流型粗ガス冷却器によれば、以下の優れた効果が
もたらされる。
As described above, according to the return flow type convection type crude gas cooler of the present invention, the following excellent effects can be obtained.

【0062】(1)リターンフロー式対流型粗ガス冷却
器内部の上昇流側水冷壁の下部(ガス導入口付近)に蒸
発器を設置することにより、粗ガスの流速が蒸発器内で
遅くなって固形分が落下し易くなり、ゆえに上昇流側水
冷壁の閉塞を防止できる。又、蒸発器による熱回収を、
対流型粗ガス冷却器内の最も高温となる部分(ガス導入
口付近)で効果的に行うことができる。
(1) By installing an evaporator below the upflow water cooling wall (near the gas inlet) inside the return-flow convection-type crude gas cooler, the flow rate of the crude gas is reduced in the evaporator. This makes it easier for the solids to fall, thereby preventing the upward cooling water cooling wall from being clogged. Also, heat recovery by evaporator,
This can be effectively performed at the hottest part (near the gas inlet) in the convection type coarse gas cooler.

【0063】(2) 又、リターンフロー式対流型粗ガ
ス冷却器内部の下降流側水冷壁の上部に節炭器を設置す
ることにより、節炭器内で熱媒の流れる方向が粗ガスの
流方向と反対、すなわち対向流になって伝率効率が良く
なり、従って節炭器の伝熱面積を比較的小さくできる。
又、対向流であるため、節炭器内の熱媒の出口温度を比
較的高くできると共に、対流型粗ガス冷却器出口の粗ガ
ス温度を比較的低くでき、並行流の場合より高い効率で
熱回収を達成できる。
(2) By installing the economizer above the downflow water cooling wall inside the return-flow convection-type crude gas cooler, the direction of flow of the heat medium in the economizer is reduced. Opposite to the flow direction, that is, counter flow, the conductivity efficiency is improved, so that the heat transfer area of the economizer can be relatively small.
In addition, because of the counterflow, the outlet temperature of the heat medium in the economizer can be relatively high, and the crude gas temperature at the convection type coarse gas cooler outlet can be relatively low, with higher efficiency than in the case of parallel flow. Heat recovery can be achieved.

【0064】(3)上昇流側水冷壁,下降流側水冷壁各
々の比較的太い部分と比較的細い部分とを垂直方向に互
いに噛み合わせることにより、冷却器本体全体を従来の
ものと同程度の大きさにコンパクトに構成できる。
(3) The relatively thick portion and the relatively thin portion of each of the upflow-side water-cooling wall and the downflow-side water-cooling wall are engaged with each other in the vertical direction, so that the entire cooler body is comparable to the conventional one. It can be made compact in size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリターンフロー式対流型粗ガス冷却器
及びこれに付随の輻射型粗ガス冷却器の略側断面図であ
る。
FIG. 1 is a schematic side sectional view of a return-flow type convective crude gas cooler of the present invention and a radiation type crude gas cooler attached thereto.

【図2】本発明のリターンフロー式対流型粗ガス冷却器
を含む石炭ガス化複合発電装置の概略図である。
FIG. 2 is a schematic diagram of an integrated coal gasification combined cycle power plant including a return flow type convective crude gas cooler of the present invention.

【図3A】従来のリターンフロー式対流型粗ガス冷却器
の略側断面図である。
FIG. 3A is a schematic side sectional view of a conventional return-flow convection-type crude gas cooler.

【図3B】従来のリターンフロー式対流型粗ガス冷却器
の別の略側断面図である。
FIG. 3B is another schematic side sectional view of a conventional return-flow convection-type crude gas cooler.

【図4】従来のリターンフロー式対流型粗ガス冷却器を
含む石炭ガス化複合発電装置の概略図である。
FIG. 4 is a schematic view of a conventional integrated coal gasification combined cycle power plant including a return-flow convection crude gas cooler.

【符号の説明】[Explanation of symbols]

2 (対流型粗ガス)冷却器本体 3 蒸発器 4 節炭器 5a 上昇流側水冷壁部分 5b 下降流側水冷壁部分 7 対流型粗ガス冷却器 2 (convective type crude gas) cooler body 3 evaporator 4 economizer 5a ascending water cooling wall 5b descending water cooling wall 7 convective crude gas cooler

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石炭等の燃料をガス化した粗ガスを蒸発
器及び節炭器に接触させ伝熱によりガス化熱を回収する
対流型粗ガス冷却器において、冷却器本体を粗ガスが導
入されて上昇する上昇流側水冷壁部分と粗ガスが下降し
て排出される下降流側水冷壁部分とに区分し、上記上昇
流側水冷壁部分に蒸発器を設けると共に上記下降流側水
冷壁部分に節炭器を設けたことを特徴とするリターンフ
ロー式対流型粗ガス冷却器。
1. A convection-type crude gas cooler in which a crude gas obtained by gasifying a fuel such as coal is brought into contact with an evaporator and a economizer to recover heat of gasification by heat transfer. The rising water flow cooling wall portion is divided into a rising flow water cooling wall portion and a descending flow water cooling wall portion from which the crude gas descends and is discharged. An evaporator is provided in the rising flow water cooling wall portion and the downflow water cooling wall portion is provided. A return-flow convection-type crude gas cooler characterized in that a part is provided with a economizer.
【請求項2】 上記節炭器と上記蒸発管とを上記冷却器
本体内でなるべく軸方向に重なり合うように上下に配置
した請求項1記載のリターンフロー式対流型粗ガス冷却
器。
2. The return-flow convection-type crude gas cooler according to claim 1, wherein the economizer and the evaporator tube are arranged vertically so as to overlap in the axial direction of the cooler body as much as possible.
JP9178446A 1997-07-03 1997-07-03 Return flow type convection crude gas cooler Pending JPH1122905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9178446A JPH1122905A (en) 1997-07-03 1997-07-03 Return flow type convection crude gas cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9178446A JPH1122905A (en) 1997-07-03 1997-07-03 Return flow type convection crude gas cooler

Publications (1)

Publication Number Publication Date
JPH1122905A true JPH1122905A (en) 1999-01-26

Family

ID=16048671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9178446A Pending JPH1122905A (en) 1997-07-03 1997-07-03 Return flow type convection crude gas cooler

Country Status (1)

Country Link
JP (1) JPH1122905A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214712A (en) * 2005-01-07 2006-08-17 Mitsubishi Heavy Ind Ltd Pressurized hot gas cooler
US7803216B2 (en) 2005-12-28 2010-09-28 Mitsubishi Heavy Industries, Ltd. Pressurized high-temperature gas cooler
CN102384459A (en) * 2011-11-02 2012-03-21 苏州海陆重工股份有限公司 Waste heat boiler for preparing olefins from methanol
CN106895384A (en) * 2017-04-01 2017-06-27 安徽科达洁能股份有限公司 Residual neat recovering system
CN114395422A (en) * 2022-01-25 2022-04-26 哈尔滨工业大学 Water-cooled wall gasifier separately adopting natural circulation and forced circulation and cooling method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214712A (en) * 2005-01-07 2006-08-17 Mitsubishi Heavy Ind Ltd Pressurized hot gas cooler
JP4599291B2 (en) * 2005-01-07 2010-12-15 三菱重工業株式会社 Pressurized high temperature gas cooler
US7803216B2 (en) 2005-12-28 2010-09-28 Mitsubishi Heavy Industries, Ltd. Pressurized high-temperature gas cooler
CN102384459A (en) * 2011-11-02 2012-03-21 苏州海陆重工股份有限公司 Waste heat boiler for preparing olefins from methanol
CN106895384A (en) * 2017-04-01 2017-06-27 安徽科达洁能股份有限公司 Residual neat recovering system
CN114395422A (en) * 2022-01-25 2022-04-26 哈尔滨工业大学 Water-cooled wall gasifier separately adopting natural circulation and forced circulation and cooling method

Similar Documents

Publication Publication Date Title
US5265410A (en) Power generation system
JP4416661B2 (en) Boiler improvements with oxygen-enriched combustion for increased efficiency and reduced emissions
US8986403B2 (en) Gasification system flow damping
HU213648B (en) Partial oxidation process with production of power
KR20020026536A (en) Apparatus and method for cleaning acidic gas
EA032282B1 (en) Oxycombustion in a transport oxy-combustor
JP2744137B2 (en) Pressurized circulating fluidized bed boiler for supercritical steam
JP2009227704A (en) Gasification furnace structure of gasification equipment
CN201176445Y (en) Converter coal gas high-temperature exhaust dust device with bag
JPH1122905A (en) Return flow type convection crude gas cooler
AU2013237711B2 (en) Gasification system for carbon containing fuel
JP2008275290A (en) Exhaust heat recovery device
US5517818A (en) Gas generation apparatus
JP5818704B2 (en) Gasification furnace, gasification power plant
JP7086675B2 (en) Gasifier system
JP7286504B2 (en) Gasification facility and gasification combined cycle facility equipped with the same
JP2000328074A (en) Coal gasification system
JPH10298560A (en) Crude gas cooler
JPH10169965A (en) Exhaust gas and moisture separator for pressurized fluidized-bed boiler
JPH0333903B2 (en)
JP2001131564A (en) Crude gas cooler
Rao et al. Design intricacies of fire tube heat recovery boiler for large utility IGCC power plants
WO2019156064A1 (en) Furnace wall structure of wet bottom furnace, and wet bottom furnace
JP2001220587A (en) Coal gasification apparatus
JP3395010B2 (en) Gas bed gasifier