JPH11219812A - Oxide magnetic material - Google Patents
Oxide magnetic materialInfo
- Publication number
- JPH11219812A JPH11219812A JP10033797A JP3379798A JPH11219812A JP H11219812 A JPH11219812 A JP H11219812A JP 10033797 A JP10033797 A JP 10033797A JP 3379798 A JP3379798 A JP 3379798A JP H11219812 A JPH11219812 A JP H11219812A
- Authority
- JP
- Japan
- Prior art keywords
- mol
- mno
- terms
- magnetic material
- hysteresis loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、スイッチング電源
等のトランス等に用いられる酸化物磁性材料に関し、特
に、スピネル型結晶構造を有するNi−Cu−Zn系フ
ェライトに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide magnetic material used for a transformer of a switching power supply or the like, and more particularly to a Ni-Cu-Zn ferrite having a spinel type crystal structure.
【0002】[0002]
【従来の技術】携帯機器をはじめとして、近年、電子機
器の小型化が急速に進歩している。そして、それらに用
いられる電源も、同じ流れにある。電源の中で、トラン
スは、体積的にも、電力損失においても、大きな割合を
占めるため、その小型化、高効率化が急務である。その
一つの解決策として、駆動周波数の高周波化があり、そ
れに適用できる低損失の磁芯材料が望まれている。2. Description of the Related Art In recent years, miniaturization of electronic devices such as portable devices has been rapidly progressing. And the power supply used for them is in the same flow. In the power supply, the transformer occupies a large proportion in terms of both volume and power loss, so it is urgently necessary to reduce its size and increase its efficiency. One solution is to increase the driving frequency, and a low-loss magnetic core material applicable to the driving frequency is desired.
【0003】電源トランス用材料に求められる特性は、
駆動周波数で損失が小さいこと、飽和磁束密度が高
いこと、キュリー温度が高いこと、比抵抗が高いこ
と、が挙げられる。The characteristics required of power transformer materials are as follows:
Low drive frequency, high saturation magnetic flux density, high Curie temperature, and high specific resistance.
【0004】トランス用材料の損失が大きいと、電源と
しての効率が悪いだけでなく、自己発熱による熱暴走の
危険が生じる。よって、現在使用されているトランス用
のフェライト材料には、低損失で、かつ、自己発熱によ
る温度上昇を極力避けるため、損失が最小となる温度を
環境温度よりも高くすることが要求されている。[0004] If the loss of the transformer material is large, not only the efficiency as a power supply is poor, but also the risk of thermal runaway due to self-heating is generated. Therefore, ferrite materials for transformers currently used are required to have a low loss and a temperature at which the loss is minimized higher than the ambient temperature in order to minimize the temperature rise due to self-heating. .
【0005】電源トランス用材料としては、飽和磁束密
度が高く(約500mT)、低価格なMn−Zn系フェ
ライトが用いられている。しかしながら、Mn−Zn系
フェライトは、比抵抗が低く、絶縁性の確保のため、ボ
ビン等の治具を介し巻線を行わなければならない。よっ
て、トランス材料として、Mn−Zn系フェライトを用
いては、小型化に対して限界がある。As a material for a power transformer, an inexpensive Mn-Zn ferrite having a high saturation magnetic flux density (about 500 mT) is used. However, the Mn-Zn-based ferrite has a low specific resistance, and must be wound through a jig such as a bobbin in order to secure insulation. Therefore, there is a limit to miniaturization when using a Mn-Zn ferrite as a transformer material.
【0006】一方、Ni−Zn系フェライトは、比抵抗
が高く、巻線の直巻きが可能である。また、比抵抗が高
いことに加え、Cu添加により低温焼成が可能であるこ
とから、導体と磁性体の一体焼成が可能であり、限りな
い小型化が実現できる。しかしながら、Ni−Zn系フ
ェライトは、高損失であるため、効率が低く、かつ熱暴
走等の危険性がある。On the other hand, Ni—Zn-based ferrite has a high specific resistance and can be wound directly. In addition to the high specific resistance, the addition of Cu enables low-temperature sintering, so that the conductor and the magnetic material can be integrally sintered, and an unlimited size reduction can be realized. However, since the Ni—Zn ferrite has high loss, the efficiency is low and there is a risk of thermal runaway or the like.
【0007】[0007]
【発明が解決しようとする課題】そこで、本発明は、上
記の課題を解決し、低損失な酸化物磁性材料を提供する
ことにある。Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a low-loss oxide magnetic material.
