JPH11187582A - Electromagnetic induction power supply - Google Patents
Electromagnetic induction power supplyInfo
- Publication number
- JPH11187582A JPH11187582A JP9347621A JP34762197A JPH11187582A JP H11187582 A JPH11187582 A JP H11187582A JP 9347621 A JP9347621 A JP 9347621A JP 34762197 A JP34762197 A JP 34762197A JP H11187582 A JPH11187582 A JP H11187582A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- power supply
- resonance
- signal
- oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、携帯機器や小型
電気機器等に無接触で給電を行なうことができる電磁誘
導電源装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction power supply capable of supplying electric power to portable equipment, small electric equipment and the like without contact.
【0002】[0002]
【従来の技術】電動歯ブラシ、電動工具、あるいは携帯
電話などに電源を供給する場合、2次電池あるいは駆動
モータなどの負荷を備えた機器本体を電力を供給する電
源本体と分離可能に設け、電源本体から機器本体へ電磁
誘導結合を介して電力を供給する方式が一般に利用され
る。2. Description of the Related Art When power is supplied to an electric toothbrush, a power tool, a mobile phone, or the like, a device body having a load such as a secondary battery or a driving motor is provided so as to be separable from the power supply body. A method of supplying power from the main body to the device main body via electromagnetic induction coupling is generally used.
【0003】このような電磁誘導結合による電源装置を
用いた例として、例えば特開平6−46531号公報に
よる充電装置の発明が知られている。この充電装置は、
直流電力を高周波電力に変換する高周波電力発生回路と
給電用コイルを含む共振回路とを並列接続した1次側回
路から給電用コイルで高周波電力を共振させて生じるコ
イル誘起電圧を1次電圧として2次側回路のコイルへ2
次電圧を誘起して給電し、2次電池を備えた被充電器に
対し充電するというものである。As an example of using such a power supply device by electromagnetic induction coupling, for example, the invention of a charging device disclosed in Japanese Patent Application Laid-Open No. 6-46531 is known. This charging device
A coil induced voltage generated by resonating high frequency power with a power supply coil from a primary side circuit in which a high frequency power generation circuit for converting DC power to high frequency power and a resonance circuit including a power supply coil are connected in parallel is defined as a primary voltage. To the coil of the secondary circuit 2
In this method, a secondary voltage is induced to supply power, and a charged device including a secondary battery is charged.
【0004】この充電装置では、高周波電力発生回路と
して充放電コンデンサにスイッチング素子を組合せたも
のが用いられており、これにより高周波電力を共振回路
へ給電すると共振して給電用コイルに数十キロヘルツの
高周波発振が得られる。In this charging device, a combination of a charging and discharging capacitor and a switching element is used as a high-frequency power generation circuit. When power is supplied to the resonance circuit by high-frequency power, resonance occurs and a power supply coil of several tens of kilohertz is applied to the power supply coil. High frequency oscillation is obtained.
【0005】又、この充電装置の2次側回路における2
次電池の電圧情報は送信回路により1次側回路へ送ら
れ、1次側回路の制御回路によりコイル誘起電圧を誘起
又は停止させるようにしている。[0005] Further, in the secondary circuit of the charging device,
The voltage information of the next battery is sent to the primary circuit by the transmission circuit, and the control circuit of the primary circuit induces or stops the coil induced voltage.
【0006】電磁誘導結合を利用した電源装置を備えた
機器の他の例として特開平6−311658号公報の装
置が知られている。この公報の装置は、電源を供給する
電源本体に対して着脱自在に装着される機器本体へ電磁
誘導結合により電力を供給するというものであり、機器
本体を電源本体に装着した際に電源本体から機器本体に
所定の検知信号を送り、その信号に基づく機器応答手段
から送られる応答信号を電源本体側で受けるとその信号
で1次側発振部の出力制御を可能とする機器検知手段を
備えている。As another example of a device provided with a power supply device utilizing electromagnetic induction coupling, a device disclosed in Japanese Patent Application Laid-Open No. 6-31658 is known. The device disclosed in this publication supplies power by electromagnetic induction coupling to a device body detachably mounted on a power source body that supplies power, and when the device body is mounted on the power source body, the power is supplied from the power source body. A power supply main body sends a predetermined detection signal to the main body of the apparatus, and receives a response signal sent from the main body main body based on the signal. I have.
【0007】この装置では、電源本体から機器本体に電
力供給をする際に金属片などを負荷と誤認して渦電流に
よる発熱をしないように機器本体を識別することにより
電源を供給するようにしている。In this device, when power is supplied from the power supply main body to the equipment main body, the power is supplied by identifying the equipment main body so as not to generate heat due to eddy current by erroneously recognizing a metal piece or the like as a load. I have.
【0008】[0008]
【発明が解決しようとする課題】ところで、電磁誘導結
合を利用して電源を供給する電源装置は、前述したよう
に、携帯商品に多く利用されており、このため2次側電
源を商品内に組み込む際には出来るだけ小型化すること
が要求される。又、電流が500mAを超える機器にあ
っては2次電源の発熱は無視できない。As described above, a power supply device for supplying power using electromagnetic induction coupling is widely used in portable products, and as a result, a secondary power supply is provided in the product. When assembling, it is required to reduce the size as much as possible. Further, in a device having a current exceeding 500 mA, the heat generated by the secondary power supply cannot be ignored.
【0009】一方、かかる電源装置は商用交流電源から
変換した直流電源を1次側共振回路へ送り、この共振回
路で共振した信号を2次側共振回路へそのまま伝達する
のが一般的である。上記1次側の共振回路を構成する場
合、自励発振型と他励発振型とがあり、前述した2つの
特許公報に記載されたもののうち後者(特開平6−31
1658号公報)は自励型、前者(特開平6−4653
1号公報)は他励発振型に属するが、共振回路と同期し
たものではない。On the other hand, such a power supply generally sends a DC power converted from a commercial AC power to a primary resonance circuit, and transmits a signal resonated by the resonance circuit to a secondary resonance circuit as it is. When the primary side resonance circuit is configured, there are a self-excited oscillation type and a separately excited oscillation type, and the latter (Japanese Unexamined Patent Application Publication No.
1658) is a self-excited type, the former (Japanese Patent Laid-Open No. 6-46553).
No. 1) belongs to the separately excited oscillation type, but is not synchronized with the resonance circuit.
【0010】特に自励発振型の発振回路の場合、発振回
路の構成に起因してその発振回路への入力電圧や負荷状
態の変動によって共振周波数が変化する。前記第1の特
許公報の例では2次側の電池電圧情報を非接触の伝達手
段で1次側へ送り、2次側の負荷変動による共振周波数
の変化を抑制するようにしているが、入力電圧の変動に
よる共振周波数の変化を抑制することはできない。In particular, in the case of a self-excited oscillation type oscillation circuit, the resonance frequency changes due to fluctuations in the input voltage to the oscillation circuit and load conditions due to the configuration of the oscillation circuit. In the example of the first patent publication, the battery voltage information on the secondary side is transmitted to the primary side by a non-contact transmission means so as to suppress the change in the resonance frequency due to the load fluctuation on the secondary side. It is not possible to suppress a change in resonance frequency due to a change in voltage.
【0011】1次側の共振周波数が変化するとそのまま
2次側へその信号を送る方式であるため2次側共振周波
数も影響を受けて変化し、輻射ノイズや線路ノイズが大
きくなり2次側電源回路の安定性を得ることができず、
かつ同調がずれることで2次側への電力供給が減少して
エネルギの伝達効率が落ちる。このため、2次側回路の
電圧や電流を安定させるためには安定化のための特別な
回路を設けなければならず、2次側回路の部品点数の増
加、部品の発熱、コスト高などを招き、又ノイズ対策の
ためスイッチング周波数を高周波化することができず、
機器の小型化が一定以上はどうしても計れず、電磁誘導
電源装置を導入する際に大きな障害となっている。When the resonance frequency of the primary side changes, the signal is sent to the secondary side as it is. Therefore, the resonance frequency of the secondary side is also affected and changes, so that radiation noise and line noise increase, and the secondary side power supply Circuit stability cannot be obtained,
In addition, due to the misalignment, the power supply to the secondary side decreases, and the energy transmission efficiency decreases. Therefore, in order to stabilize the voltage and current of the secondary circuit, a special circuit for stabilization must be provided, which increases the number of parts of the secondary circuit, heat generation of parts, and high cost. In addition, the switching frequency cannot be increased to prevent noise,
The miniaturization of the equipment cannot be measured beyond a certain level, which is a major obstacle when introducing an electromagnetic induction power supply.
【0012】この発明は、1次側共振回路に他励発振型
を用いて入力電圧や負荷状態の変動によって共振周波数
が変化しないようにして2次側回路に安定した電源を供
給し、かつ共振ノイズが少なく、部品点数を増加させな
いことにより2次側電源を小型化して携帯商品の小型化
に適応できる電磁誘導電源を提供することを課題とす
る。According to the present invention, a separately excited oscillation type is used for the primary-side resonance circuit to supply a stable power to the secondary-side circuit so that the resonance frequency does not change due to fluctuations in the input voltage or the load state. It is an object of the present invention to provide an electromagnetic induction power supply that is small in noise and does not increase the number of parts, thereby reducing the size of the secondary power supply and adapting to miniaturization of portable products.
【0013】[0013]
【課題を解決するための手段】この発明は、上記課題を
解決する手段として、直流電力が送られると所定の共振
状態で1次電圧を発生する共振コイルとコンデンサを有
する1次側共振回路と、独立の発振回路からその信号を
発振周波数に同期して作動するスイッチング回路を介し
て上記共振回路へ出力するように接続した発振信号出力
手段とから成り、上記所定の共振状態を発振回路の発振
周波数に同期させるようにした1次側電源回路と、上記
1次側共振回路から電磁誘導結合により2次側共振回路
に共振した2次電圧を誘起させて2次電力を供給する2
次側電源回路とを分離自在に備えて成る電磁誘導電源装
置としたのである。According to the present invention, as a means for solving the above problems, a primary resonance circuit having a resonance coil and a capacitor for generating a primary voltage in a predetermined resonance state when DC power is transmitted is provided. Oscillation signal output means connected so as to output the signal from the independent oscillation circuit to the resonance circuit via a switching circuit that operates in synchronization with the oscillation frequency. A primary power supply circuit adapted to synchronize with a frequency; and a secondary voltage resonating from the primary resonance circuit to a secondary resonance circuit by electromagnetic induction coupling to supply secondary power.
The electromagnetic induction power supply device is provided so as to be separable from the secondary power supply circuit.
【0014】上記の構成としたこの発明の電磁誘導電源
装置によれば、共振回路における共振周波数が1次側回
路の入力電圧や負荷側の電圧変動による影響を受けるこ
となく安定した信号として1次側から2次側へ伝送さ
れ、2次側回路へ安定した電力を供給する。According to the electromagnetic induction power supply of the present invention having the above-described configuration, the resonance frequency in the resonance circuit is converted into a primary signal as a stable signal without being affected by the input voltage of the primary circuit or the voltage fluctuation on the load side. Is transmitted from the side to the secondary side and supplies stable power to the secondary side circuit.
【0015】発振信号出力手段は、独立の発振回路で高
周波信号を発振させ、その信号をスイッチング回路を介
して出力し、1次側共振回路へ入力すると、1次側共振
回路のコイルとコンデンサのL、Cによる時定数を適宜
設定することにより上記発振回路の発振周波数に同調し
て共振信号が発生する。The oscillating signal output means oscillates a high-frequency signal by an independent oscillating circuit, outputs the signal via a switching circuit, and inputs the signal to a primary-side resonance circuit. By appropriately setting the time constants of L and C, a resonance signal is generated in synchronization with the oscillation frequency of the oscillation circuit.
【0016】上記スイッチング回路により高周波発振信
号を入力する際に、スイッチング回路がオン、オフする
時間は発振回路の周波数に同調しており、スイッチング
回路がオフの時間内に共振回路の減衰振動が180°進
むようにL、Cの時定数を定めておけば、発振回路の周
波数に同期して発生した共振回路の振動波形の最も大き
い波形部分が発振回路の周波数に同期して得られる。When a high-frequency oscillation signal is input by the switching circuit, the time during which the switching circuit is turned on and off is tuned to the frequency of the oscillation circuit. If the time constants of L and C are determined so as to advance by an angle, the largest waveform portion of the oscillation waveform of the resonance circuit generated in synchronization with the frequency of the oscillation circuit can be obtained in synchronization with the frequency of the oscillation circuit.
【0017】このため、波形の最も大きい状態で2次側
へ信号の伝達が行なわれる。振動波形は最大波形に続い
て小さい波形の振動も発生するが、その小さい波形の発
生時には外部から次の高周波信号が入力され、結果的に
小さい波形はカットされて最大波形の振動で2次側への
信号が伝達されるからである。Therefore, the signal is transmitted to the secondary side in a state where the waveform is the largest. The vibration waveform also generates a small waveform vibration following the maximum waveform, but when the small waveform is generated, the next high-frequency signal is input from the outside, and as a result, the small waveform is cut and the secondary waveform is generated by the maximum waveform vibration. Is transmitted.
【0018】上記の独立の発振回路は、自励型共振回路
のような共振回路で発生する共振信号を共振回路とルー
プする回路からの信号で設定するという回路ではなく、
共振回路とは無関係に発生した高周波信号を共振回路へ
外部から入力する他励型の共振回路を構成するためのも
のである。The above-mentioned independent oscillation circuit is not a circuit in which a resonance signal generated by a resonance circuit such as a self-excited resonance circuit is set by a signal from a circuit looping with the resonance circuit.
This is for configuring a separately-excited resonance circuit that externally inputs a high-frequency signal generated independently of the resonance circuit to the resonance circuit.
【0019】このようにして、発振回路の高周波発振信
号に同調して共振する1次側共振回路へ2次側電源回路
を接合すると、2次側共振回路に電磁誘導結合により2
次側電圧が誘起され、これを整流することにより2次側
電力が負荷に供給される。In this way, when the secondary power supply circuit is joined to the primary resonance circuit that resonates in synchronization with the high frequency oscillation signal of the oscillation circuit, the secondary resonance circuit is connected to the secondary resonance circuit by electromagnetic induction coupling.
A secondary side voltage is induced, and by rectifying this, secondary side power is supplied to the load.
【0020】2次側回路の負荷の電圧、電流が変動した
場合、その情報を非接触で1次側電源回路へ伝送し、ス
イッチング回路を介して発振回路からの信号の1次側共
振回路への通過をコントロールするとよい。この場合、
スイッチング回路は発振回路の周波数に同調するものと
は別に第2のスイッチング回路を設け、2次側情報で発
振回路からの信号の通過、阻止をコントロールする。When the voltage and current of the load of the secondary circuit fluctuate, the information is transmitted to the primary power supply circuit in a non-contact manner, and is transmitted to the primary resonance circuit of the signal from the oscillation circuit via the switching circuit. It is good to control the passage of. in this case,
The switching circuit is provided with a second switching circuit separately from the one tuned to the frequency of the oscillating circuit, and controls passage and blocking of a signal from the oscillating circuit by secondary side information.
【0021】第2のスイッチング回路により、負荷の電
圧、電流が設定レベル以下になると発振回路の信号を通
過させ、設定レベル以上になると信号の通過を阻止す
る。このため、発振信号は間欠的となり、1次側回路か
らの信号も間欠的となって2次側電力が減少し、間欠的
な時間を小さくすると信号が通過して2次側電力が増大
する。The second switching circuit allows the signal of the oscillating circuit to pass when the voltage and current of the load fall below the set level, and prevents the signal from passing when the load voltage and current fall above the set level. For this reason, the oscillation signal becomes intermittent, the signal from the primary side circuit also becomes intermittent, and the secondary power decreases. If the intermittent time is reduced, the signal passes and the secondary power increases. .
【0022】[0022]
【実施の形態】以下、この発明の実施の形態について図
面を参照して説明する。図1は実施形態の電磁誘導電源
装置の概略ブロック図である。10は1次側電源回路、
20は2次側電源回路である。なお、この電源装置は、
携帯電話などの携帯機器、あるいは電動歯ブラシ、ひげ
そり器などの小型電気機器等の2次電池応用製品の電源
装置として用いられる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram of the electromagnetic induction power supply device of the embodiment. 10 is a primary side power supply circuit,
Reference numeral 20 denotes a secondary-side power supply circuit. In addition, this power supply
It is used as a power supply device of a secondary battery application product such as a portable device such as a mobile phone, or a small electric device such as an electric toothbrush or a shaving device.
【0023】図1に示すように、1次側電源回路10
は、外部の商用電源Pから得られる交流電力を整流して
直流電力を得る整流回路11、上記直流電力が送られる
とその電流から所定の共振状態で1次電圧を生じる共振
コイル12Lとコンデンサ12Cから成る共振回路12
(1次側)、この共振回路へ所定の周波数で発振した信
号を出力しその信号のオン、オフによって共振回路12
において減衰振動を起こさせるための発振信号出力手段
13、この出力手段へ2次側回路における負荷の電流、
電圧情報を入力する2次側情報入力部14とを備えてい
る。As shown in FIG. 1, the primary power supply circuit 10
A rectifier circuit 11 for rectifying AC power obtained from an external commercial power supply P to obtain DC power; a resonance coil 12L and a capacitor 12C for generating a primary voltage in a predetermined resonance state from the current when the DC power is sent; Resonance circuit 12 comprising
(Primary side), a signal oscillated at a predetermined frequency is output to the resonance circuit, and the resonance circuit 12 is turned on and off by the signal.
Oscillation signal output means 13 for causing damped oscillation in the above, the load current in the secondary side circuit to this output means,
A secondary information input unit 14 for inputting voltage information.
【0024】2次側回路20は、共振コイル21Lとコ
ンデンサ21Cから成る2次側の共振回路21、この共
振回路で非接触で電磁誘導結合により誘起される2次電
圧を整流する整流回路22、整流されて直流に変換され
た電力を蓄電する2次電池やモータなどの負荷23、上
記蓄電される電流、電圧などの負荷情報を検出し、1次
側へ非接触で情報を送り出す負荷情報検出部24を備え
ている。The secondary side circuit 20 includes a secondary side resonance circuit 21 including a resonance coil 21L and a capacitor 21C, a rectification circuit 22 for rectifying a secondary voltage induced by electromagnetic induction coupling in a non-contact manner in the resonance circuit, A load 23 such as a secondary battery or a motor for storing rectified and converted DC power, load information such as the stored current and voltage, and load information detection for sending information to the primary side in a non-contact manner. A part 24 is provided.
【0025】上記1次側と2次側の電源回路10、20
の詳細をそれぞれ図2、図3に示す。以下、図1に示さ
れていない詳細部について説明する。図2に示すよう
に、発振信号出力手段13は、独立の発振回路13Gを
備えている。この発振回路13Gの発振周波数は、例え
ば250KHz程の高周波数であり、整流回路11で整
流された直流電力を電源としているが、その電源電圧等
が商用電源Pの変動による影響を受けないように制御電
源部13Pが電源ラインに接続されており、これにより
安定化された電源が供給され発振周波数が変化しないよ
うにしている。The primary and secondary power supply circuits 10 and 20
2 and 3 are shown in FIGS. 2 and 3, respectively. Hereinafter, the details not shown in FIG. 1 will be described. As shown in FIG. 2, the oscillation signal output means 13 includes an independent oscillation circuit 13G. The oscillation frequency of the oscillation circuit 13G is a high frequency of, for example, about 250 KHz, and the DC power rectified by the rectification circuit 11 is used as a power supply. The control power supply unit 13P is connected to a power supply line, so that stabilized power is supplied so that the oscillation frequency does not change.
【0026】発振回路13Gの発振信号は、第1スイッ
チング回路13Sと第2スイッチング回路13SSの2
つのスイッチング回路を経て共振回路12へ出力される
ようにしている。第1スイッチング回路13Sは、LC
共振回路である1次側の共振回路12の基本周波数とな
る発振回路13Gの発振周波数に応じてスイッチングす
るもので、例えば図示のように原理的には3つのトラン
ジスタを組み合わせて発振回路13Gの高周波信号と同
期した信号を共振回路12へ送るようにしている。The oscillating signal of the oscillating circuit 13G is equal to two signals of the first switching circuit 13S and the second switching circuit 13SS.
The signal is output to the resonance circuit 12 via one switching circuit. The first switching circuit 13S has an LC
The switching is performed in accordance with the oscillation frequency of the oscillation circuit 13G which is the fundamental frequency of the resonance circuit 12 on the primary side, which is a resonance circuit. A signal synchronized with the signal is sent to the resonance circuit 12.
【0027】第2スイッチング回路13SSは、原理的
にNORゲート素子のようなスイッチング素子から成
り、2次側情報入力部14からの電圧、電流情報の信号
によって発振回路13Gの信号の通過、阻止をスイッチ
ング制御するものである。2次側回路の電圧、電流情報
は、図示の例では赤外線の光信号を受ける受光素子14
aの出力信号を波形成形器14bで矩形波に成形して回
路13SSへ送られる。The second switching circuit 13SS is composed of a switching element such as a NOR gate element in principle, and passes and blocks the signal of the oscillation circuit 13G by the voltage and current information signals from the secondary side information input unit 14. It controls switching. In the illustrated example, the voltage and current information of the secondary circuit is a light receiving element 14 that receives an infrared light signal.
The output signal a is shaped into a rectangular wave by the waveform shaper 14b and sent to the circuit 13SS.
【0028】この第2スイッチング回路13SSは、2
次側情報入力部14の信号がH信号であれば発振回路1
3Gの信号を阻止させ、L信号であれば発振信号を通過
させる。又、そのスイッチング動作は発振回路13Gの
周波数より十分低い周波数に設定され、従って発振回路
13Gの周波数に関係なく動作し、発振回路13Gの発
振周波数に何ら影響を与えないように設けられる。The second switching circuit 13SS
If the signal of the secondary information input unit 14 is an H signal, the oscillation circuit 1
The 3G signal is blocked, and if the signal is an L signal, the oscillation signal is passed. The switching operation is set to a frequency sufficiently lower than the frequency of the oscillation circuit 13G, so that the switching operation is performed irrespective of the frequency of the oscillation circuit 13G and is provided so as not to affect the oscillation frequency of the oscillation circuit 13G.
【0029】2次側回路20についても、図3で詳細に
示している部分を説明する。即ち、負荷情報検出部24
は、電圧、電流検出器24aを有し、負荷23の電圧又
は電流値をオペアンプにおいて基準電圧として設定され
る電圧設定レベルと比較し、設定レベルより高ければL
信号、低ければH信号を出力する。上記信号は発光ドラ
イバ24bへ送られ、その駆動信号により赤外線の発光
素子24cのオン、オフが制御される。As for the secondary side circuit 20, a part shown in detail in FIG. 3 will be described. That is, the load information detection unit 24
Has a voltage and current detector 24a, compares the voltage or current value of the load 23 with a voltage setting level set as a reference voltage in an operational amplifier,
If the signal is low, an H signal is output. The above signal is sent to the light emitting driver 24b, and the driving signal controls on / off of the infrared light emitting element 24c.
【0030】なお、発光素子24cの光信号は2次側回
路20を1次側回路10に接合したときに1次側回路1
0の受光素子14aに受光され、2次側の電圧、電流情
報が伝達されるものとする。但し、図示の例では光信号
方式の情報伝達手段としたが、光信号以外に超音波信号
あるいは電波信号による手段としてもよい。The light signal of the light emitting element 24c is generated when the secondary circuit 20 is joined to the primary circuit 10.
It is assumed that the light receiving element 14a receives light and the secondary side voltage and current information is transmitted. In the illustrated example, the information transmission means is of the optical signal type, but may be an ultrasonic signal or a radio signal instead of the optical signal.
【0031】上記の構成としたこの実施形態の電磁誘導
電源装置の作用は、次の通りである。1次側回路10の
LC共振回路12へは直流電力が供給され、その電力に
基づいて共振回路12では発振回路13Gからの高周波
発振信号が入力されることによりこの発振信号に同期し
た振動波形の共振信号による1次電圧が発生する。The operation of the electromagnetic induction power supply of this embodiment having the above-described configuration is as follows. DC power is supplied to the LC resonance circuit 12 of the primary circuit 10, and a high-frequency oscillation signal is input from the oscillation circuit 13G to the resonance circuit 12 based on the DC power. A primary voltage is generated by the resonance signal.
【0032】上記共振回路12における共振波形は、発
振回路13Gの発振信号を第1スイッチング回路13S
を通過させた信号に基づく。即ち、発振回路13Gの発
振波形が図4(a)に示すような波形とすると、第1ス
イッチング回路13Sで電流増幅され、その出力信号で
共振回路12に電流を流したり、止めたりするスイッチ
として作用する。The resonance waveform in the resonance circuit 12 is obtained by converting the oscillation signal of the oscillation circuit 13G into the first switching circuit 13S.
Based on the signal passed through. That is, assuming that the oscillation waveform of the oscillation circuit 13G is a waveform as shown in FIG. 4A, the current is amplified by the first switching circuit 13S, and the output signal of the oscillation circuit 13G serves as a switch for flowing or stopping the current to the resonance circuit 12. Works.
【0033】第1スイッチング回路13SがオンでLC
共振回路12に電流が流れ、オフになると共振回路12
は減衰振動を起して図4(b)に示すような減衰振動波
形を作り出す。従って、第1スイッチング回路13Sが
オン、オフする時間は発振回路13Gの周波数となり、
第1スイッチング回路13Sのオフ時間内に減衰振動が
180°進むようにLC共振回路12のL、Cの時定数
を決めておけば、発振回路13Gの発振に同期して最大
波形の振動波形を発振波形に対応して作り出すことがで
き、小さい波形の振動波形はカットされるため、波形の
最も大きい状態で2次側に信号を伝達することができ
る。When the first switching circuit 13S is turned on and the LC
When a current flows through the resonance circuit 12 and turns off, the resonance circuit 12
Causes damped oscillation to produce a damped oscillation waveform as shown in FIG. 4 (b). Therefore, the time when the first switching circuit 13S is turned on and off is the frequency of the oscillation circuit 13G,
If the time constants of L and C of the LC resonance circuit 12 are determined so that the damped oscillation advances by 180 ° during the off time of the first switching circuit 13S, the maximum oscillation waveform is synchronized with the oscillation of the oscillation circuit 13G. Since the oscillation waveform can be generated in accordance with the oscillation waveform and the oscillation waveform of a small waveform is cut, a signal can be transmitted to the secondary side in a state where the waveform is the largest.
【0034】こうしてLC共振回路12で発生した減衰
振動波形の信号は、電磁誘導結合の原理により2次側共
振回路21で1次側の共振周波数に同調した振動波形と
して受け取られ、1次と2次の各共振回路12、21は
同一の周波数に共振して非接触で電力を伝達することと
なる。2次側共振回路21で受取られた信号は2次側整
流回路22で整流して2次側の電力として用いられる。The signal of the damped oscillation waveform generated in the LC resonance circuit 12 is received as the oscillation waveform tuned to the primary resonance frequency by the secondary resonance circuit 21 based on the principle of electromagnetic induction coupling, and the primary and secondary signals are received. The next resonance circuits 12 and 21 resonate at the same frequency and transmit power in a non-contact manner. The signal received by the secondary side resonance circuit 21 is rectified by the secondary side rectification circuit 22 and used as secondary side power.
【0035】上記2次側の電力は2次電池やモータなど
の負荷23に供給され、2次電池の充電状態が満充電状
態に近づくにつれて負荷に必要な電力が変化する。この
ような2次側の電圧や電流の情報は、電圧・電流検出回
路24aで検出され、発光素子24bから1次側の受光
素子14aに伝送されることは前述した通りである。The power on the secondary side is supplied to a load 23 such as a secondary battery or a motor, and the power required for the load changes as the state of charge of the secondary battery approaches a fully charged state. As described above, such information on the secondary side voltage and current is detected by the voltage / current detection circuit 24a and transmitted from the light emitting element 24b to the primary side light receiving element 14a.
【0036】上記光信号は、2次側の電圧が電圧設定レ
ベルより高ければL信号として、低ければH信号として
第2スイッチング回路13SSへ送られるから、1次側
回路10ではH信号であれば発振回路13Gの信号の通
過を停止し、L信号であれば信号を通すように制御され
る。上記第1、第2のスイッチング回路13S、13S
Sを介して1次側の共振回路12に発生される共振波形
の総合的な作成過程を図5に示している。The optical signal is sent to the second switching circuit 13SS as an L signal when the voltage on the secondary side is higher than the voltage setting level, and as an H signal when the voltage is lower than the voltage setting level. The passage of the signal of the oscillation circuit 13G is stopped, and if the signal is an L signal, the signal is controlled to pass. The first and second switching circuits 13S, 13S
FIG. 5 shows an overall process of creating a resonance waveform generated in the resonance circuit 12 on the primary side via S.
【0037】発振回路13Gの発振波形は、(a)に示
すように連続して一定の高周波数で発生しているから、
1次側の共振回路12における共振信号もこれに同調し
た信号として2次側へ信号を伝送し電力を送っている。
負荷側の電圧状態が変化し、図5(f)に示すように、
電圧設定レベルより上下となる変動が生じると、その電
圧変動の大きさに応じたパルス幅の信号として図5
(e)に示す信号が電圧電流検出器24aから出力さ
れ、図5(c)に示すような動作波形の信号が第2スイ
ッチング回路13SSに入力される。Since the oscillation waveform of the oscillation circuit 13G is continuously generated at a constant high frequency as shown in FIG.
The resonance signal in the resonance circuit 12 on the primary side also transmits a signal to the secondary side as a signal tuned to the resonance signal to send power.
The voltage state on the load side changes, and as shown in FIG.
When a fluctuation that is higher or lower than the voltage setting level occurs, a signal having a pulse width corresponding to the magnitude of the voltage fluctuation is generated as shown in FIG.
A signal shown in (e) is output from the voltage / current detector 24a, and a signal having an operation waveform as shown in FIG. 5 (c) is input to the second switching circuit 13SS.
【0038】このため、第1スイッチング回路13Sを
通過した発振波形は、図5(d)のように、第2スイッ
チング回路13SSへL信号が入力された期間だけ発振
波形を取り除いたようになり、その結果発振波形は間欠
的なものとなり、これにより生じる共振回路12におけ
る減衰振動波形も、図5(b)に示すように、間欠的な
ものとなる。Therefore, the oscillation waveform that has passed through the first switching circuit 13S is such that the oscillation waveform is removed only during the period when the L signal is input to the second switching circuit 13SS, as shown in FIG. As a result, the oscillation waveform becomes intermittent, and the resulting damped oscillation waveform in the resonance circuit 12 also becomes intermittent as shown in FIG. 5B.
【0039】このように間欠的な減衰振動波形の間欠の
程度を、2次側電圧、電流情報によりコントロールすれ
ば、2次側電圧、電流が低くなると間欠期間を減少さ
せ、電圧設定レベルに近づくと間欠期間を大きくするこ
とにより1次側回路10から2次側回路20への電力を
変化させることができ、従って希望する2次側の電圧、
電流状態を得ることができる。As described above, if the degree of the intermittent intermittent oscillation waveform is controlled based on the secondary voltage and current information, the intermittent period is reduced as the secondary voltage and current decrease, and the voltage approaches the voltage setting level. By increasing the intermittent period, the power from the primary side circuit 10 to the secondary side circuit 20 can be changed, so that the desired secondary side voltage,
A current state can be obtained.
【0040】以上により負荷の変動によって1次側回路
から2次側回路へ電力を供給する割合を増減するが、1
次側回路の共振回路が他励型であるため2次側回路の負
荷が変動しても、自励型のように負荷の変動によって共
振回路の共振周波数そのものが影響を受けて変動すると
いうことはない。As described above, the rate at which power is supplied from the primary circuit to the secondary circuit is increased or decreased due to load fluctuation.
Even if the load on the secondary circuit fluctuates because the resonance circuit of the secondary circuit is separately excited, the resonance frequency of the resonance circuit itself is affected and fluctuated by the fluctuation of the load as in the self-excitation type. There is no.
【0041】又、1次側回路の直流電源が商用電源の変
動により変化しても発振回路13Gの発振周波数は殆ど
変化せず、制御電源13Pを発振回路13Gに接続する
ことにより安定性を確保している。従って、1次側の入
力電圧、2次側の負荷のいずれに変動があっても自励形
電磁誘導装置のように共振周波数が変化せず、2次側回
路へ安定した電力を供給することができる。Also, even if the DC power supply of the primary circuit changes due to the fluctuation of the commercial power supply, the oscillation frequency of the oscillation circuit 13G hardly changes, and stability is secured by connecting the control power supply 13P to the oscillation circuit 13G. doing. Therefore, the resonance frequency does not change unlike the self-excited electromagnetic induction device, regardless of the fluctuation of the input voltage on the primary side or the load on the secondary side, and stable power is supplied to the secondary side circuit. Can be.
【0042】[0042]
【発明の効果】以上詳細に説明したように、この発明の
電磁誘導電源装置は独立の発振回路とスイッチング回路
を有する発振信号出力手段から共振コイルとコンデンサ
を有する1次側の共振回路へ高周波信号を入力して共振
回路での共振信号を高周波信号に同調して発生させ、そ
の信号を2次側共振回路へ電磁誘導結合により伝達して
2次側回路へ電力を供給するようにしたから、1次側の
共振回路での減衰信号のうち最大波形の共振信号で2次
側への信号伝送が行なわれるため電磁誘導の結合度が高
くなり、入力電圧や負荷の変動で共振信号が影響を受け
ることがなくなり、2次側回路へ高効率で安定した電力
の供給ができ、2次側回路に電力安定化電源を設ける必
要がなくなるため電源回路を小型化でき、部品点数の増
大を抑制できるなど種々の効果が得られる。As described in detail above, the electromagnetic induction power supply of the present invention provides a high frequency signal from the oscillation signal output means having an independent oscillation circuit and a switching circuit to the primary resonance circuit having a resonance coil and a capacitor. Input to generate a resonance signal in the resonance circuit in synchronization with the high-frequency signal, and the signal is transmitted to the secondary-side resonance circuit by electromagnetic induction coupling to supply power to the secondary-side circuit. Since the signal is transmitted to the secondary side with the resonance signal having the maximum waveform among the attenuation signals in the resonance circuit on the primary side, the degree of coupling of electromagnetic induction is increased, and the resonance signal is affected by variations in input voltage and load. The power supply circuit can be supplied with high efficiency and stable power to the secondary side circuit, and there is no need to provide a power stabilizing power supply in the secondary side circuit. Therefore, the power supply circuit can be downsized and the number of components can be suppressed. What Various effects can be obtained.
【図1】電磁誘導電源装置の全体概略ブロック図FIG. 1 is an overall schematic block diagram of an electromagnetic induction power supply device.
【図2】同上の1次側回路のブロック図FIG. 2 is a block diagram of a primary circuit according to the first embodiment;
【図3】同上の2次側回路のブロック図FIG. 3 is a block diagram of a secondary circuit of the above.
【図4】発振回路と共振回路の波形の説明図FIG. 4 is an explanatory diagram of waveforms of an oscillation circuit and a resonance circuit.
【図5】負荷変動情報による発振、共振回路の波形変化
の説明図FIG. 5 is an explanatory diagram of oscillation and waveform change of a resonance circuit due to load fluctuation information.
10 1次側回路 11 整流回路 12 共振回路 13 発振信号出力手段 14 2次側情報入力部 13G 発振回路 13S 第1スイッチング回路 13SS 第2スイッチング回路 20 2次側回路 21 共振回路 22 整流回路 23 負荷 24 負荷情報検出部 DESCRIPTION OF SYMBOLS 10 Primary circuit 11 Rectifier circuit 12 Resonant circuit 13 Oscillation signal output means 14 Secondary information input part 13G oscillator circuit 13S 1st switching circuit 13SS 2nd switching circuit 20 Secondary circuit 21 Resonant circuit 22 Rectifier circuit 23 Load 24 Load information detector
Claims (2)
1次電圧を発生する共振コイルとコンデンサを有する1
次側共振回路と、独立の発振回路からその信号を発振周
波数に同期して作動するスイッチング回路を介して上記
共振回路へ出力するように接続した発振信号出力手段と
から成り、上記所定の共振状態を発振回路の発振周波数
に同期させるようにした1次側電源回路と、上記1次側
共振回路から電磁誘導結合により2次側共振回路に共振
した2次電圧を誘起させて2次電力を供給する2次側電
源回路とを分離自在に備えて成る電磁誘導電源装置。An apparatus having a resonance coil and a capacitor for generating a primary voltage in a predetermined resonance state when DC power is transmitted.
A secondary resonance circuit, and oscillation signal output means connected to output the signal from the independent oscillation circuit to the resonance circuit via a switching circuit that operates in synchronization with the oscillation frequency, and the predetermined resonance state is provided. And a secondary power supply that induces a secondary voltage that resonates from the primary resonance circuit to the secondary resonance circuit by electromagnetic induction coupling from the primary power supply circuit that synchronizes the power with the oscillation frequency of the oscillation circuit. An electromagnetic induction power supply device which is provided with a secondary power supply circuit capable of being separated.
スイッチング回路の間に負荷情報の信号で作動する第2
のスイッチング回路を設け、2次側電源回路には負荷の
電圧又は電流の変動を検出する負荷状態検出手段を設
け、この検出手段で検出された情報を非接触で伝送し、
その情報信号を受信手段で受信するとその出力信号によ
り上記第2のスイッチング回路を作動するようにしたこ
とを特徴とする請求項1に記載の電磁誘導電源装置。A second power supply circuit which operates by a load information signal between an oscillation circuit and a switching circuit in the primary side power supply circuit.
The secondary power supply circuit is provided with a load state detecting means for detecting a change in the voltage or current of the load, and the information detected by the detecting means is transmitted in a non-contact manner,
2. The electromagnetic induction power supply according to claim 1, wherein when the information signal is received by the receiving means, the second switching circuit is operated by the output signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9347621A JPH11187582A (en) | 1997-12-17 | 1997-12-17 | Electromagnetic induction power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9347621A JPH11187582A (en) | 1997-12-17 | 1997-12-17 | Electromagnetic induction power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11187582A true JPH11187582A (en) | 1999-07-09 |
Family
ID=18391468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9347621A Pending JPH11187582A (en) | 1997-12-17 | 1997-12-17 | Electromagnetic induction power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11187582A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007336788A (en) * | 2006-06-19 | 2007-12-27 | Dainippon Printing Co Ltd | Contactless power supply system, power supply device, and power receiving device |
JP2007336787A (en) * | 2006-06-19 | 2007-12-27 | Dainippon Printing Co Ltd | Contactless power supply system, power supply device, and power receiving device |
US7999417B2 (en) | 2007-02-20 | 2011-08-16 | Sony Ericsson Mobile Communications Japan, Inc. | Electronic device |
WO2014038167A1 (en) * | 2012-09-05 | 2014-03-13 | パナソニック株式会社 | Contactless charging device, program therefor, and automobile having contactless charging device mounted therein |
JP5494838B2 (en) * | 2011-01-26 | 2014-05-21 | 株式会社村田製作所 | Power transmission system |
WO2017213031A1 (en) * | 2016-06-06 | 2017-12-14 | 株式会社村田製作所 | Wireless power supply system, wireless power transmission device, and wireless power reception device |
-
1997
- 1997-12-17 JP JP9347621A patent/JPH11187582A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007336788A (en) * | 2006-06-19 | 2007-12-27 | Dainippon Printing Co Ltd | Contactless power supply system, power supply device, and power receiving device |
JP2007336787A (en) * | 2006-06-19 | 2007-12-27 | Dainippon Printing Co Ltd | Contactless power supply system, power supply device, and power receiving device |
US7999417B2 (en) | 2007-02-20 | 2011-08-16 | Sony Ericsson Mobile Communications Japan, Inc. | Electronic device |
JP5494838B2 (en) * | 2011-01-26 | 2014-05-21 | 株式会社村田製作所 | Power transmission system |
WO2014038167A1 (en) * | 2012-09-05 | 2014-03-13 | パナソニック株式会社 | Contactless charging device, program therefor, and automobile having contactless charging device mounted therein |
WO2017213031A1 (en) * | 2016-06-06 | 2017-12-14 | 株式会社村田製作所 | Wireless power supply system, wireless power transmission device, and wireless power reception device |
JPWO2017213031A1 (en) * | 2016-06-06 | 2019-01-17 | 株式会社村田製作所 | Wireless power supply system, wireless power transmission device and wireless power reception device |
CN109314407A (en) * | 2016-06-06 | 2019-02-05 | 株式会社村田制作所 | Wireless power supply system, wireless power power transmission device and wireless power power receiving device |
US10756577B2 (en) | 2016-06-06 | 2020-08-25 | Murata Manufacturing Co., Ltd. | Wireless power supply system, wireless power transmission device, and wireless power reception device |
CN109314407B (en) * | 2016-06-06 | 2021-10-26 | 株式会社村田制作所 | Wireless power supply system, wireless power transmission device, and wireless power receiving device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000134830A (en) | Electromagnetic induction type power supply unit | |
US7602142B2 (en) | System for inductive power transfer | |
US6255635B1 (en) | System and method for providing RF power to a load | |
US6040986A (en) | Non-contact power transmitting device having simplified self-oscillation feedback loop which interrupts power transmission when no load is present | |
JP2006074848A (en) | Non-contact power transmission system | |
JP4751513B2 (en) | Zero voltage switching power supply with burst mode | |
WO2015015771A1 (en) | Wireless power-transfer system and power-transmission device | |
JP2000295796A (en) | Non-contact power supply | |
JPH06178464A (en) | Noncontact electric-power supply device | |
JP2008236917A (en) | Non-contact power transmission apparatus | |
US20030151928A1 (en) | Switching power source device | |
EP1067663A2 (en) | Switching power source | |
JP6518829B2 (en) | Power transmission device | |
JPH11187582A (en) | Electromagnetic induction power supply | |
WO2016147562A1 (en) | Non-contact power feeding device and non-contact power receiving device | |
JP2002152997A (en) | High-frequency remote power supply | |
JP2003189508A (en) | Non-contact power supply device | |
US11894689B2 (en) | Power supply system and vibrating processing apparatus | |
KR101305657B1 (en) | A wireless power transmission device and trnasmission method | |
US10630109B2 (en) | Rx headroom adjustment for stability improvement in wireless power systems | |
KR101305713B1 (en) | A wireless power transmission device, receiving device and trnasmission method | |
CN113644755A (en) | Vibration processing device and power supply system and wireless power transmitter thereof | |
JP2000217280A (en) | Power supply device using lc resonance circuit | |
JPH09182322A (en) | Non-contact type electric power transmission device | |
EP0798829B1 (en) | Gas laser oscillation apparatus |