JPH11214385A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH11214385A JPH11214385A JP10015623A JP1562398A JPH11214385A JP H11214385 A JPH11214385 A JP H11214385A JP 10015623 A JP10015623 A JP 10015623A JP 1562398 A JP1562398 A JP 1562398A JP H11214385 A JPH11214385 A JP H11214385A
- Authority
- JP
- Japan
- Prior art keywords
- film
- bst
- insulating film
- annealing
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000000137 annealing Methods 0.000 claims abstract description 47
- 239000003990 capacitor Substances 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 239000012535 impurity Substances 0.000 abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 144
- 238000011282 treatment Methods 0.000 description 17
- 239000011229 interlayer Substances 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- UOACKFBJUYNSLK-XRKIENNPSA-N Estradiol Cypionate Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H](C4=CC=C(O)C=C4CC3)CC[C@@]21C)C(=O)CCC1CCCC1 UOACKFBJUYNSLK-XRKIENNPSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Formation Of Insulating Films (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は高誘電絶縁膜を備え
るる半導体装置に関し、特にキャパシタの容量絶縁膜と
して構成される高誘電絶縁膜を備える半導体装置の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a high dielectric insulating film, and more particularly to a method of manufacturing a semiconductor device having a high dielectric insulating film formed as a capacitor capacitor insulating film.
【0002】[0002]
【従来の技術】近年における半導体装置の高集積化に伴
い、DRAM等のキャパシタを含む素子ではキャパシタ
の微細化が要求されている。このようなキャパシタの微
細化に伴い、キャパシタに要求される電荷蓄積容量を確
保するために、素子面積に対する電極面積を増大するた
めに容量電極面が基板面に対して垂直に向けられたキャ
パシタ、例えば電極を王冠状に形成したクラウンキャパ
シタ等が提案され、またその一方で容量絶縁膜の高誘電
化が図られている。このような高誘電絶縁膜として、従
来から、(Ba,Sr)TiO3 で示される、いわゆる
BST膜が用いられている。このBST膜の製造方法と
してはスパッタ法を適用することが可能であり、このス
パッタ法により形成したときには、広い範囲の比誘電率
の膜を得ることが可能である。しかしながら、前記した
クラウンキャパシタのように、半導体基板の表面上に垂
直方向に向けて形成されている電極の表面には、スパッ
タ法では均一なBST膜を形成することが困難であり、
そのために、膜厚が薄い箇所では上下電極間での短絡や
リーク電流が生じ易く、膜厚が厚い箇所ではキャパシタ
容量が低下されることになり、高耐圧でかつ高容量のキ
ャパシタを実現することが困難となる。そこで、BST
膜をCVD法によって形成することが考えられており、
このCVD法では、前記したクラウンキャパシタを製造
する場合でも均一な容量絶縁膜を形成でき、前記したよ
うにスパッタ法によって生じているような問題を解消す
ることが可能となる。2. Description of the Related Art With the recent increase in the degree of integration of semiconductor devices, miniaturization of capacitors is required for devices including capacitors such as DRAMs. With the miniaturization of such a capacitor, in order to secure the required charge storage capacity of the capacitor, the capacitor electrode surface is oriented perpendicular to the substrate surface to increase the electrode area with respect to the element area, For example, a crown capacitor having an electrode formed in a crown shape and the like have been proposed, and on the other hand, the dielectric constant of a capacitive insulating film has been increased. Conventionally, a so-called BST film represented by (Ba, Sr) TiO 3 has been used as such a high dielectric insulating film. As a method of manufacturing the BST film, a sputtering method can be applied. When the BST film is formed by the sputtering method, a film having a relative dielectric constant in a wide range can be obtained. However, it is difficult to form a uniform BST film by the sputtering method on the surface of the electrode formed vertically on the surface of the semiconductor substrate like the above-mentioned crown capacitor.
For this reason, short-circuits and leak currents between the upper and lower electrodes are liable to occur in places where the film thickness is small, and the capacitor capacity is reduced in places where the film thickness is large, so that a capacitor with high withstand voltage and high capacity can be realized. Becomes difficult. So, BST
It is considered that the film is formed by a CVD method,
According to this CVD method, a uniform capacitance insulating film can be formed even in the case of manufacturing the above-mentioned crown capacitor, and the problem caused by the sputtering method as described above can be solved.
【0003】[0003]
【発明が解決しようとする課題】ところが、実際にBS
T膜をCVD法によって形成すると、今度は期待したほ
どの高誘電率を得ることが難しいという問題が生じるこ
とが判明した。図7はBST膜をCVD法で成膜したと
き(as depo)の誘電率と、その後BST膜を結
晶化するために窒素ガスを用いて400℃でアニールし
たときの比誘電率を示す図である。このように、成膜し
た時点でのBST膜の比誘電率は110程度の値であ
り、このBST膜をアニール処理してもその比誘電率を
増大することはできず、結果としてスパッタ法において
得られていたような150〜200程度の高い比誘電率
のBST膜を得ることは困難である。However, the actual BS
It has been found that forming a T film by the CVD method causes a problem that it is difficult to obtain a high dielectric constant as expected this time. FIG. 7 is a diagram showing a dielectric constant when a BST film is formed by a CVD method (as depo) and a relative dielectric constant when the BST film is annealed at 400 ° C. using nitrogen gas to crystallize the BST film. is there. As described above, the relative dielectric constant of the BST film at the time of film formation is about 110, and even if this BST film is annealed, the relative dielectric constant cannot be increased. As a result, in the sputtering method, It is difficult to obtain a BST film having a high relative dielectric constant of about 150 to 200 as obtained.