【0008】[0008]
【課題を解決するための手段】上述の問題を解決するた
め、本発明者等は、数々の検討を行った結果、Ni−C
u−Zn系フェライトにおいて、主成分組成が、Fe2
O3の換算で48〜49.5mol%、NiOの換算で
17〜23mol%、CuOの換算で3〜7mol%及
び残部がZnOよりなり、副成分として4〜9.5wt
%のMnOを含有させ、かつ平均結晶粒径を10μm以
上とすることで、低損失で高比抵抗を有する酸化物磁性
材料が得られることを見い出したものである。In order to solve the above-mentioned problems, the present inventors have made various studies and found that Ni-C
In u-Zn ferrite, it is the main component composition, Fe 2
48 to 49.5 mol% in terms of O 3 , 17 to 23 mol% in terms of NiO, 3 to 7 mol% in terms of CuO, and the balance being ZnO, and 4 to 9.5 wt.
% Of MnO and an average crystal grain size of 10 μm or more, it has been found that an oxide magnetic material having low loss and high specific resistance can be obtained.
【0009】即ち、本発明は、 主成分組成として、F
e2O3の換算で48〜49.5mol%、NiOの換算
で17〜23mol%、CuOの換算で3〜7mol%
及び残部がZnOよりなり、副成分として4〜9.5w
t%のMnOを含有する酸化物磁性材料である。That is, according to the present invention, as a main component composition, F
48~49.5Mol% in terms of e 2 O 3, 17~23mol% in terms of NiO, 3-7 mol of% in terms of CuO
And the balance is ZnO, and 4 to 9.5 w
It is an oxide magnetic material containing t% MnO.
【0010】また、本発明は、上記酸化物磁性材料にお
いて、焼結体の平均結晶粒径が8μm以上である酸化物
磁性材料である。The present invention also relates to the above oxide magnetic material, wherein the sintered body has an average crystal grain size of 8 μm or more.
【0011】Ni−Cu−Zn系フェライトの損失にお
いては、通常の動作環境である50kHz−150mT
で、60〜70%がヒステリシス損失であり、低損失化
のためには、ヒステリシス損失の低減が有効である。Regarding the loss of the Ni—Cu—Zn ferrite, the operating frequency is 50 kHz-150 mT, which is a normal operating environment.
The hysteresis loss accounts for 60 to 70%, and it is effective to reduce the hysteresis loss to reduce the loss.
【0012】一般的に、ヒステリシス損失は異方性定数
(K)に比例し、異方性定数は、結晶磁気異方性定数
(K1)及び磁歪(λ)よりなることが知られている。
また、Ni−Cu−Zn系のフェライト材料にMnOを
添加し、Fe3+の一部をMn2+に置換することにより、
Bサイトの磁気モーメントが減少し、スピン間の相互作
用エネルギーが減少し、磁歪が小さくなることが知られ
ている(Gerald F.Dionn,Russel G.West:J.Appl.Phys.6
1(8),15 April 1987)。Generally, it is known that the hysteresis loss is proportional to the anisotropy constant (K), and the anisotropy constant is composed of the magnetocrystalline anisotropy constant (K 1 ) and the magnetostriction (λ). .
Further, by adding MnO to a Ni-Cu-Zn ferrite material and substituting a part of Fe 3+ with Mn 2+ ,
It is known that the magnetic moment at the B site decreases, the interaction energy between the spins decreases, and the magnetostriction decreases (Gerald F. Dionn, Russel G. West: J. Appl. Phys. 6).
1 (8), 15 April 1987).
【0013】また、磁区サイズは、結晶粒径に比例する
ことにより、ヒステリシス損失は結晶粒径が大きくなる
ほど小さくなることが知られている。It is also known that the hysteresis loss decreases as the crystal grain size increases, because the magnetic domain size is proportional to the crystal grain size.
【0014】本発明によれば、Ni−Cu−Zn系フェ
ライトにMnOを添加することにより、ヒステリシス損
失の著しい低減が図れる。この原因は、詳細には不明で
あるが、Mn2+とFe3+の置換により、ヒステリシス損
失に依存する異方性定数(結晶磁気異方性定数もしくは
磁歪)が低減されたことによるものと推察される。更
に、平均結晶粒径を8μm以上とすることにより、ヒス
テリシス損失を低減できる。According to the present invention, remarkable reduction of hysteresis loss can be achieved by adding MnO to Ni-Cu-Zn ferrite. Although the reason for this is not known in detail, it is believed that the substitution of Mn 2+ and Fe 3+ reduces the anisotropy constant (crystal magnetic anisotropy constant or magnetostriction) depending on the hysteresis loss. Inferred. Further, by setting the average crystal grain size to 8 μm or more, the hysteresis loss can be reduced.
【0015】Fe2O3を48〜49.5mol%とした
のは、Fe2O3が48mol%より少ないと、電力損失
(PCV)が高くなるためであり、Fe2O3が49.5m
ol%より多いと、比抵抗が低下するためである。Ni
Oを17〜23mol%としたのは、NiOが17mo
l%より少ないと、飽和磁束密度(Bs)が低下するた
めであり、NiOが23mol%より多いと、PCVが大
きくなるためである。CuOを3〜7mol%としたの
は、CuOが3mol%より少ないと、焼結体密度が低
いためであり、CuOが7mol%より多いと、PCVが
大きくなるためである。MnOを4〜9.5wt%とし
たのは、MnOが4wt%より少ないと、MnO添加に
よるPCVの低減がなされないためであり、MnOが9.
5wt%より多いと、焼結体密度が低いためである。な
お、MnOが5〜8.5wt%の範囲であると、より低
いPCV値が得られる。[0015] The the Fe 2 O 3 was 48~49.5Mol%, when Fe 2 O 3 is less than 48 mol%, the power loss (P CV) is because the increases, Fe 2 O 3 is 49. 5m
If the amount is more than ol%, the specific resistance decreases. Ni
The reason why O is set to 17 to 23 mol% is that NiO is 17 mol%.
When the content is less than l%, the saturation magnetic flux density (Bs) is because the drops, when NiO is more than 23 mol%, because the P CV increases. Is to that with 3-7 mol of% of CuO, the CuO is less than 3 mol%, is because the sintered density is low, the CuO is more than 7 mol%, because the P CV increases. The was a 4~9.5Wt% of MnO, when MnO is less than 4 wt%, is for the reduction of P CV by MnO added is not performed, MnO 9.
If the content is more than 5 wt%, the sintered body density is low. Incidentally, MnO is the in the range of 5~8.5wt%, lower P CV value is obtained.
【0016】また、平均結晶粒径を8μm以上としたの
は、平均結晶粒径が8μmより小さいと、ヒステリシス
損失が増大することによりPCVが大きくなるためであ
る。なお、平均結晶粒径が10μm以上であると、より
低いPCV値が得られる。Further, the average of the grain diameter is more than 8μm, the average crystalline grain diameter is 8μm smaller, because the P CV increases by hysteresis loss increases. When the average crystal grain size is 10 μm or more, a lower PCV value can be obtained.
【0017】[0017]
【発明の実施の形態】所定の原料を秤量、混合、仮焼し
た後、MnOを添加、微粉砕する。その後、バインダー
添加、造粒する。さらに、成形、焼成して、本発明の酸
化物磁性材料を得る。DESCRIPTION OF THE PREFERRED EMBODIMENTS After weighing, mixing and calcining predetermined raw materials, MnO is added and pulverized. Then, a binder is added and granulated. Further, the oxide magnetic material of the present invention is obtained by molding and firing.
【0018】[0018]
【実施例】(実施例1)主成分組成がFe2O3:47.
5〜50mol%、NiO:14〜26mol%、Cu
O:1〜9mol%、残部がZnOとなるように原料を
秤量し、ボールミルを用いて混合し、大気雰囲気中85
0℃で2時間仮焼し、副成分としてMnOを7wt%添
加した後、ボールミルで微粉砕を行った。微粉砕後、バ
インダーを添加し、スプレードライヤーにて造粒し、φ
30×φ25×5mmのトロイダル形状に成形して、大
気雰囲気中1100℃で焼結した。また、従来材として
同様な方法により、MnOを添加しない試料を作製し
た。得られたコアに巻線をし、50kHz−150mT
−80℃の条件でコアロスを測定した。また、室温での
Bs、比抵抗を測定した。得られた試料の組成及び磁気
特性を表1に示す。(Example 1) The main component composition is Fe 2 O 3 : 47.
5 to 50 mol%, NiO: 14 to 26 mol%, Cu
O: 1 to 9 mol%, the raw materials are weighed so that the balance is ZnO, mixed using a ball mill, and mixed in an air atmosphere.
After calcining at 0 ° C. for 2 hours and adding 7 wt% of MnO as an auxiliary component, the mixture was finely pulverized by a ball mill. After finely pulverizing, add a binder and granulate with a spray drier.
It was molded into a toroidal shape of 30 × φ25 × 5 mm and sintered at 1100 ° C. in the air atmosphere. Further, a sample to which MnO was not added was prepared by the same method as a conventional material. Wind the obtained core, 50kHz-150mT
The core loss was measured at -80 ° C. In addition, Bs and specific resistance at room temperature were measured. Table 1 shows the composition and magnetic properties of the obtained sample.
【0019】[0019]
【表1】 [Table 1]
【0020】表1より、Fe2O3:48〜49.5mo
l%、NiO:17〜23mol%、CuO:3〜7m
ol%の主成分組成で従来材よりも優れた磁気特性とな
っているのがわかる。As shown in Table 1, Fe 2 O 3 : 48 to 49.5 mol
1%, NiO: 17 to 23 mol%, CuO: 3 to 7 m
It can be seen that the magnetic properties superior to those of the conventional material are obtained with the main component composition of ol%.
【0021】(実施例2)主成分組成がFe2O3:49
mol%、NiO:20mol%、CuO:4mol
%、残部がZnOとなるように原料を秤量し、ボールミ
ルを用いて混合し、大気雰囲気中850℃で2時間仮焼
し、副成分としてMnOを0〜11wt%添加した後、
ボールミルで微粉砕を行った。微粉砕後、バインダーを
添加し、スプレードライヤーにて造粒し、φ30×φ2
5×5mmのトロイダル形状に成形して、大気雰囲気中
1100℃で焼結した。得られたコアに巻線をし、50
kHz−150mT−80℃の条件でコアロスを測定し
た。その結果を図1に示す。Example 2 The main component composition is Fe 2 O 3 : 49.
mol%, NiO: 20 mol%, CuO: 4 mol
%, And the balance was ZnO, the raw materials were weighed, mixed using a ball mill, and calcined at 850 ° C. for 2 hours in an air atmosphere.
Fine grinding was performed with a ball mill. After fine pulverization, a binder was added, and the mixture was granulated with a spray drier.
It was formed into a 5 × 5 mm toroidal shape and sintered at 1100 ° C. in an air atmosphere. Wind the obtained core, 50
The core loss was measured under the conditions of kHz-150 mT-80 ° C. The result is shown in FIG.
【0022】図1より、MnOを4〜9.5wt%添加
した試料でコアロスが従来材(0wt%)よりも小さく
なっていることがわかる。From FIG. 1, it can be seen that the core loss is smaller than that of the conventional material (0 wt%) in the sample containing 4 to 9.5 wt% of MnO.
【0023】(実施例3)主成分組成がFe2O3:49
mol%、NiO:20mol%、CuO:4mol
%、残部がZnOとなるように原料を秤量し、ボールミ
ルを用いて混合し、大気雰囲気中850℃で2時間仮焼
し、副成分としてMnOを7wt%添加した後、ボール
ミルで微粉砕を行った。微粉砕後、バインダーを添加
し、スプレードライヤーにて造粒し、φ30×φ25×
5mmのトロイダル形状に成形して、大気雰囲気中10
00〜1300℃で焼結した。また、従来材として、同
様な方法により、同主成分組成でMnOを添加しない試
料を大気雰囲気中1100℃で焼結して作製した。得ら
れたコアに巻線をし、50kHz−150mT−80℃
の条件でコアロスを測定した。得られた試料の平均結晶
粒径及び磁気特性を表2に示す。Example 3 The main component composition is Fe 2 O 3 : 49
mol%, NiO: 20 mol%, CuO: 4 mol
%, The balance being ZnO, weighing the raw materials using a ball mill, calcining at 850 ° C. for 2 hours in the air atmosphere, adding 7 wt% of MnO as an auxiliary component, and then pulverizing with a ball mill. Was. After fine pulverization, a binder was added and granulated with a spray drier.
5mm toroidal shape
Sintered at 00 to 1300 ° C. Further, as a conventional material, a sample having the same main component composition without adding MnO was sintered at 1100 ° C. in the air atmosphere by the same method. Wind the obtained core, 50kHz-150mT-80 ℃
The core loss was measured under the following conditions. Table 2 shows the average crystal grain size and magnetic properties of the obtained sample.
【0024】 [0024]
【0025】表2より、平均結晶粒径が8μm以上で従
来材よりも優れた磁気特性となっているのがわかる。From Table 2, it can be seen that the average crystal grain size is 8 μm or more, and the magnetic properties are superior to those of the conventional material.
【0026】[0026]
【発明の効果】以上、本発明によれば、低損失な酸化物
磁性材料を提供することができた。As described above, according to the present invention, a low-loss oxide magnetic material can be provided.
【図1】MnOの添加量と50kHz−1500G−8
0℃でPCVとの関係を示す図。FIG. 1. Addition amount of MnO and 50 kHz-1500G-8
Diagram showing the relationship between the P CV at 0 ° C..
Claims (2)
8〜49.5mol%、NiOの換算で17〜23mo
l%、CuOの換算で3〜7mol%及び残部がZnO
よりなり、副成分として4〜9.5wt%のMnOを含
有することを特徴とする酸化物磁性材料。1. The composition of the main component is 4 in terms of Fe 2 O 3.
8-49.5mol%, 17-23mo in NiO conversion
1%, 3 to 7 mol% in terms of CuO, and the balance being ZnO
An oxide magnetic material comprising 4 to 9.5 wt% MnO as a subcomponent.
て、焼結体の平均結晶粒径が8μm以上であることを特
徴とする酸化物磁性材料。2. The oxide magnetic material according to claim 1, wherein the average crystal grain size of the sintered body is 8 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10033797A JPH11219812A (en) | 1998-01-29 | 1998-01-29 | Oxide magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10033797A JPH11219812A (en) | 1998-01-29 | 1998-01-29 | Oxide magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11219812A true JPH11219812A (en) | 1999-08-10 |
Family
ID=12396473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10033797A Pending JPH11219812A (en) | 1998-01-29 | 1998-01-29 | Oxide magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11219812A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002198212A (en) * | 2000-12-27 | 2002-07-12 | Fdk Corp | Low-loss oxide magnetic material |
KR100425993B1 (en) * | 2000-05-12 | 2004-04-06 | 가부시키가이샤 무라타 세이사쿠쇼 | Laminated electronic component |
JP2006351714A (en) * | 2005-06-14 | 2006-12-28 | Murata Mfg Co Ltd | Compound magnetic body material, coil antenna structure, and portable communication terminal |
JP2017088422A (en) * | 2015-11-04 | 2017-05-25 | Fdk株式会社 | Ferrite and manufacturing method of ferrite |
-
1998
- 1998-01-29 JP JP10033797A patent/JPH11219812A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100425993B1 (en) * | 2000-05-12 | 2004-04-06 | 가부시키가이샤 무라타 세이사쿠쇼 | Laminated electronic component |
JP2002198212A (en) * | 2000-12-27 | 2002-07-12 | Fdk Corp | Low-loss oxide magnetic material |
JP2006351714A (en) * | 2005-06-14 | 2006-12-28 | Murata Mfg Co Ltd | Compound magnetic body material, coil antenna structure, and portable communication terminal |
JP4626413B2 (en) * | 2005-06-14 | 2011-02-09 | 株式会社村田製作所 | Composite magnetic material, coil antenna structure, and portable communication terminal |
JP2017088422A (en) * | 2015-11-04 | 2017-05-25 | Fdk株式会社 | Ferrite and manufacturing method of ferrite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3108803B2 (en) | Mn-Zn ferrite | |
US7892446B2 (en) | Ferrite material | |
JP3907642B2 (en) | Ferrite material and method for producing ferrite material | |
JP3108804B2 (en) | Mn-Zn ferrite | |
JP4302904B2 (en) | Choke coil and power transformer | |
JPH06310320A (en) | Oxide magnetic substance material | |
JP4523430B2 (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
JPH11219812A (en) | Oxide magnetic material | |
JPH113813A (en) | Ferrite material | |
JP2002246221A (en) | Low loss oxide magnetic material | |
JP2001006916A (en) | Low loss oxide magnetic material | |
JP2530769B2 (en) | Low loss oxide magnetic material for magnetic elements used in high frequency power supplies | |
JP3739849B2 (en) | Low-loss oxide magnetic material | |
JP2002187769A (en) | Ferrite material and ferrite core using the same | |
JP2001118714A (en) | Small-loss oxide magnetic material | |
JP2001076923A (en) | Low-loss oxide magnetic material | |
JPH0661033A (en) | Low-loss oxide magnetic material | |
JP2935219B1 (en) | Method for producing Mn-Zn ferrite core | |
JP2002104871A (en) | Ferrite material and ferrite core using it | |
JPH10270229A (en) | Mn-ni ferrite material | |
JPH11340024A (en) | Low-loss oxide magnetic material | |
JP2000335961A (en) | Oxide magnetic material and its production | |
JP2002321971A (en) | Ni-BASED FERRITE | |
JP2002343621A (en) | Low-loss oxide magnetic material and manufacturing method therefor | |
JP2001126911A (en) | Oxide magnetic material of low loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |