JPH11224833A - Manufacture of porous anode of solid electrolytic capacitor - Google Patents
Manufacture of porous anode of solid electrolytic capacitorInfo
- Publication number
- JPH11224833A JPH11224833A JP2573698A JP2573698A JPH11224833A JP H11224833 A JPH11224833 A JP H11224833A JP 2573698 A JP2573698 A JP 2573698A JP 2573698 A JP2573698 A JP 2573698A JP H11224833 A JPH11224833 A JP H11224833A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- binder
- porous anode
- granulated
- solid electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は固体電解コンデンサ
用多孔質陽極体の製造方法に関するものである。The present invention relates to a method for manufacturing a porous anode for a solid electrolytic capacitor.
【0002】[0002]
【従来の技術】一般に固体電解コンデンサはタンタル等
の弁作用金属からなる粉末を樟脳やアクリル系樹脂を用
いて混合造粒した後、弁作用金属からなる陽極導出線を
植設した状態で加圧成形することで成形体を形成し、か
つこの成形体を高温高真空中で焼結することにより多孔
質陽極体を形成し、その後この多孔質陽極体の表面に誘
電体酸化皮膜層、半導体層、カーボン層、銀ペイント層
を順次形成してコンデンサ素子を構成するようにしてい
るものである。2. Description of the Related Art In general, a solid electrolytic capacitor is formed by mixing and granulating a powder made of a valve metal such as tantalum using camphor or an acrylic resin, and then pressurizing a state in which an anode lead wire made of a valve metal is implanted. A molded body is formed by molding, and the molded body is sintered in a high temperature and high vacuum to form a porous anode body. Thereafter, a dielectric oxide film layer and a semiconductor layer are formed on the surface of the porous anode body. , A carbon layer and a silver paint layer are sequentially formed to form a capacitor element.
【0003】また、上記半導体層は誘電体酸化皮膜層を
形成した多孔質陽極体に固体電解質母液を含浸した後、
熱分解、重合等の方法によって形成され、この半導体層
の形成状態は固体電解質母液の多孔質陽極体への含浸性
に依存するため、多孔質陽極体の表面状態、特に表面の
空孔状態の影響が強い。すなわち、表面空孔径が大きい
ほど半導体層の形成状態は良い。そしてこの半導体層の
形成状態は、固体電解コンデンサの静電容量変化率、電
気抵抗特性に強く影響を与え、形成状態が悪いとこれら
の特性は著しく悪化することが知られている。In addition, the above-mentioned semiconductor layer is obtained by impregnating a porous anode body on which a dielectric oxide film layer is formed with a solid electrolyte mother liquor,
It is formed by a method such as thermal decomposition and polymerization.Since the state of formation of this semiconductor layer depends on the impregnation property of the solid electrolyte mother liquor into the porous anode body, the surface state of the porous anode body, especially the pore state of the surface, Strong influence. That is, the larger the surface pore diameter, the better the state of formation of the semiconductor layer. It is known that the state of formation of this semiconductor layer strongly affects the rate of change in capacitance and electric resistance characteristics of the solid electrolytic capacitor, and that if the state of formation is poor, these characteristics are significantly deteriorated.
【0004】最近、固体電解コンデンサの小形、大容量
化が進み、使用される弁作用金属粉末の高CV化(ただ
しCVは弁作用金属粉末の電気特性を示す指数で、誘電
体酸化皮膜の形成電圧V(V)とその時に発現する弁作
用金属粉末単位重量当たりの静電容量C(μF)の積)
が進んでいるが、弁作用金属粉末の高CV化は、構成す
る粉末粒子の微細化による粒子表面積拡大で実現されて
いるので、この高CV化は一方で成形性の悪化による多
孔質陽極体の表面空孔径の縮小、及び成形時の成形体表
面の目つぶれをもたらし、これが固体電解質母液の含浸
性の悪化をもたらすため、結果として固体電解コンデン
サの静電容量変化率、電気抵抗特性の悪化を引き起こし
ていた。In recent years, as the size and capacity of solid electrolytic capacitors have been increased, the CV of the valve metal powder used has been increased (however, CV is an index indicating the electrical characteristics of the valve metal powder, and the formation of a dielectric oxide film is not required). The product of the voltage V (V) and the capacitance C (μF) per unit weight of the valve metal powder developed at that time)
However, the higher CV of the valve action metal powder is realized by increasing the particle surface area due to the finer powder particles constituting the valve action metal. Of the surface pores of the solid electrolytic capacitor, and the surface of the molded product during the molding process are crushed, and this impairs the impregnation of the solid electrolyte mother liquor. Was causing.
【0005】また、この固体電解質母液の含浸性の悪化
を防ぐために、弁作用金属粉末を成形前に、バインダと
して使用する樟脳と弁作用金属粉末を混合造粒する際
に、そのバインダ混合割合を高めたり、予めバインダを
混合した後、改めて塊状アクリルバインダを混合する方
法や、あるいは成形体の密度を低く設定することによっ
て焼結体空孔径を確保することが行われてきた。[0005] In order to prevent the impregnation of the solid electrolyte mother liquor from deteriorating, the camphor used as a binder and the valve action metal powder are mixed and granulated before forming the valve action metal powder. It has been practiced to increase the pore size or mix the binder in advance and then mix the bulk acrylic binder again, or to secure the pore diameter of the sintered body by setting the density of the compact to be low.
【0006】[0006]
【発明が解決しようとする課題】しかしながら上記従来
の製造方法では、弁作用金属粉末粒子の微細化は成形性
の悪化を引き起こし、多孔質陽極体の表面空孔径の縮
小、及び成形時の成形体の表面の目つぶれをもたらし、
陽極酸化時の化成液の含浸、半導体固体電解質層の形成
時の固体電解質母液の多孔質陽極体への含浸が困難にな
り、結果として固体電解コンデンサの静電容量変化率、
電気抵抗特性の悪化を引き起こしていた。そこで、上記
従来の技術で示したように、固体電解質母液の含浸性の
悪化を防ぐための焼結体空孔を確保する手段として、成
形体の密度を低く設定することや、弁作用金属粉末をバ
インダと混合造粒する際にそのバインダ混合割合を高め
たり、粒径調整の容易なアクリル樹脂等の非昇華性バイ
ンダを顆粒状にして添加する方法が行われているが、こ
れらの方法は電極体素子強度の低下をもたらすために固
体電解コンデンサの漏れ電流特性、及び信頼性の低下を
引き起こすという欠点があった。また、アクリルバイン
ダ等の非昇華性バインダを使用することは、真空焼結中
においては脱バインダが容易ではなく、残留する炭素の
影響で固体電解コンデンサの漏れ電流特性が悪化すると
いう問題点もあった。However, in the above-mentioned conventional manufacturing method, the miniaturization of the valve action metal powder particles causes deterioration of the moldability, the reduction of the surface pore diameter of the porous anode body, and the compact at the time of molding. Causing surface blindness,
Impregnation of the chemical solution during anodic oxidation, impregnation of the porous anode body with the solid electrolyte mother liquor during formation of the semiconductor solid electrolyte layer becomes difficult, and as a result, the capacitance change rate of the solid electrolytic capacitor,
This caused deterioration of the electric resistance characteristics. Therefore, as shown in the above prior art, as a means for securing pores of the sintered body to prevent impairment of the impregnation of the solid electrolyte mother liquor, it is possible to set the density of the compact to be low, or to use a valve metal powder. When mixing and granulating with a binder, a method of increasing the binder mixing ratio or adding a non-sublimable binder such as an acrylic resin whose particle size is easily adjusted in a granular form is performed. There is a disadvantage in that the strength of the electrode element is reduced, which causes a reduction in the leakage current characteristics and reliability of the solid electrolytic capacitor. In addition, the use of a non-sublimable binder such as an acrylic binder has a problem that the binder is not easily removed during vacuum sintering, and the leakage current characteristics of the solid electrolytic capacitor are deteriorated due to the influence of the remaining carbon. Was.
【0007】本発明は上記従来の問題点を解決するもの
で、静電容量変化率、電気抵抗特性が極めて優れ、かつ
漏れ電流の劣化もない固体電解コンデンサを得ることが
できる固体電解コンデンサ用多孔質陽極体の製造方法を
提供することを目的とするものである。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems. A porous electrolytic capacitor for a solid electrolytic capacitor capable of obtaining a solid electrolytic capacitor having an extremely excellent capacitance change rate and electric resistance characteristics and having no deterioration in leakage current. It is an object of the present invention to provide a method for manufacturing a high quality anode body.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に本発明の固体電解コンデンサ用多孔質陽極体の製造方
法は、成形前の弁作用金属粉末の造粒において混合する
バインダとして、樟脳と塊状昇華性シクロドデカンの混
合物を使用するようにしたもので、この製造方法によれ
ば焼結体の表面に大きな空孔径を確保することができる
ので、固体電解質形成母液を多孔質陽極体の内部に容易
に含浸させることができ、コンデンサ静電容量、電気抵
抗特性が極めて優れた固体電解コンデンサを得ることが
できるものである。In order to solve the above-mentioned problems, a method for producing a porous anode body for a solid electrolytic capacitor according to the present invention is characterized in that camphor is used as a binder to be mixed in granulation of valve metal powder before molding. A mixture of massive sublimable cyclododecane is used. According to this manufacturing method, a large pore diameter can be secured on the surface of the sintered body. Thus, a solid electrolytic capacitor having extremely excellent capacitor capacitance and electric resistance characteristics can be obtained.
【0009】[0009]
【発明の実施の形態】本発明の請求項1に記載の発明
は、弁作用金属粉末をバインダと混合して造粒した後、
弁作用金属からなる陽極導出線を植設した状態で加圧成
形して成形体を形成し、この成形体を高温高真空中で焼
結することにより固体電解コンデンサ用多孔質陽極体を
製造する際に、上記弁作用金属粉末と混合するバインダ
として、樟脳および塊状昇華性シクロドデカンの混合物
を用いるようにしたものであり、この製造方法により、
成形時において造粒粉末中に塊状昇華性シクロドデカン
のバインダが存在するために高密度で成形をしても造粒
粒子間の間隙が多く残留し、かつ目つぶれも少なく、し
かもこの造粒粒子間隙は焼結後に多孔質陽極体の空孔と
なるため、焼結体の表面空孔径の大きな多孔質陽極体を
得ることができ、この結果、陽極酸化時の化成液の含
浸、半導体固体電解質層の形成時の固体電解質母液の多
孔質陽極体への含浸が容易となり、コンデンサ静電容
量、電気抵抗特性の向上を可能にすることができるとい
う作用を有する。BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is characterized in that valve action metal powder is mixed with a binder and granulated,
A molded body is formed by pressure molding with the anode lead wire made of a valve action metal implanted, and the molded body is sintered at high temperature and high vacuum to produce a porous anode body for a solid electrolytic capacitor. At this time, as a binder to be mixed with the valve action metal powder, a mixture of camphor and massive sublimable cyclododecane is used, and according to this production method,
Due to the presence of the aggregated sublimable cyclododecane binder in the granulated powder during molding, a large amount of gaps between the granulated particles remain even when the molding is performed at a high density, and there is little blindness. The pores become pores of the porous anode body after sintering, so that a porous anode body having a large surface pore diameter of the sintered body can be obtained. As a result, impregnation with a chemical solution during anodic oxidation, semiconductor solid electrolyte It has an effect that the porous anode body can be easily impregnated with the solid electrolyte mother liquor at the time of forming the layer, and the capacitor capacitance and electric resistance characteristics can be improved.
【0010】請求項2に記載の発明は、請求項1に記載
の発明において、弁作用金属がタンタルを主成分とした
ものであり、請求項1に記載の発明による作用と同様の
作用を有する。[0010] According to a second aspect of the present invention, in the first aspect of the invention, the valve action metal has tantalum as a main component, and has the same operation as that of the first aspect of the invention. .
【0011】次に本発明の具体的な実施の形態につい
て、比較例とともに説明する。 (実施の形態)以下、本発明の一実施の形態について、
タンタル固体電解コンデンサを例として説明する。Next, specific embodiments of the present invention will be described together with comparative examples. (Embodiment) Hereinafter, an embodiment of the present invention will be described.
A description will be given of a tantalum solid electrolytic capacitor as an example.
【0012】まず、タンタル粉末(50000CV)と
平均径0.1mmの塊状昇華性シクロドデカンを、樟脳を
溶解したアセトン溶液に入れて混合、混練した後、常温
にて乾燥して造粒を行った。続いてこの造粒粉末150
mgをタンタル線からなる陽極リードを植設した状態で、
成形体密度6.0、φ3.0×4.0mmの円柱形に加圧
成形することによって成形体を形成し、さらにこの成形
体を焼結温度1400度、真空度が10-3Paの真空中
において20分間焼結を行うことで多孔質陽極体を作成
した。First, tantalum powder (50000 CV) and bulk sublimable cyclododecane having an average diameter of 0.1 mm were mixed and kneaded in an acetone solution in which camphor was dissolved, and then dried at room temperature to perform granulation. . Subsequently, the granulated powder 150
mg with the anode lead made of tantalum wire implanted,
A compact is formed by pressure molding into a column having a compact density of 6.0 and a diameter of 3.0 × 4.0 mm to form a compact. The compact is further sintered at a sintering temperature of 1400 ° C. and a vacuum degree of 10 −3 Pa. By sintering in the inside for 20 minutes, a porous anode body was prepared.
【0013】(比較例1)比較例1として、タンタル粉
末(50000CV)を樟脳を溶解したアセトン溶液に
入れて混合、混練した後、常温にて乾燥して造粒を行っ
た。続いてこの造粒粉末150mgをタンタル線からなる
陽極リードを植設した状態で、成形体密度6.0、φ
3.0×4.0mmの円柱形に加圧成形することによって
成形体を形成し、さらにこの成形体を焼結温度1400
度、真空度が10-3Paの真空中において20分間焼結
を行うことで多孔質陽極体を作成した。Comparative Example 1 As Comparative Example 1, tantalum powder (50000 CV) was put in an acetone solution in which camphor was dissolved, mixed, kneaded, and dried at normal temperature to perform granulation. Subsequently, 150 mg of this granulated powder was implanted with an anode lead made of tantalum wire, and the compact density was 6.0, φ
A compact was formed by pressure molding into a 3.0 × 4.0 mm cylindrical shape.
The sintering was performed for 20 minutes in a vacuum having a degree of vacuum of 10 −3 Pa to produce a porous anode body.
【0014】(比較例2)比較例2として、タンタル粉
末(50000CV)を樟脳を溶解したアセトン溶液に
入れて混合した後、粒径0.1mmのメタクリル酸イソブ
チルエステル重合体を混合し混練し、その後常温にて乾
燥して造粒を行った。続いて、この造粒粉末150mgを
タンタル線からなる陽極リードを植設した状態で、成形
体密度6.0、φ3.0×4.0mmの円柱形に加圧成形
することによって成形体を形成し、さらにこの成形体を
焼結温度1400度、真空度が10-3Paの真空中にお
いて20分間焼結を行うことで多孔質陽極体を作成し
た。Comparative Example 2 As Comparative Example 2, tantalum powder (50000 CV) was put into an acetone solution in which camphor was dissolved and mixed, and then a 0.1 mm particle size isobutyl methacrylate polymer was mixed and kneaded. Thereafter, the mixture was dried at normal temperature and granulated. Subsequently, a compact is formed by pressing 150 mg of the granulated powder into a cylindrical shape having a compact density of 6.0 and a diameter of 3.0 × 4.0 mm with an anode lead made of tantalum wire implanted. The molded body was sintered in a vacuum at a sintering temperature of 1400 ° C. and a degree of vacuum of 10 −3 Pa for 20 minutes to produce a porous anode body.
【0015】[0015]
【表1】 [Table 1]
【0016】(表1)は、本発明の実施の形態と比較例
1,2で得られたそれぞれの多孔質陽極体の表面最大空
孔径と、それぞれの多孔質陽極体に0.5wt%のリン
酸水溶液中で50V、2時間の陽極酸化を実施して誘電
体酸化皮膜を形成した後、この誘電体酸化皮膜を形成し
た多孔質陽極体に0.2wt%のリン酸水溶液中で35
Vの電圧を印加して、2分間充電した後の漏れ電流を測
定した結果を示したものである。Table 1 shows the maximum pore diameter on the surface of each porous anode body obtained in the embodiment of the present invention and Comparative Examples 1 and 2, and 0.5 wt% of each porous anode body. After anodic oxidation was performed at 50 V for 2 hours in a phosphoric acid aqueous solution to form a dielectric oxide film, the porous anode body having the dielectric oxide film formed thereon was immersed in a 0.2 wt% aqueous phosphoric acid solution.
It shows the result of measuring the leakage current after charging for 2 minutes by applying a voltage of V.
【0017】(表1)から明らかなように、多孔質陽極
体の表面最大空孔径は比較例1では1.0μm以下であ
ったが、本実施の形態においては1.5μm以上を確保
し、本発明のバインダを使用すると最大空孔径が大きく
なることを示す。かつ、本発明で使用のバインダは昇華
性であるため、同様の効果をもたらす比較例2のアクリ
ルバインダで見られるような漏れ電流の増大も見られな
いものである。As is clear from Table 1, the maximum pore diameter on the surface of the porous anode body was 1.0 μm or less in Comparative Example 1, but was 1.5 μm or more in the present embodiment. It is shown that the use of the binder of the present invention increases the maximum pore diameter. In addition, since the binder used in the present invention is sublimable, an increase in leakage current as seen in the acrylic binder of Comparative Example 2, which has the same effect, is not observed.
【0018】次に、本発明の実施の形態と比較例1で得
られた多孔質陽極体について燐酸液中で20Vの化成を
実施して誘電体皮膜を形成した後、硝酸マンガンの含
浸、熱分解により二酸化マンガン半導体層、カーボン
層、銀電極層を順次形成してコンデンサ素子を作成した
後、外部引き出し用の陰極リードおよび陽極リードを引
き出し、その後、樹脂外装を施してタンタル固体電解コ
ンデンサを作成した。Next, the porous anode body obtained in the embodiment of the present invention and Comparative Example 1 was subjected to chemical conversion at 20 V in a phosphoric acid solution to form a dielectric film, which was then impregnated with manganese nitrate and heated. A manganese dioxide semiconductor layer, a carbon layer, and a silver electrode layer are sequentially formed by decomposition to create a capacitor element.Then, a cathode lead and an anode lead for external lead-out are pulled out, and then a resin sheath is applied to make a tantalum solid electrolytic capacitor. did.
【0019】そして、これらのタンタル固体電解コンデ
ンサについて85度6V印加の高温負荷試験を実施し
た。この試験結果をtanδ特性について図1に、静電
容量変化率について図2に示す。A high-temperature load test was performed on these tantalum solid electrolytic capacitors by applying 85 ° C. and 6 V. The test results are shown in FIG. 1 for the tan δ characteristic, and FIG. 2 for the capacitance change rate.
【0020】図1、図2から明らかなように、本発明の
実施の形態のような製造方法で作成した多孔質陽極体を
使用したタンタル固体電解コンデンサは、比較例に比べ
て粒子間間隙が大きいために多孔質陽極体の表面の空孔
径が増大した結果、陰極層の形成が容易となり、初期t
anδ特性、静電容量変化率が比較例に比べて著しく良
好となったことが確認できた。As is clear from FIGS. 1 and 2, the tantalum solid electrolytic capacitor using the porous anode body manufactured by the manufacturing method according to the embodiment of the present invention has a smaller interparticle gap than the comparative example. Since the pore size is large, the pore diameter on the surface of the porous anode body is increased.
It was confirmed that the an δ characteristic and the rate of change in capacitance were significantly better than those of the comparative example.
【0021】なお、上記本発明の実施の形態において
は、コンデンサ素子を構成する多孔質陽極体として弁作
用金属であるタンタル金属粉末を成形焼結したものを用
いたものについて説明したが、アルミ、チタンのような
その他の弁作用金属を用いて多孔質陽極体を構成しても
上記本発明と同様の効果が得られるものである。In the above-described embodiment of the present invention, a case where a tantalum metal powder as a valve metal is formed and sintered as a porous anode body constituting a capacitor element has been described. Even if the porous anode body is formed using other valve action metals such as titanium, the same effects as those of the present invention can be obtained.
【0022】[0022]
【発明の効果】以上のように本発明の固体電解コンデン
サ用多孔質陽極体の製造方法は、成形前の弁作用金属粉
末の造粒において混合するバインダとして、樟脳と平均
径0.1mmの塊状昇華性シクロドデカンの混合物を使用
するもので、この製造方法によれば焼結体の表面に大き
な空孔径を確保することができるので、固体電解質形成
母液を多孔質陽極体の内部に容易に含浸させることがで
き、固体電解コンデンサの半導体層固体電解質の形成状
態が良好になり、静電容量変化率、電気抵抗特性の向上
をもたらすことができ、かつ漏れ電流特性も従来品と比
べて極めて良特性の固体電解コンデンサを得ることがで
きるものである。As described above, the method for producing a porous anode body for a solid electrolytic capacitor according to the present invention is characterized in that camphor and a lump having an average diameter of 0.1 mm are used as a binder to be mixed in the granulation of valve metal powder before molding. A mixture of sublimable cyclododecane is used. According to this manufacturing method, a large pore diameter can be secured on the surface of the sintered body, so that the solid electrolyte forming mother liquor is easily impregnated into the inside of the porous anode body. The solid electrolyte capacitor has a good formation state of the solid electrolyte of the semiconductor layer, can improve the rate of change in capacitance and electric resistance characteristics, and has very good leakage current characteristics compared to conventional products. A solid electrolytic capacitor having characteristics can be obtained.
【図1】本発明の一実施の形態と比較例1で得られた多
孔質陽極体を使用したタンタル固体電解コンデンサの高
温負荷試験におけるtanδ特性を比較した特性図FIG. 1 is a characteristic diagram comparing tan δ characteristics in a high-temperature load test of a tantalum solid electrolytic capacitor using a porous anode body obtained in one embodiment of the present invention and Comparative Example 1.
【図2】本発明の一実施の形態と比較例1で得られた多
孔質陽極体を使用したタンタル固体電解コンデンサの高
温負荷試験における静電容量変化率を比較した特性図FIG. 2 is a characteristic diagram comparing a capacitance change rate in a high-temperature load test of a tantalum solid electrolytic capacitor using the porous anode obtained in one embodiment of the present invention and Comparative Example 1.
Claims (2)
粒した後、弁作用金属からなる陽極導出線を植設した状
態で加圧成形して成形体を形成し、この成形体を高温高
真空中で焼結することにより固体電解コンデンサ用多孔
質陽極体を製造する際に、上記弁作用金属粉末と混合す
るバインダとして、樟脳および塊状昇華性シクロドデカ
ンの混合物を用いた固体電解コンデンサ用多孔質陽極体
の製造方法。1. A valve metal powder is mixed with a binder and granulated, and then molded under pressure with an anode lead wire made of a valve metal implanted to form a compact. When producing a porous anode body for a solid electrolytic capacitor by sintering in a high vacuum, as a binder to be mixed with the valve action metal powder, for a solid electrolytic capacitor using a mixture of camphor and massive sublimable cyclododecane A method for producing a porous anode body.
るものである請求項1に記載の固体電解コンデンサ用多
孔質陽極体の製造方法。2. The method for producing a porous anode body for a solid electrolytic capacitor according to claim 1, wherein the valve action metal powder is mainly composed of tantalum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2573698A JPH11224833A (en) | 1998-02-06 | 1998-02-06 | Manufacture of porous anode of solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2573698A JPH11224833A (en) | 1998-02-06 | 1998-02-06 | Manufacture of porous anode of solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11224833A true JPH11224833A (en) | 1999-08-17 |
Family
ID=12174114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2573698A Pending JPH11224833A (en) | 1998-02-06 | 1998-02-06 | Manufacture of porous anode of solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11224833A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001091953A1 (en) * | 2000-06-01 | 2001-12-06 | Cabot Supermetals K.K. | Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor |
JP2004349683A (en) * | 2003-04-28 | 2004-12-09 | Showa Denko Kk | Valve action metallic sintered body, manufacturing method therefor and solid electrolytic capacitor |
WO2006035846A1 (en) * | 2004-09-30 | 2006-04-06 | Dainippon Ink And Chemicals, Inc. | Process for producing porous sintered metal |
US7713466B2 (en) | 2003-04-28 | 2010-05-11 | Showa Denko K.K. | Valve acting metal sintered body, production method therefor and solid electrolytic capacitor |
CN110814348A (en) * | 2019-11-22 | 2020-02-21 | 湖南艾华集团股份有限公司 | Preparation method of sintered aluminum foil with high specific volume |
-
1998
- 1998-02-06 JP JP2573698A patent/JPH11224833A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001091953A1 (en) * | 2000-06-01 | 2001-12-06 | Cabot Supermetals K.K. | Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor |
US7204866B2 (en) | 2000-06-01 | 2007-04-17 | Cabot Supermetals K.K. | Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor |
JP2004349683A (en) * | 2003-04-28 | 2004-12-09 | Showa Denko Kk | Valve action metallic sintered body, manufacturing method therefor and solid electrolytic capacitor |
US7713466B2 (en) | 2003-04-28 | 2010-05-11 | Showa Denko K.K. | Valve acting metal sintered body, production method therefor and solid electrolytic capacitor |
JP4727160B2 (en) * | 2003-04-28 | 2011-07-20 | 昭和電工株式会社 | Valve action metal sintered body, manufacturing method thereof and solid electrolytic capacitor |
WO2006035846A1 (en) * | 2004-09-30 | 2006-04-06 | Dainippon Ink And Chemicals, Inc. | Process for producing porous sintered metal |
GB2435006A (en) * | 2004-09-30 | 2007-08-15 | Dainippon Ink & Chemicals | Process for producing porous sintered metal |
CN110814348A (en) * | 2019-11-22 | 2020-02-21 | 湖南艾华集团股份有限公司 | Preparation method of sintered aluminum foil with high specific volume |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3434041B2 (en) | Tantalum powder and electrolytic capacitor using the same | |
JP2894326B2 (en) | Tantalum powder and solid electrolytic capacitor using the same | |
WO2001091953A1 (en) | Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor | |
EP1275125B1 (en) | Niobium sintered body, production method therefor, and capacitor using the same | |
US9959980B2 (en) | Solid electrolytic capacitor element and method for manufacturing solid electrolytic capacitor element | |
JP6353912B2 (en) | Ta-Nb alloy powder and anode element for solid electrolytic capacitor | |
DE102014204610A1 (en) | Liquid electrolyte capacitor | |
JPH11224833A (en) | Manufacture of porous anode of solid electrolytic capacitor | |
JP2000082639A (en) | MANUFACTURE OF Nb CAPACITOR | |
US20050268747A1 (en) | Valve metal powder and solid electrolytic capacitor using same | |
US20070180950A1 (en) | High capacitance capacitor anode | |
US9704652B2 (en) | Method for manufacturing tungsten-based capacitor element | |
JP3195871B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP4430440B2 (en) | Manufacturing method of anode body for solid electrolytic capacitor | |
JPH11224832A (en) | Manufacture of porous anode of solid electrolytic capacitor | |
JP2000286154A (en) | Manufacture of solid-state electrolytic capacitor | |
JP2921464B2 (en) | Method for manufacturing solid electrolytic capacitor and anode body for solid electrolytic capacitor | |
JPH05275293A (en) | Manufacture of solid electrolytic capacitor | |
JPS62188215A (en) | Manufacture of electrolytic capacitor | |
JP2003147402A (en) | Niobium powder | |
JP2730512B2 (en) | Method for manufacturing anode body of solid electrolytic capacitor | |
JP2022115591A (en) | Electrolytic capacitor and manufacturing method thereof | |
JP3377311B2 (en) | Method for producing sintered body for solid electrolytic capacitor | |
JP2020125516A (en) | Tantalum granulated powder and method for producing the same | |
JPH03232213A (en) | Manufacture of tantalum solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050311 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050614 |