【0004】本発明の目的は、比誘電率が高く、しかも
リーク電流の少ない高誘電絶縁膜及びこれを容量絶縁膜
とするキャパシタを含む半導体装置の製造方法を提供す
ることにある。An object of the present invention is to provide a high dielectric insulating film having a high relative dielectric constant and a small leak current, and a method of manufacturing a semiconductor device including a capacitor using the same as a capacitive insulating film.
【0005】本発明の半導体装置の製造方法は、半導体
基板上に高誘電絶縁膜を成膜した後に、還元性ガス雰囲
気でアニール処理を行うことで、均一な膜厚でかつ比誘
電率の高い高誘電絶縁膜の形成が実現できることを特徴
とする。本発明の製造方法により得られる高誘電絶縁膜
をキャパシタの誘電膜の製造に適用する場合には、半導
体基板上に下部電極を形成する工程と、前記下部電極の
表面に容量絶縁膜としての高誘電絶縁膜を成膜する工程
と、前記高誘電絶縁膜上に上部電極を形成してキャパシ
タを形成する工程と、前記高誘電絶縁膜を成膜した後
に、還元性ガス雰囲気でアニール処理を行う工程を含む
ことを特徴とする。According to the method of manufacturing a semiconductor device of the present invention, a high dielectric insulating film is formed on a semiconductor substrate and then an annealing treatment is performed in a reducing gas atmosphere to obtain a uniform film thickness and a high relative dielectric constant. It is characterized in that formation of a high dielectric insulating film can be realized. When the high dielectric insulating film obtained by the manufacturing method of the present invention is applied to the production of a dielectric film of a capacitor, a step of forming a lower electrode on a semiconductor substrate, and a step of forming a high dielectric constant film as a capacitive insulating film on the surface of the lower electrode. Forming a dielectric insulating film, forming an upper electrode on the high dielectric insulating film to form a capacitor, and performing an annealing process in a reducing gas atmosphere after forming the high dielectric insulating film. It is characterized by including a step.
【0006】ここで、前記アニール処理は、前記上部電
極を形成した後に行うことが可能である。また、前記上
部電極及び下部電極としてRu(ルテニウム)膜を成膜
することが好ましい。さらに、前記高誘電絶縁膜はBS
T膜であり、CVD法によって成膜する。また、前記還
元性ガスは、水素を3vol%以上含む水素と窒素の混
合ガスであることが好ましく、しかも前記アニール処理
を300〜400℃で行うことが好ましい。さらに、前
記アニール処理の後に、酸素アニールを行う工程を含ん
でもよい。Here, the annealing can be performed after forming the upper electrode. Further, it is preferable to form a Ru (ruthenium) film as the upper electrode and the lower electrode. Further, the high dielectric insulating film is made of BS.
This is a T film, which is formed by a CVD method. Further, the reducing gas is preferably a mixed gas of hydrogen and nitrogen containing 3 vol% or more of hydrogen, and the annealing treatment is preferably performed at 300 to 400 ° C. Further, a step of performing oxygen annealing after the annealing may be included.
【0007】本発明者の検討によれば、従来のCVD法
によるBST膜において比誘電率が低い理由として、次
のように考えられる。すなわち、スパッタ法で形成され
るBST膜では高い誘電率が得られるのに対し、CVD
法によるBST膜では誘電率が低いのはCVD法そのも
のに問題があると考えられる。そこで、CVD法とスパ
ッタ法とを比較した場合、CVD法ではBST膜を成膜
した際に、不純物がBST膜中に混入され、この不純物
によってBST膜中に低誘電率層が形成されるためであ
ると考えられる。この不純物としては、BST膜を成膜
する際のガスに含まれている炭素が考えられる。そこ
で、本発明では、BST膜に混入された炭素を還元処理
することで、BST膜中から除去し、これによって前記
した低誘電率層を無くし、BST膜の比誘電率の増大を
実現する。そのために、本発明では、炭素を還元処理す
る処理として、還元性ガス、例えば水素を含むガスを用
いてBST膜をアニールする。According to the study of the present inventor, the reason why the relative permittivity of the conventional BST film is low is considered as follows. That is, a high dielectric constant can be obtained with a BST film formed by a sputtering method,
It is considered that the low dielectric constant of the BST film formed by the CVD method has a problem in the CVD method itself. Therefore, when the CVD method and the sputtering method are compared, when the BST film is formed by the CVD method, impurities are mixed into the BST film, and the impurities form a low dielectric constant layer in the BST film. It is considered to be. As this impurity, carbon contained in a gas at the time of forming the BST film can be considered. Therefore, in the present invention, the carbon mixed into the BST film is reduced and removed from the BST film, thereby eliminating the low dielectric constant layer and increasing the relative dielectric constant of the BST film. For this purpose, in the present invention, as a treatment for reducing carbon, the BST film is annealed using a reducing gas, for example, a gas containing hydrogen.
【0008】[0008]
【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1及び図2は本発明をDRAMに
おける電荷蓄積用のキャパシタの製造技術に適用した実
施形態を工程順に示す断面図である。先ず、図1(a)
において、シリコン基板1の表面にP型不純物を注入し
てP型ウェル2を形成した後、その表面に図外のシリコ
ン熱酸化膜及びシリコン窒化膜を選択的に形成し、この
シリコン窒化膜をマスクにして前記シリコン基板1の表
面を熱酸化して素子分離用のシリコン酸化膜3を形成す
る。そして、前記素子分離酸化膜3で画成されたメモリ
セルを形成する領域の前記したシリコン窒化膜及びシリ
コン熱酸化膜を除去した後、改めて熱酸化処理を行って
シリコン熱酸化膜からなるゲート酸化膜4を形成する。Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are sectional views showing an embodiment in which the present invention is applied to a technique for manufacturing a charge storage capacitor in a DRAM in the order of steps. First, FIG.
, A P-type impurity is implanted into the surface of the silicon substrate 1 to form a P-type well 2, and then a silicon thermal oxide film and a silicon nitride film (not shown) are selectively formed on the surface of the P-type well 2. Using the mask as a mask, the surface of the silicon substrate 1 is thermally oxidized to form a silicon oxide film 3 for element isolation. Then, after removing the silicon nitride film and the silicon thermal oxide film in the region where the memory cell defined by the element isolation oxide film 3 is formed, a thermal oxidation process is performed again to form a gate oxide made of the silicon thermal oxide film. The film 4 is formed.
【0009】次いで、図1(b)において、ポリシリコ
ンあるいはポリシリコンとシリサイド材料が積層された
ポリサイドを全面に形成し、これをパターニングしてワ
ード線としてのゲート電極5を形成する。さらに、前記
ゲート電極5を利用した自己整合法により前記P型ウェ
ル2にN型不純物をイオン注入し、N型ソース・ドレイ
ン領域6を形成してNチャネル型MOSトランジスタを
形成する。そして、図1(c)のように、CVD法によ
りBPSG等の第1層間絶縁膜7を形成した後、前記第
1層間絶縁膜7に前記ソース・ドレイン領域6に達する
データ線コンタクトホール8を開口し、かつ前記第1層
間絶縁膜7上に前記データ線コンタクトホール8内にポ
リシリコン或いはポリサイドを埋設する状態で成膜し、
かつ所要のパターンに形成してデータ線9を形成する。
さらに、図1(d)のように、その上にCVD法により
BPSG等の第2層間絶縁膜10を形成した後、前記第
2層間絶縁膜10及び前記第1層間絶縁膜7を通して前
記ソース・ドレイン領域6に達するキャパシタコンタク
トホール11を開口し、このキャパシタコンタクトホー
ル11内にポリシリコン或いはポリサイドを埋設し、コ
ンタクト用のプラグ12を形成する。Next, in FIG. 1B, polysilicon or a polycide in which polysilicon and a silicide material are laminated is formed on the entire surface, and is patterned to form a gate electrode 5 as a word line. Further, an N-type impurity is ion-implanted into the P-type well 2 by a self-alignment method using the gate electrode 5 to form an N-type source / drain region 6, thereby forming an N-channel MOS transistor. Then, as shown in FIG. 1C, after forming a first interlayer insulating film 7 such as BPSG by a CVD method, a data line contact hole 8 reaching the source / drain region 6 is formed in the first interlayer insulating film 7. An opening is formed on the first interlayer insulating film 7 with polysilicon or polycide buried in the data line contact hole 8;
Further, the data lines 9 are formed in a required pattern.
Further, as shown in FIG. 1D, after a second interlayer insulating film 10 such as BPSG is formed thereon by the CVD method, the source / source layer is passed through the second interlayer insulating film 10 and the first interlayer insulating film 7. A capacitor contact hole 11 reaching the drain region 6 is opened, and polysilicon or polycide is buried in the capacitor contact hole 11 to form a plug 12 for contact.
【0010】次いで、図2(a)のように、前記第2層
間絶縁膜10上に厚くシリコン酸化膜13を堆積した
後、前記メモリセル領域の前記各MOSトランジスタの
それぞれのキャパシタコンタクトとしての前記プラグ1
2上の前記シリコン酸化膜13を円形または矩形に選択
的に除去して凹部14を形成する。そして、前記シリコ
ン酸化膜13上にRu(ルテニウム)膜を成膜し、かつ
これを例えばO2 /Cl2 混合ガスを用いたRIEエッ
チング法により前記凹部14の底面及び内側面に残した
状態でエッチング除去することにより、底面部と周壁部
とでクラウン型に構成され、かつ底面部において前記プ
ラグ12に一体化された下部電極15を形成する。な
お、前記厚いシリコン酸化膜13の膜厚は、下部電極1
5の周壁部の高さに相当する厚さに形成しておけばよい
ことは言うまでもない。Next, as shown in FIG. 2A, after a thick silicon oxide film 13 is deposited on the second interlayer insulating film 10, the silicon oxide film 13 is used as a capacitor contact of each MOS transistor in the memory cell region. Plug 1
The recess 14 is formed by selectively removing the silicon oxide film 13 on the substrate 2 into a circle or a rectangle. Then, a Ru (ruthenium) film is formed on the silicon oxide film 13, and the Ru (ruthenium) film is left on the bottom surface and the inner side surface of the concave portion 14 by, for example, RIE etching using an O 2 / Cl 2 mixed gas. By etching and removing, a lower electrode 15 which is formed in a crown shape with the bottom portion and the peripheral wall portion and is integrated with the plug 12 at the bottom portion is formed. The thickness of the thick silicon oxide film 13 depends on the lower electrode 1.
Needless to say, it may be formed to a thickness corresponding to the height of the peripheral wall portion of No. 5.
【0011】続いて、図2(b)のように、前記厚いシ
リコン酸化膜13を除去した後、詳細を後述するように
全面にECR−CVD法(電気サイクロトロン共鳴プラ
ズマ化学気相成長法)によってキャパシタの容量絶縁膜
としてのBST膜16を成膜する。さらに、この上にR
u膜を成膜し上部電極17を形成する。その後、水素と
窒素の混合ガス雰囲気化で高誘電化アニール処理を行
う。そして、前記上部電極17とBST膜16を所要の
パターンに形成することで各MOSトランジスタに対応
したキャパシタが形成される。その後は、図示を省略す
るが、前記キャパシタ上に第3層間絶縁膜、保護膜等を
形成し、DRAMが完成される。Subsequently, as shown in FIG. 2B, after removing the thick silicon oxide film 13, the whole surface is subjected to ECR-CVD (Electric Cyclotron Resonance Plasma Chemical Vapor Deposition) as will be described in detail later. A BST film 16 is formed as a capacitor capacitance insulating film. In addition, R
An upper electrode 17 is formed by forming a u film. After that, a high dielectric annealing treatment is performed in a mixed gas atmosphere of hydrogen and nitrogen. Then, by forming the upper electrode 17 and the BST film 16 in a required pattern, a capacitor corresponding to each MOS transistor is formed. Thereafter, although not shown, a third interlayer insulating film, a protective film and the like are formed on the capacitor, and the DRAM is completed.
【0012】ここで、前記キャパシタの製造工程におけ
る成膜工程について説明する。図3はそのフローチャー
トであり、下部電極15としてのRu膜を形成する工程
(S11)と、前記Ru膜15上にBST膜16を形成
する工程(S12)と、このBST膜16上に上部電極
としてのRu膜17を形成する工程(S13)と、これ
らの積層された膜、すなわち前記BST膜に対して還元
ガス雰囲気でのアニール処理を行う高誘電化アニール処
理工程(S14)とを含んでいる。Here, a film forming process in the manufacturing process of the capacitor will be described. FIG. 3 is a flow chart showing a process of forming a Ru film as the lower electrode 15 (S11), a process of forming a BST film 16 on the Ru film 15 (S12), and an upper electrode on the BST film 16. Forming a Ru film 17 as a step (S13), and a high dielectric annealing treatment step (S14) of performing an annealing treatment in a reducing gas atmosphere on these laminated films, ie, the BST film. I have.
【0013】前記BST膜16の成膜工程について説明
する。この実施形態では、BST膜の形成原料として、
図4に組成式を示すように、Ba(DPM)2 ,Sr
(DPM)2 ,Ti(O−i−C3 H7 )4 ,及び酸素
ガスを用い、前記したようにECR−CVD法により行
っている。このときのシリコン基板の温度は120℃、
ガス圧力は約7mTorr:μ波プラズマパワーは750W
とした。形成されたBST膜は、化学式が(Ba,S
r)TiO3 として示され、かつその組成は(Ba+S
r)/Ti=1.20,Ba/(Ba+Sr)=0.4
5である。そして、このBST膜の成膜後に、前記BS
T膜を結晶化する目的の結晶化アニールとしてRTA
(Rapid Thermal Annealing)処理を行っている。このR
TAの条件としては、窒素ガス中にて、700℃,1秒
である。The step of forming the BST film 16 will be described. In this embodiment, as a material for forming the BST film,
As shown in the composition formula in FIG. 4, Ba (DPM) 2 , Sr
It is performed by ECR-CVD as described above using (DPM) 2 , Ti (OiC 3 H 7 ) 4 and oxygen gas. At this time, the temperature of the silicon substrate is 120 ° C.
Gas pressure is about 7mTorr: μ-wave plasma power is 750W
And The formed BST film has a chemical formula of (Ba, S
r) TiO3, whose composition is (Ba + S
r) /Ti=1.20, Ba / (Ba + Sr) = 0.4
5 After the formation of the BST film, the BS
RTA as crystallization annealing for the purpose of crystallizing T film
(Rapid Thermal Annealing) processing. This R
The conditions for TA are 700 ° C. and 1 second in nitrogen gas.
【0014】一方、前記BST膜の成膜により、前記各
原料に含まれている炭素がBST膜に混入され、低誘電
率層を形成し、これによりBST膜全体の比誘電率を低
下させている。そこで、前記ステップS14での高誘電
化アニール処理を、窒素中に水素を3 vol%以上含む水
素と窒素の混合ガスを用い、300〜400℃で行って
いる。この高誘電化アニール処理により、前記BST膜
中に混入されている炭素は、前記混合ガスの水素によっ
て還元されることになり、BST膜中の低誘電率層が除
去される。なお、窒素ガスは安全性のために用いてお
り、他の不活性ガスを用いてもよい。また、水素ガスの
体積比もアニール温度と処理時間との関係から3〜50
%の範囲で任意に設定することが可能である。On the other hand, by forming the BST film, carbon contained in each of the raw materials is mixed into the BST film to form a low dielectric constant layer, thereby lowering the relative dielectric constant of the entire BST film. I have. Therefore, the annealing for increasing the dielectric constant in step S14 is performed at 300 to 400 ° C. using a mixed gas of hydrogen and nitrogen containing 3 vol% or more of hydrogen in nitrogen. By the annealing for increasing the dielectric constant, the carbon mixed in the BST film is reduced by the hydrogen of the mixed gas, and the low dielectric constant layer in the BST film is removed. Note that nitrogen gas is used for safety, and another inert gas may be used. The volume ratio of the hydrogen gas is also 3 to 50 from the relationship between the annealing temperature and the processing time.
% Can be set arbitrarily.
【0015】このように、BST膜の成膜後に、水素を
含む高誘電化アニール処理を行って形成されたキャパシ
タの特性について測定した結果を図5,図6に示す。図
5はBST膜を形成した時点(as depo),30
0℃,350℃,400℃の各温度で高誘電化アニール
処理を行った後のそれぞれにおける比誘電率を示してい
る。これから、BST膜を成膜しただけのアニール処理
を行わないときの比誘電率が120〜130程度である
のに対し、300℃,350℃の各アニール処理では比
誘電率が180〜200に増加されていることが判る。
また、400℃のアニール処理では比誘電率が160程
度であり、前記各温度の場合に比較して若干低下されて
いるものの、アニール処理を行わない場合に比較すれば
増加していることが確認された。なお、400℃のアニ
ール処理において、比誘電率が若干低下されているの
は、高温処理のためにBST膜を組成するO(酸素)が
水素によってBST膜から抜け出されてしまい、この部
分でのBST膜の結晶に欠陥が生じてしまうためである
と推測される。FIG. 5 and FIG. 6 show the results of measuring the characteristics of the capacitor formed by performing the high dielectric annealing containing hydrogen after the formation of the BST film. FIG. 5 shows the state when the BST film was formed (as depo), 30
The figure shows the relative dielectric constant after each of the high dielectric annealing treatments at 0 ° C., 350 ° C., and 400 ° C. From this, the relative dielectric constant when the annealing process only for forming the BST film is not performed is about 120 to 130, but the relative dielectric constant increases to 180 to 200 in each of the annealing processes at 300 ° C. and 350 ° C. You can see that it is.
Further, it was confirmed that the relative dielectric constant in the annealing process at 400 ° C. was about 160, which was slightly lower than that at each of the above temperatures, but increased compared to the case without annealing. Was done. The reason why the relative dielectric constant is slightly lowered in the annealing process at 400 ° C. is that O (oxygen) composing the BST film escapes from the BST film due to hydrogen due to the high-temperature process, and this portion is It is presumed that this is because defects occur in the crystals of the BST film.
【0016】また、図6は形成されたキャパシタのリー
ク電流特性の測定結果を示す図であり、図5に対応して
高誘電化アニール処理を行わない(as depo),
300℃,350℃,400℃の各温度でアニール処理
を行った各BST膜についての印加電圧に対するリーク
電流を示している。この測定結果から、高誘電化アニー
ル処理を行った場合においても、リーク電流特性には特
に目立った変化が生じていない。これは、前記実施形態
のように、上下の各電極にRu膜を用いた場合には、P
tのような触媒性電極を用いた際に生じるBST還元促
進作用が抑制されるため、水素アニールを行っても酸素
欠陥が形成されず、酸素欠陥が起因するリール電流の増
加が生じないためである。ただ、アニール温度400℃
におけるリーク電流が他に比較して若干多くなっている
のは、前記した比誘電率の測定結果の場合で推測された
ようにBST膜中から酸素が除去されてしまい、前記し
た酸素欠陥によるリーク電流が増えたためであると推測
される。なお、高誘電化アニール処理を行わない際の印
加電圧2〜3Vにおける値は、測定誤差によるものであ
ると思われる。このように、DRAMのキャパシタとし
て構成した際に印加される電圧0.75Vにおけるリー
ク電流は、実用上問題のない値であることが確認され
た。FIG. 6 is a diagram showing the measurement results of the leakage current characteristics of the formed capacitor. As shown in FIG. 5, the high dielectric annealing treatment is not performed (as depo).
The graph shows the leakage current with respect to the applied voltage for each BST film that has been annealed at 300 ° C., 350 ° C., and 400 ° C. From this measurement result, even when the high dielectric annealing treatment is performed, no noticeable change occurs in the leak current characteristics. This is because when the Ru film is used for each of the upper and lower electrodes as in the above-described embodiment, P
Since the BST reduction promoting action that occurs when a catalytic electrode such as t is used is suppressed, oxygen defects are not formed even when hydrogen annealing is performed, and the reel current does not increase due to the oxygen defects. is there. However, the annealing temperature is 400 ° C
Is slightly larger than the others because oxygen was removed from the BST film as estimated in the case of the measurement result of the relative permittivity described above, and the It is presumed that the current was increased. The value at the applied voltage of 2 to 3 V when the high dielectric annealing treatment is not performed is considered to be due to a measurement error. As described above, it was confirmed that the leak current at a voltage of 0.75 V applied when the capacitor was configured as a DRAM capacitor was a value having no practical problem.
【0017】なお、前記した高誘電化アニール処理を4
00℃程度で行った際に生じる酸素の除去に伴う比誘電
率の低下とリーク電流の増加を防止するために、除去さ
れた酸素による酸素欠陥を補償するための酸素アニール
処理を行えばよい。このような酸素欠陥の補償技術とし
ては、例えば、Jpn.J.Appl.Phys.Vol.35(1996)pp.5178
-5180 Part 1,No.9B,September 1996 「Origin of Diel
ectric Relaxation Observed for Ba0.5Sr0.5TiO3 Thin
-Film Capacitor 」に記載の技術がある。It should be noted that the annealing for increasing the dielectric constant is performed by
In order to prevent a decrease in relative dielectric constant and an increase in leak current due to removal of oxygen occurring at about 00 ° C., an oxygen annealing treatment for compensating for oxygen defects due to the removed oxygen may be performed. As a technique for compensating for such oxygen vacancies, for example, Jpn.J.Appl.Phys.Vol.35 (1996) pp.5178
-5180 Part 1, No.9B, September 1996 `` Origin of Diel
ectric Relaxation Observed for Ba 0.5 Sr 0.5 TiO 3 Thin
-Film Capacitor ".
【0018】ここで、本発明の高誘電化アニール処理
は、基本的にはBST膜に混入された元素を還元処理に
よって除去すれば実現できるため、アニールに用いるガ
スとしては、前記した水素に限られるものではなく、二
酸化炭素ガス、テトラハイドロフラン(C4 H8 O)等
の還元性ガスを用いることができる。Here, the annealing for increasing the dielectric constant of the present invention can be basically realized by removing the elements mixed in the BST film by a reduction treatment. Therefore, the gas used for annealing is limited to the above-mentioned hydrogen. However, a reducing gas such as carbon dioxide gas or tetrahydrofuran (C 4 H 8 O) can be used.
【0019】さらに、本発明における高誘電絶縁膜は、
前記実施形態のBST膜に限られるものではなく、Ba
TiO3 ,SrTiO3 ,TaO3 等の高誘電絶縁膜に
おいても同様であり、これらの高誘電絶縁膜をCVD法
により形成した後に、還元性ガス雰囲気でのアニール処
理を行うことで、比誘電率を増大することが可能とな
る。なお、本発明はBST膜中に不純物が混入されたこ
とによって生じる比誘電率を高めることが特徴とされる
ため、前記したCVD法に限られるものではなく、場合
によってはスパッタ法により形成されたBST膜につい
ても同様の還元処理を行うことで比誘電率を向上するこ
とが可能となる。Further, the high dielectric insulating film according to the present invention comprises:
The present invention is not limited to the BST film of the above-described embodiment.
The same applies to high dielectric insulating films such as TiO 3 , SrTiO 3 , and TaO 3. After forming these high dielectric insulating films by a CVD method, annealing in a reducing gas atmosphere is performed to obtain a relative dielectric constant. Can be increased. The present invention is characterized by increasing the relative dielectric constant caused by impurities mixed in the BST film, and is not limited to the above-described CVD method, and may be formed by a sputtering method in some cases. By performing the same reduction treatment on the BST film, the relative dielectric constant can be improved.
【0020】さらに、本発明を前記実施形態のようなキ
ャパシタの誘電膜として形成する場合に、キャパシタの
上下電極は、前記したようにリーク電流を抑制する上で
はRu膜が好適であるが、リーク電流が問題にならない
場合、あるいは前記した酸素アニールによる酸素欠陥補
償を行うような場合には、高誘電化アニール処理におけ
る酸素の引き抜きの問題は解消されるため、Ptを用い
てもよく、あるいはその他の金属を用いることも可能で
ある。Further, when the present invention is formed as the dielectric film of the capacitor as in the above embodiment, the upper and lower electrodes of the capacitor are preferably Ru films in order to suppress the leakage current as described above. In the case where the current does not cause a problem, or in the case where the above-described oxygen deficiency is compensated by oxygen annealing, Pt may be used because the problem of oxygen extraction in the high dielectric annealing treatment is solved. Can also be used.
【0021】また、前記実施形態では、BST膜の上に
上部電極を形成した後に高誘電化アニール処理を行って
いるが、BST膜を形成した直後に行うことも可能であ
る。この場合には、BST膜が露呈された状態でアニー
ル処理が行われるために、GST膜中の不純物(炭素)
を還元除去する効率は高められるが、前記した酸素欠陥
の発生が顕著になり易く、したがって、これらアニール
処理効率と酸素欠陥補償との兼ね合いから高誘電化アニ
ール処理工程のタイミングを適切に設定すればよい。In the above embodiment, the high dielectric annealing treatment is performed after the upper electrode is formed on the BST film. However, the annealing may be performed immediately after the BST film is formed. In this case, since the annealing process is performed in a state where the BST film is exposed, the impurity (carbon) in the GST film is
Although the efficiency of reducing and removing is increased, the generation of the oxygen vacancies described above tends to be remarkable, and accordingly, if the timing of the high dielectric annealing process is appropriately set in view of the balance between the anneal efficiency and the oxygen vacancy compensation. Good.
【0022】なお、前記実施形態では本発明の高誘電絶
縁膜ないしキャパシタをDRAMの情報記憶用のキャパ
シタに適用した例を示しているが、半導体装置として半
導体基板上に形成される種々の高誘電絶縁膜やキャパシ
タ、特にスパッタ法では均一な成膜が困難な場合の高誘
電絶縁膜やキャバシタであれば本発明を同様に適用する
ことが可能である。Although the above embodiment shows an example in which the high dielectric insulating film or capacitor of the present invention is applied to a capacitor for storing information of a DRAM, various high dielectric constant films formed on a semiconductor substrate as a semiconductor device are shown. The present invention can be similarly applied to an insulating film or a capacitor, particularly a high dielectric insulating film or a capacitor when uniform film formation is difficult by a sputtering method.
【0023】[0023]
【発明の効果】以上説明したように本発明は、BST膜
等の高誘電絶縁膜を成膜した後に、水素等の還元ガス雰
囲気でアニール処理を行うことにより、高誘電絶縁膜を
成膜する際に高誘電絶縁膜中に混入された炭素等の不純
物を還元処理し、高誘電絶縁膜中から不純物を除去して
いる。このため、不純物によって高誘電絶縁膜中に存在
していた低誘電率層が除去されることになり、高誘電絶
縁膜の比誘電率を向上することが可能となる。また、前
記アニール処理に際しての温度を適切に管理すること
で、リーク電流を抑制した高誘電絶縁膜を得ることがで
きる。これにより、微細面積の高容量かつ低リーク電流
のキャパシタの製造が実現でき、ギガビット級のDRA
Mを始めとする高集積な半導体装置の製造が実現でき
る。As described above, according to the present invention, a high dielectric insulating film such as a BST film is formed and then an annealing treatment is performed in a reducing gas atmosphere such as hydrogen to form the high dielectric insulating film. At this time, impurities such as carbon mixed in the high dielectric insulating film are reduced to remove the impurities from the high dielectric insulating film. Therefore, the low dielectric constant layer existing in the high dielectric insulating film is removed by the impurity, and the relative dielectric constant of the high dielectric insulating film can be improved. In addition, by appropriately controlling the temperature at the time of the annealing treatment, a high dielectric insulating film with suppressed leakage current can be obtained. As a result, it is possible to manufacture a capacitor having a small area, a high capacitance and a low leakage current, and a gigabit class DRA.
The manufacture of highly integrated semiconductor devices such as M can be realized.
【図1】本発明をDRAMのキャパシタ形成工程に適用
した実施形態を工程順に示す断面図のその1である。FIG. 1 is a first sectional view showing an embodiment in which the present invention is applied to a DRAM capacitor forming step in the order of steps;
【図2】図1の工程に続く工程断面図のその2である。FIG. 2 is a second sectional view showing a step that follows the step of FIG. 1;
【図3】本発明をキャパシタの形成工程に適用した場合
のキャパシタの成膜工程を示すフロー図である。FIG. 3 is a flow chart showing a capacitor film forming step when the present invention is applied to a capacitor forming step.
【図4】本発明にかかるBST膜の原料を示す図であ
る。FIG. 4 is a diagram showing raw materials for a BST film according to the present invention.
【図5】本発明方法で形成されたBST膜のアニール温
度に対する比誘電率特性を示す図である。FIG. 5 is a graph showing a relative dielectric constant characteristic with respect to an annealing temperature of a BST film formed by the method of the present invention.
【図6】図5のBST膜のアニール温度に対するリーク
電流特性を示す図である。FIG. 6 is a view showing a leakage current characteristic with respect to an annealing temperature of the BST film of FIG. 5;
【図7】CVD法により形成されたBST膜の比誘電率
特性を示す図である。FIG. 7 is a diagram showing a relative dielectric constant characteristic of a BST film formed by a CVD method.
1 シリコン基板 2 P型ウェル 3 素子分離酸化膜 4 ゲート酸化膜 5 ゲート電極(ワード線) 6 ソース・ドレイン領域 7 第1層間絶縁膜 8 データ線コンタクト 9 データ線 10 第2層間絶縁膜 11 キャパシタコンタクト 12 プラグ 13 厚いシリコン酸化膜 14 凹部 15 下部電極(Ru膜) 16 容量絶縁膜(BST膜) 17 上部電極(Ru膜) DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 P-type well 3 Element isolation oxide film 4 Gate oxide film 5 Gate electrode (word line) 6 Source / drain region 7 First interlayer insulating film 8 Data line contact 9 Data line 10 Second interlayer insulating film 11 Capacitor contact 12 Plug 13 Thick silicon oxide film 14 Depression 15 Lower electrode (Ru film) 16 Capacitance insulating film (BST film) 17 Upper electrode (Ru film)
Claims (8)
後に、還元性ガス雰囲気でアニール処理を行うことを特
徴とする半導体装置の製造方法。1. A method for manufacturing a semiconductor device, comprising: performing a annealing process in a reducing gas atmosphere after forming a high dielectric insulating film on a semiconductor substrate.
と、前記下部電極の表面に容量絶縁膜としての高誘電絶
縁膜を成膜する工程と、前記高誘電絶縁膜上に上部電極
を形成する工程を含んで前記半導体基板上にキャパシタ
を形成する半導体装置の製造方法において、前記高誘電
絶縁膜を成膜した後に、還元性ガス雰囲気でアニール処
理を行うことを特徴とする半導体装置の製造方法。2. A step of forming a lower electrode on a semiconductor substrate; a step of forming a high dielectric insulating film as a capacitive insulating film on a surface of the lower electrode; and forming an upper electrode on the high dielectric insulating film. A method of manufacturing a semiconductor device, wherein a capacitor is formed on a semiconductor substrate including the step of performing, after the high dielectric insulating film is formed, annealing is performed in a reducing gas atmosphere. Method.
した後に行う請求項2に記載の半導体装置の製造方法。3. The method according to claim 2, wherein the annealing is performed after forming the upper electrode.
(ルテニウム)膜を成膜する請求項2または3に記載の
半導体装置の製造方法。4. An Ru electrode as the upper electrode and the lower electrode.
The method for manufacturing a semiconductor device according to claim 2, wherein a (ruthenium) film is formed.
O3 高誘電絶縁膜(以下、BST膜と称する)であり、
CVD法によって成膜する請求項1ないし4のいずれか
に記載の半導体装置の製造方法。5. The high dielectric insulating film is made of (Ba, Sr) Ti
O 3 high dielectric insulating film (hereinafter referred to as BST film),
The method for manufacturing a semiconductor device according to claim 1, wherein the film is formed by a CVD method.
上含む水素と窒素の混合ガスである請求項1ないし5の
いずれかに記載の半導体装置の製造方法。6. The method for manufacturing a semiconductor device according to claim 1, wherein the reducing gas is a mixed gas of hydrogen and nitrogen containing 3 vol% or more of hydrogen.
行う請求項6に記載の半導体装置の製造方法。7. The method for manufacturing a semiconductor device according to claim 6, wherein the annealing is performed at 300 to 400 ° C.
を行う工程を含む請求項1ないし7のいずれかに記載の
半導体装置の製造方法。8. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of performing oxygen annealing after said annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01562398A JP3225913B2 (en) | 1998-01-28 | 1998-01-28 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01562398A JP3225913B2 (en) | 1998-01-28 | 1998-01-28 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11214385A true JPH11214385A (en) | 1999-08-06 |
JP3225913B2 JP3225913B2 (en) | 2001-11-05 |
Family
ID=11893849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01562398A Expired - Fee Related JP3225913B2 (en) | 1998-01-28 | 1998-01-28 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3225913B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11297964A (en) * | 1998-03-26 | 1999-10-29 | Samsung Electronics Co Ltd | Method for manufacturing capacitance of semiconductor device with dielectric film having high dielectric constant |
JP2006128643A (en) * | 2004-09-30 | 2006-05-18 | Tdk Corp | Dielectric thin film, thin film dielectric element and its manufacturing method |
KR100624904B1 (en) * | 1999-09-10 | 2006-09-19 | 주식회사 하이닉스반도체 | Method of manufacturing a capacitor in a semiconductor device |
CN100466194C (en) * | 2005-08-31 | 2009-03-04 | Tdk株式会社 | Dielectric film and process for its fabrication |
KR100983165B1 (en) * | 1999-12-09 | 2010-09-20 | 도쿄엘렉트론가부시키가이샤 | METHOD FOR FORMING TiSiN FILM AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE |
-
1998
- 1998-01-28 JP JP01562398A patent/JP3225913B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11297964A (en) * | 1998-03-26 | 1999-10-29 | Samsung Electronics Co Ltd | Method for manufacturing capacitance of semiconductor device with dielectric film having high dielectric constant |
KR100624904B1 (en) * | 1999-09-10 | 2006-09-19 | 주식회사 하이닉스반도체 | Method of manufacturing a capacitor in a semiconductor device |
KR100983165B1 (en) * | 1999-12-09 | 2010-09-20 | 도쿄엘렉트론가부시키가이샤 | METHOD FOR FORMING TiSiN FILM AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE |
JP2006128643A (en) * | 2004-09-30 | 2006-05-18 | Tdk Corp | Dielectric thin film, thin film dielectric element and its manufacturing method |
CN100466194C (en) * | 2005-08-31 | 2009-03-04 | Tdk株式会社 | Dielectric film and process for its fabrication |
Also Published As
Publication number | Publication date |
---|---|
JP3225913B2 (en) | 2001-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100493040B1 (en) | Capacitor of a semiconductor device and manufacturing method whereof | |
JPH11233723A (en) | Electronic element and its manufacture, and dielectric capacitor and its manufacture, and optical element and its manufacture | |
JPH10189908A (en) | Manufacture of metal oxide capacitor and semiconductor memory device | |
US6690054B2 (en) | Capacitor | |
US6525364B1 (en) | Capacitor for semiconductor memory device and method of manufacturing the same | |
JP3189813B2 (en) | Method for manufacturing semiconductor device | |
US20130071986A1 (en) | Partial etch of dram electrode | |
US6133086A (en) | Fabrication method of a tantalum pentoxide dielectric layer for a DRAM capacitor | |
JP3225913B2 (en) | Method for manufacturing semiconductor device | |
KR100319874B1 (en) | Capacitor of semiconductor device and manufacturing method thereof | |
JPH11177048A (en) | Semiconductor element and manufacture thereof | |
US6329237B1 (en) | Method of manufacturing a capacitor in a semiconductor device using a high dielectric tantalum oxide or barium strontium titanate material that is treated in an ozone plasma | |
KR100243275B1 (en) | Capacitor of semiconductor device and manufacturing method thereof | |
JP4261021B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3317295B2 (en) | Manufacturing method of capacitive element | |
JP2007081443A (en) | Semiconductor device and method of manufacturing the same | |
KR100624904B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
US6417012B1 (en) | Method of forming ferroelectric capacitor in semiconductor device | |
KR100614576B1 (en) | Method for forming capacitor | |
KR100559136B1 (en) | Semiconductor capacitor and manufacutring method therefor | |
US20010023977A1 (en) | Semiconductor device and method for fabricating the same | |
KR20010030161A (en) | Capacitor and a meothod for fabricating the same | |
US20020047148A1 (en) | Methods of manufacturing integrated circuit capacitors having ruthenium upper electrodes and capacitors formed thereby | |
JPH10335581A (en) | Semiconductor device and manufacture thereof | |
JP4357146B2 (en) | Method for forming oxide dielectric film and method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070831 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080831 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080831 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090831 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090831 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |