JPH11185771A - Manufacture of paper and porous carbon plate for fuel cell - Google Patents
Manufacture of paper and porous carbon plate for fuel cellInfo
- Publication number
- JPH11185771A JPH11185771A JP9356992A JP35699297A JPH11185771A JP H11185771 A JPH11185771 A JP H11185771A JP 9356992 A JP9356992 A JP 9356992A JP 35699297 A JP35699297 A JP 35699297A JP H11185771 A JPH11185771 A JP H11185771A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- fiber
- fuel cell
- porous carbon
- carbon plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リン酸型燃料電池
におけるリン酸保持体や電極触媒担持体とか、固体高分
子型燃料電池における電極触媒担持体といったガス拡散
電極板などの材料である抄紙体、ならびに、ガス拡散電
極板として製作する上で有用な燃料電池用多孔質炭素板
の製造方法に関する。The present invention relates to a paper making material such as a phosphoric acid support or an electrode catalyst carrier in a phosphoric acid type fuel cell or a gas diffusion electrode plate such as an electrode catalyst carrier in a polymer electrolyte fuel cell. The present invention relates to a body and a method for producing a porous carbon plate for a fuel cell, which is useful for producing a gas diffusion electrode plate.
【0002】[0002]
【従来の技術】例えば、リン酸型燃料電池の場合、リン
酸を電解液として、その電解液の両側に、厚み 0.1〜
0.3mmのポーラスな多孔質炭素板を設け、その表面に電
極触媒としての白金合金触媒を担持させている。その外
側にガス流路である溝の付いた厚み1〜3mmのリン酸保
持体である多孔質炭素板およびセパレーターを設け、単
位セルを構成している。2. Description of the Related Art For example, in the case of a phosphoric acid type fuel cell, phosphoric acid is used as an electrolyte and a thickness of 0.1 to
A 0.3 mm porous porous carbon plate is provided, and a platinum alloy catalyst as an electrode catalyst is supported on the surface thereof. A porous carbon plate as a phosphoric acid support having a thickness of 1 to 3 mm with a groove serving as a gas flow path and a separator are provided on the outside thereof to constitute a unit cell.
【0003】電極触媒を担持する多孔質炭素板は細孔分
布がコントロールされ、ガス透過性が高いこと、更に、
電気伝導性、熱伝導性、機械強度、耐リン酸性などが要
求される。A porous carbon plate supporting an electrode catalyst has a controlled pore distribution and a high gas permeability.
Electrical conductivity, thermal conductivity, mechanical strength, phosphoric acid resistance and the like are required.
【0004】また、電極触媒担持体である多孔質炭素板
とリン酸保持体である多孔質炭素板との間の接触抵抗は
低いことが要求される。更に、電極触媒担持体である多
孔質炭素板と緻密質炭素板であるセパレーターとの間の
接触抵抗も低いことが要求される。Further, it is required that the contact resistance between the porous carbon plate as the electrode catalyst carrier and the porous carbon plate as the phosphoric acid support be low. Further, it is required that the contact resistance between the porous carbon plate as the electrode catalyst support and the separator as the dense carbon plate is also low.
【0005】従来、上述のような電極触媒担持体である
多孔質炭素板を製造する場合、繊維径(繊維直径の意味
であり、以下同じである)7μmの炭素繊維からなる炭
素繊維抄紙体(ペーパー目付50g/m2程度)にフェノー
ル樹脂などの結合剤を含浸して、熱プレスによりシート
状に加熱成形し、炭化または黒鉛化処理する方法が採用
されている。Conventionally, when a porous carbon plate as an electrode catalyst carrier as described above is manufactured, a carbon fiber paper body made of carbon fibers having a fiber diameter of 7 μm (meaning the fiber diameter, the same applies hereinafter) ( A method in which a binder such as a phenol resin is impregnated into paper weight (about 50 g / m 2 ), heat-formed into a sheet by a hot press, and carbonized or graphitized.
【0006】また、リン酸保持体である多孔質炭素板を
製造する場合、繊維径7〜20μmの炭素繊維からなる炭
素繊維抄紙体(ペーパー目付 250g/m2程度)にフェノ
ール樹脂などの結合剤を予め配合しておくか、後で含浸
して、熱プレスによりシート状に加熱、加圧成形し、炭
化または黒鉛化処理する方法が採用されている。In the case of manufacturing a porous carbon plate as a phosphoric acid support, a carbon fiber paper (made of paper having a basis weight of about 250 g / m 2 ) made of carbon fibers having a fiber diameter of 7 to 20 μm is bonded to a binder such as a phenol resin. Is preliminarily compounded or impregnated later, and heated and pressed into a sheet by a hot press, followed by carbonization or graphitization.
【0007】また、高分子型燃料電池の場合、高分子電
解膜の両側に、厚み 0.1〜 0.3mmのポーラスな多孔質炭
素板を設け、その表面に電極触媒としての白金合金触媒
を担持させている。その外側にガス流路である溝の付い
た厚み1〜3mmの緻密質炭素板であるセパレーターを設
け、単位セルを構成している。In the case of a polymer fuel cell, a porous porous carbon plate having a thickness of 0.1 to 0.3 mm is provided on both sides of a polymer electrolyte membrane, and a platinum alloy catalyst as an electrode catalyst is supported on the surface thereof. I have. A separator, which is a dense carbon plate having a thickness of 1 to 3 mm and provided with a groove serving as a gas flow path, is provided on the outside thereof to constitute a unit cell.
【0008】電極触媒を担持する多孔質炭素板は細孔分
布がコントロールされ、ガス透過性が高いこと、更に、
電気伝導性、熱伝導性、機械強度、耐リン酸性などが要
求される。The porous carbon plate supporting the electrode catalyst has a controlled pore distribution and high gas permeability.
Electrical conductivity, thermal conductivity, mechanical strength, phosphoric acid resistance and the like are required.
【0009】また、電極触媒を担持する多孔質炭素板と
緻密質炭素板であるセパレーターとの間の接触抵抗は低
いことが要求される。Further, it is required that the contact resistance between the porous carbon plate carrying the electrode catalyst and the separator, which is a dense carbon plate, be low.
【0010】従来、上述のような電極触媒担持体である
多孔質炭素板を製造する場合、繊維径7μmの炭素繊維
からなる炭素繊維抄紙体(ペーパー目付50g/m2程度)
にフェノール樹脂などの結合剤を含浸して、熱プレスに
よりシート状に加熱成形し、炭化または黒鉛化処理する
方法が採用されている。Conventionally, when producing a porous carbon plate as an electrode catalyst carrier as described above, a carbon fiber paper body made of carbon fiber having a fiber diameter of 7 μm (paper basis weight of about 50 g / m 2 )
Is impregnated with a binder such as a phenolic resin, heat-formed into a sheet by hot pressing, and carbonized or graphitized.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、リン酸
型燃料電池の場合に、白金触媒担持体である多孔質炭素
板、および、リン酸保持体である多孔質炭素板をそれぞ
れ製造するに際して、炭素繊維抄紙体を用いる方法で
は、炭素繊維の繊維径が7μm以上と大きいため、電極
触媒担持体である多孔質炭素板とリン酸保持体である多
孔質炭素板との間、および、リン酸保持体である多孔質
炭素板とセパレーターとの間それぞれでの接触抵抗が大
きく、熱損失が大きい欠点があった。However, in the case of a phosphoric acid type fuel cell, when producing a porous carbon plate as a platinum catalyst support and a porous carbon plate as a phosphoric acid support, respectively, In the method using the fiber paper body, since the fiber diameter of the carbon fiber is as large as 7 μm or more, the space between the porous carbon plate as the electrode catalyst support and the porous carbon plate as the phosphoric acid support, and the phosphoric acid support There is a drawback that the contact resistance between the porous carbon plate as a body and the separator is large, and the heat loss is large.
【0012】更に、リン酸保持体である多孔質炭素板に
ついては、炭素繊維の繊維径が大きいため、気孔率を50
%以上確保し、平均気孔径を28μm以下にコントロール
することは困難であった。Further, the porous carbon plate which is a phosphoric acid support has a porosity of 50% because the carbon fiber has a large fiber diameter.
% Or more, and it was difficult to control the average pore diameter to 28 μm or less.
【0013】また、前述した高分子型燃料電池の場合に
おいても、抄紙体を用いる方法では、炭素繊維の繊維径
が大きいため、電極触媒担持体である多孔質炭素板とセ
パレーターとの間での接触抵抗が大きく、熱損失が大き
い欠点があった。Also, in the case of the above-mentioned polymer type fuel cell, in the method using a papermaking body, since the fiber diameter of the carbon fiber is large, the distance between the porous carbon plate, which is the electrode catalyst carrier, and the separator is high. There were drawbacks of high contact resistance and large heat loss.
【0014】本発明は、このような事情に鑑みてなされ
たものであって、請求項1および請求項2に係る発明
は、リン酸型燃料電池におけるリン酸保持体や電極触媒
担持体とか、固体高分子型燃料電池における電極触媒担
持体といったガス拡散電極板として製作する上で、セパ
レーターなどとの接触抵抗を低減でき、かつ、ガス透過
性、電気伝導性、機械強度に優れた均質なものにできる
抄紙体を提供することを目的とする。そして、請求項3
に係る発明は、リン酸型燃料電池や固体高分子型燃料電
池における電極触媒担持体といったガス拡散電極板とし
て製作する上で、セパレーターなどとの接触抵抗を低減
でき、かつ、ガス透過性、電気伝導性、機械強度に優れ
た均質な多孔質炭素板の製造方法を提供することを目的
とする。The present invention has been made in view of such circumstances, and the invention according to claims 1 and 2 relates to a phosphoric acid support or an electrode catalyst support in a phosphoric acid type fuel cell. When manufactured as a gas diffusion electrode plate such as an electrode catalyst carrier in a polymer electrolyte fuel cell, a homogeneous material that can reduce contact resistance with separators and has excellent gas permeability, electrical conductivity, and mechanical strength It is an object of the present invention to provide a papermaking body that can be made into a paper. And Claim 3
The invention according to the invention can reduce the contact resistance with a separator or the like in producing a gas diffusion electrode plate such as an electrode catalyst carrier in a phosphoric acid type fuel cell or a polymer electrolyte fuel cell, An object of the present invention is to provide a method for producing a homogeneous porous carbon plate having excellent conductivity and mechanical strength.
【0015】[0015]
【課題を解決するための手段】請求項1に係る発明の抄
紙体は、上述のような目的を達成するために、炭素繊維
化可能な繊維径1〜4μmの繊維、または、繊維径0.5
〜3μmの炭素繊維10〜95重量%と、炭化収率30重量%
以下の有機繊維90〜5重量%とから構成したことを特徴
としている。According to a first aspect of the present invention, there is provided a paper body comprising a fiber having a fiber diameter of 1 to 4 μm or a fiber diameter of 0.5 μm, which can be formed into carbon fibers.
10 to 95% by weight of carbon fiber of ~ 3μm and 30% by weight of carbonization yield
It is characterized by comprising the following organic fibers of 90 to 5% by weight.
【0016】炭素繊維化可能な繊維としては、炭素繊維
の素材となり得る種々の繊維、例えば、ポリアクリロニ
トリル繊維、フェノール樹脂繊維、再生セルロース繊維
(例えば、レーヨン、ポリノジック繊維など)セルロー
ス系繊維などの有機繊維、ピッチ系繊維などが挙げられ
る。炭素繊維化可能な繊維は、耐炎化処理または不融化
処理されていてもよい。また、炭素繊維化可能な繊維
は、1種でも2種以上を混合して使用するのでもよい。Examples of the fibers that can be converted into carbon fibers include various fibers that can be used as a carbon fiber material, for example, polyacrylonitrile fibers, phenol resin fibers, regenerated cellulose fibers (for example, rayon, polynosic fibers, etc.), and cellulosic fibers. Fiber and pitch-based fiber. The fibers that can be converted into carbon fibers may have been subjected to a flame-resistant treatment or an infusible treatment. Further, the fibers that can be converted into carbon fibers may be used alone or in combination of two or more.
【0017】炭素繊維化可能な繊維の繊維径は、炭素繊
維化したときの繊維径が 0.5〜3μmとなるように、1
〜4μmのものが選ばれる。1μm未満では、ガス透過
性が低下しやすく、一方、4μmを越えると、接触抵抗
が大きくなるからである。The fiber diameter of the fiber which can be converted into carbon fiber is adjusted so that the fiber diameter when converted into carbon fiber is 0.5 to 3 μm.
〜4 μm is selected. If the thickness is less than 1 μm, the gas permeability tends to decrease, while if it exceeds 4 μm, the contact resistance increases.
【0018】炭素繊維としては、前述の炭素繊維化可能
な繊維を炭化または黒鉛化処理した繊維が挙げられる。
炭素繊維は、1種でも2種以上を混合して使用するので
もよい。Examples of the carbon fiber include fibers obtained by carbonizing or graphitizing the above-mentioned carbon fiber-forming fiber.
The carbon fibers may be used alone or in combination of two or more.
【0019】炭素繊維の繊維径は、 0.5〜3μmであ
る。 0.5μm未満では、ガス透過性が低下しやすく、一
方、3μmを越えると、接触抵抗が大きくなるからであ
る。The carbon fiber has a fiber diameter of 0.5 to 3 μm. If it is less than 0.5 μm, the gas permeability tends to decrease, while if it exceeds 3 μm, the contact resistance increases.
【0020】炭素繊維化可能な繊維と炭素繊維とは単独
で用いてもよいが、少なくとも炭素繊維を含むのが好ま
しい。また、炭素繊維化可能な繊維と炭素繊維とを併用
すると、ガス透過性および強度が向上する。この炭素繊
維化可能な繊維と炭素繊維との割合は、製造する多孔質
炭素板の強度や電気伝導性に応じて適宜選択すればよ
い。The carbon fiber-forming fiber and the carbon fiber may be used alone, but preferably contain at least carbon fiber. In addition, when a fiber that can be converted into carbon fiber and a carbon fiber are used in combination, gas permeability and strength are improved. What is necessary is just to select suitably the ratio of the fiber which can be made into carbon fiber and carbon fiber according to the intensity | strength and electric conductivity of the porous carbon board manufactured.
【0021】有機繊維としては、例えば、ポリエステル
繊維、ポリアクリロニトリル繊維、フェノール樹脂繊
維、再生セルロース繊維(例えば、レーヨン、ポリノジ
ック繊維など)セルロース系繊維などが挙げられる。有
機繊維は、1種でも2種以上を混合して使用するのでも
よい。Examples of the organic fibers include polyester fibers, polyacrylonitrile fibers, phenol resin fibers, regenerated cellulose fibers (for example, rayon, polynosic fibers, etc.) and cellulosic fibers. Organic fibers may be used alone or in combination of two or more.
【0022】有機繊維としては、炭化収率30重量%以下
のものが使用される。炭化収率が30重量%を越えると、
微細で均一な気孔の形成や気孔率の調整が困難になるか
らである。As the organic fibers, those having a carbonization yield of 30% by weight or less are used. When the carbonization yield exceeds 30% by weight,
This is because it is difficult to form fine and uniform pores and to adjust the porosity.
【0023】上述の炭素繊維化可能な繊維または炭素繊
維と、有機繊維との割合は、10〜95重量%/5〜90重量
%である。炭素繊維化可能な繊維または炭素繊維の割合
が10重量%未満になると接触抵抗が大きくなり、一方、
95重量%を越えると、ガス透過性が低下しやすくなるか
らである。The ratio of the above-mentioned carbon fiber or the organic fiber and the organic fiber is 10 to 95% by weight / 5 to 90% by weight. When the proportion of the carbon fiber-forming fiber or carbon fiber is less than 10% by weight, the contact resistance increases,
If it exceeds 95% by weight, the gas permeability tends to decrease.
【0024】また、請求項2に係る発明の抄紙体は、前
述のような目的を達成するために、炭素繊維化可能な繊
維径1〜4μmの繊維、または、繊維径 0.5〜3μmの
炭素繊維20〜50重量%と、炭化収率40〜75重量%の結合
剤15〜50重量%とを含むことを特徴としている。Further, in order to achieve the above-mentioned object, the paper body of the invention according to claim 2 is a fiber having a fiber diameter of 1 to 4 μm or a carbon fiber having a fiber diameter of 0.5 to 3 μm. It is characterized by containing 20 to 50% by weight and 15 to 50% by weight of a binder having a carbonization yield of 40 to 75% by weight.
【0025】結合剤としては、例えば、フェノール樹
脂、フラン樹脂、コプナ樹脂などの熱硬化性樹脂や、ポ
リアクリロニトリルなどの熱可塑性樹脂や、石炭または
石油ピッチが使用できる。As the binder, for example, a thermosetting resin such as a phenol resin, a furan resin, a copna resin, a thermoplastic resin such as polyacrylonitrile, or coal or petroleum pitch can be used.
【0026】結合剤としては、製造する多孔質炭素板の
強度低下を防止するとともに気孔率を調整する上から、
炭化収率40〜75重量%のものが使用される。好ましくは
50〜75重量%程度である。As the binder, in order to prevent a decrease in strength of the porous carbon plate to be produced and to adjust the porosity,
A carbonization yield of 40 to 75% by weight is used. Preferably
It is about 50 to 75% by weight.
【0027】上述の炭素繊維化可能な繊維または炭素繊
維の含有率としては、20〜50重量%であり、結合剤の含
有率としては、15〜50重量%である。すなわち、炭素繊
維化可能な繊維または炭素繊維に対する結合剤の割合
は、30〜 250重量部である。30重量部未満であると、製
造する多孔質炭素板の強度が低下しやすくなり、一方、
250重量部を越えると、ガス透過性が低下しやすくなる
とともに接触抵抗が大きくなるからである。The content of the above-mentioned carbon fiber or the carbon fiber which can be converted into carbon fiber is 20 to 50% by weight, and the content of the binder is 15 to 50% by weight. That is, the ratio of the fiber which can be converted into carbon fiber or the binder to carbon fiber is 30 to 250 parts by weight. If the amount is less than 30 parts by weight, the strength of the porous carbon plate to be produced tends to decrease,
If the amount exceeds 250 parts by weight, the gas permeability tends to decrease and the contact resistance increases.
【0028】上述のような請求項1および請求項2に係
る発明それぞれの抄紙体としては、例えば、吸引成形法
によって得ることができる。吸引成形法としては、各成
分を含むスラリーを多数の吸引孔が形成された吸引成形
型により吸引し、吸引成形型の表面に上述成分を堆積さ
せる方法とか、あるいは、吸引成形型内にスラリーを注
入して吸引する方法などが採用できる。吸引成形法によ
り得られた吸引成形体の密度は、吸引圧により容易にコ
ントロールできる。Each of the above-mentioned papermaking bodies according to the first and second aspects of the present invention can be obtained by, for example, a suction molding method. As a suction molding method, a slurry containing each component is sucked by a suction molding die having a large number of suction holes, and the above-described components are deposited on the surface of the suction molding die, or the slurry is placed in the suction molding die. A method of injecting and sucking can be adopted. The density of the suction molded body obtained by the suction molding method can be easily controlled by the suction pressure.
【0029】スラリーの調製に際しては、炭素繊維化可
能な繊維または炭素繊維を叩解し、例えば、0.05〜10m
m、好ましくは 0.5〜3mm程度の短繊維としてもよい。
スラリーの固形分濃度は、吸引成形性を損なわない範囲
で選択でき、例えば、 0.1〜2重量%程度である。スラ
リーには、前記繊維や結合剤などを均一に分散させるた
め、分散剤、安定剤、粘度調整剤、沈降防止剤などを添
加してもよく、また、増粘剤、紙力増強剤、凝集作用を
有する界面活性剤、特に高分子凝集剤や歩留り向上剤な
どの種々の添加剤を添加してもよい。In preparing the slurry, fibers that can be converted into carbon fibers or carbon fibers are beaten, and for example, 0.05 to 10 m
m, preferably 0.5 to 3 mm short fibers.
The solid content concentration of the slurry can be selected within a range that does not impair the suction moldability, and is, for example, about 0.1 to 2% by weight. The slurry may be added with a dispersant, a stabilizer, a viscosity modifier, an anti-settling agent, etc. in order to uniformly disperse the fibers and the binder, etc. A surfactant having an action, in particular, various additives such as a polymer flocculant and a retention aid may be added.
【0030】吸引成形型から脱型した抄紙体は、通常、
加熱乾燥される。湿潤状態の抄紙体の加熱乾燥は、常圧
または減圧下50〜 200℃程度の温度で行うことができ
る。The paper body released from the suction mold is usually
It is dried by heating. The heating and drying of the wet paper body can be performed at a temperature of about 50 to 200 ° C. under normal pressure or reduced pressure.
【0031】そして、請求項3に係る発明の燃料電池用
多孔質炭素板の製造方法は、前述のような目的を達成す
るために、請求項1に記載の抄紙体に炭化収率40〜75重
量%の結合剤15〜50重量%を均質に付着させた炭素質予
備成形体を圧縮成形した後、その圧縮成形品を炭化また
は黒鉛化処理することを特徴としている。According to a third aspect of the present invention, a method for manufacturing a porous carbon plate for a fuel cell according to the third aspect of the present invention includes the steps of: After compression-molding a carbonaceous preform to which 15 to 50% by weight of a binder is uniformly attached, the compression-molded article is carbonized or graphitized.
【0032】抄紙体を 100℃以上の温度で加熱しながら
加圧し、かつ、結合剤を溶融させ、抄紙体に結合剤を均
質に付着した炭素質予備成形体を得る。The paper is pressed while being heated at a temperature of 100 ° C. or higher, and the binder is melted to obtain a carbonaceous preform in which the binder is uniformly attached to the paper.
【0033】炭素質予備成形体の圧縮成形は、例えば、
金型プレスやローラーによるプレス等の方法で行う。こ
の圧縮成形は、成形体の均一性を高めるために加熱下で
行うのが好ましい。加熱温度は適宜選択可能であるが、
通常、 100〜 250℃程度である。また、成形圧は、30〜
750kgf/cm2、好ましくは、50〜750kgf/cm2程度である。In the compression molding of the carbonaceous preform, for example,
It is performed by a method such as a die press or a roller press. This compression molding is preferably performed under heating in order to increase the uniformity of the molded body. The heating temperature can be appropriately selected,
Usually, it is about 100-250 ° C. The molding pressure is 30 ~
It is about 750 kgf / cm 2 , preferably about 50 to 750 kgf / cm 2 .
【0034】炭素質予備成形体を圧縮成形した後、その
圧縮成形品を上下から黒鉛板で挟み、真空下または不活
性ガス雰囲気下で 800℃以上の温度で焼成し、その後、
1000〜3000℃で黒鉛化処理する。After compression-molding the carbonaceous preform, the compression-molded product is sandwiched between graphite plates from above and below, and calcined at a temperature of 800 ° C. or more in a vacuum or an inert gas atmosphere.
Graphitize at 1000-3000 ° C.
【0035】[0035]
【作用】請求項1および請求項2に係る発明の抄紙体の
構成によれば、炭化後の繊維径を 0.5〜3μmとし、こ
の抄紙体によって製造した燃料電池用多孔質炭素板は、
従来の繊維径7μmの抄紙体によって製造したものに比
べ、同一炭素繊維含有率で、 5.4〜 196倍の繊維本数に
できる。これにより、燃料電池用多孔質炭素板内での炭
素繊維どうしの接点数も 5.4〜196倍以上にできて内部
の電気抵抗を低減する。また、例えば、セパレーターな
どの他の部材との接触面積および接触機会を増大させ、
接触抵抗を低減する。According to the construction of the papermaking body according to the first and second aspects of the invention, the carbonized fiber diameter is set to 0.5 to 3 μm, and the porous carbon plate for a fuel cell manufactured by using this papermaking body is:
Compared to a conventional paper-made body having a fiber diameter of 7 μm, the number of fibers can be increased by 5.4 to 196 times at the same carbon fiber content. As a result, the number of contacts between carbon fibers in the porous carbon plate for a fuel cell can be increased by 5.4 to 196 times or more, and the internal electric resistance is reduced. Also, for example, to increase the contact area and contact opportunity with other members such as a separator,
Reduce contact resistance.
【0036】また、請求項3に係る発明の燃料電池用多
孔質炭素板の製造方法は、請求項1に係る発明の抄紙体
を用い、結合剤を均質に付着させ、燃料電池用多孔質炭
素板内において炭素繊維を均一に分散させる。Further, according to a third aspect of the present invention, there is provided a method for producing a porous carbon plate for a fuel cell, comprising using the paper body of the first aspect of the present invention and uniformly adhering a binder. Disperse carbon fibers uniformly in the plate.
【0037】[0037]
【発明の実施の形態】次に、本発明の実施例について説
明する。 実施例1 繊維径が1μmでペーパー目付が50g/m2のピッチ系炭
素繊維(大阪ガス株式会社製)40重量%(抄紙体として
は、88.9重量%)と、炭化収率が5重量%のポリエステ
ル繊維(日本繊維株式会社製、 0.5デニール×3mm)5
重量%(抄紙体としては、11.1重量%)とを含む抄紙体
(嵩密度0.05g/cm3 )を 160℃で加熱しながら加圧
し、結合剤としての炭化収率が65重量%のフェノール樹
脂(ベルパールS890:鐘紡株式会社製)55重量%を
溶融させ、抄紙体にフェノール樹脂を均質に付着させた
炭素質予備成形体としての成形シート(嵩密度 0.7g/
cm3)を得た。Next, embodiments of the present invention will be described. Example 1 A pitch-based carbon fiber having a fiber diameter of 1 μm and a paper basis weight of 50 g / m 2 (manufactured by Osaka Gas Co., Ltd.) 40% by weight (88.9% by weight as a paper body) and a carbonization yield of 5% by weight Polyester fiber (Nippon Textile Co., Ltd., 0.5 denier × 3mm) 5
Wt% (as the paper body, 11.1 wt%) and paper body (bulk density 0.05 g / cm 3) while heating pressurized at 160 ° C., carbonization yield is 65% by weight of phenolic resin as binder comprising (Bellpearl S890: manufactured by Kanebo Co., Ltd.) 55% by weight is melted, and a phenolic resin is uniformly adhered to a papermaking body. A molded sheet (bulk density 0.7 g /
cm 3) was obtained.
【0038】上記成形シートを上下から黒鉛板で挟み、
真空下または不活性ガス雰囲気下で900℃で焼成し、そ
の後、2000℃で黒鉛化処理し、燃料電池用多孔質炭素板
を製造した。得られた燃料電池用多孔質炭素板の特性
(厚みmm、嵩密度g/cm3 、平均気孔径μm、ガス透過
率ml・Mm/cm2 ・hr・mmAq、厚み方向の熱伝導率kcal/
m ・Hr・℃、曲げ強度kg/cm2 、多孔質炭素板とセパレ
ーター間の接触抵抗Ωcm;以下同じである)を測定した
ところ、表−1(表中のNo1)に示す結果を得た。The above molded sheet is sandwiched between graphite plates from above and below,
It was calcined at 900 ° C. under vacuum or in an inert gas atmosphere, and then graphitized at 2000 ° C. to produce a porous carbon plate for a fuel cell. Properties of the obtained porous carbon plate for fuel cell (thickness mm, bulk density g / cm 3 , average pore diameter μm, gas permeability ml · Mm / cm 2 · hr · mmAq, thermal conductivity in the thickness direction kcal /
m · Hr · ° C., flexural strength kg / cm 2 , contact resistance between the porous carbon plate and the separator Ωcm; the same applies hereinafter), the results shown in Table 1 (No. 1 in the table) were obtained. .
【0039】[0039]
【表1】 [Table 1]
【0040】実施例2 実施例1における繊維径が1μmでペーパー目付が50g
/m2のピッチ系炭素繊維(大阪ガス株式会社製)に代え
て、繊維径が3μmでペーパー目付が50g/m2のピッチ
系炭素繊維(大阪ガス株式会社製)を用いた以外は、実
施例1と同様にして燃料電池用多孔質炭素板を製造し
た。得られた燃料電池用多孔質炭素板の特性を測定した
ところ、表−1(表中のNo2)に示す結果を得た。Example 2 The fiber diameter in Example 1 was 1 μm and the paper basis weight was 50 g.
/ M 2 pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) was replaced by pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) having a fiber diameter of 3 μm and a basis weight of 50 g / m 2. A porous carbon plate for a fuel cell was manufactured in the same manner as in Example 1. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 1 (No. 2 in the table) were obtained.
【0041】実施例3 繊維径が1μmでペーパー目付が50g/m2のピッチ系炭
素繊維(大阪ガス株式会社製)10重量%(抄紙体として
は、16.7重量%)と、炭化収率が5重量%のポリエステ
ル繊維(日本繊維株式会社製、 0.5デニール×3mm)50
重量%(抄紙体としては、83.3重量%)とを含む抄紙体
(嵩密度0.05g/cm3 )を 160℃で加熱しながら加圧
し、結合剤としての炭化収率が65重量%のフェノール樹
脂(ベルパールS890:鐘紡株式会社製)40重量%を
溶融させて成形シート(嵩密度 0.7g/cm3 )を得た。
焼成および黒鉛化処理は、実施例1と同様にして燃料電
池用多孔質炭素板を製造した。得られた燃料電池用多孔
質炭素板の特性を測定したところ、表−1(表中のNo
3)に示す結果を得た。Example 3 A pitch-based carbon fiber having a fiber diameter of 1 μm and a paper basis weight of 50 g / m 2 (manufactured by Osaka Gas Co., Ltd.) was 10% by weight (16.7% by weight as a paper body), and the carbonization yield was 5%. 50% by weight of polyester fiber (Nippon Textile Co., Ltd., 0.5 denier x 3 mm) 50
(The paper body, 83.3 wt%) wt% and paper body (bulk density 0.05 g / cm 3) while heating pressurized at 160 ° C., carbonization yield is 65% by weight of phenolic resin as binder comprising (Bellpearl S890: manufactured by Kanebo Co., Ltd.) was melted at 40% by weight to obtain a molded sheet (bulk density: 0.7 g / cm 3 ).
The calcination and graphitization were performed in the same manner as in Example 1 to produce a porous carbon plate for a fuel cell. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, Table 1 (No.
The result shown in 3) was obtained.
【0042】実施例4 実施例3における繊維径が1μmでペーパー目付が50g
/m2のピッチ系炭素繊維(大阪ガス株式会社製)に代え
て、繊維径が3μmでペーパー目付が50g/m2のピッチ
系炭素繊維(大阪ガス株式会社製)を用いた以外は、実
施例3と同様にして燃料電池用多孔質炭素板を製造し
た。得られた燃料電池用多孔質炭素板の特性を測定した
ところ、表−1(表中のNo4)に示す結果を得た。Example 4 The fiber diameter in Example 3 was 1 μm and the paper basis weight was 50 g.
/ M 2 pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) was replaced by pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) having a fiber diameter of 3 μm and a basis weight of 50 g / m 2. A porous carbon plate for a fuel cell was manufactured in the same manner as in Example 3. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 1 (No. 4 in the table) were obtained.
【0043】実施例5 繊維径が1μmでペーパー目付が50g/m2のピッチ系炭
素繊維(大阪ガス株式会社製)50重量%(抄紙体として
は、94.3重量%)と、炭化収率が5重量%のポリエステ
ル繊維(日本繊維株式会社製、 0.5デニール×3mm)3
重量%(抄紙体としては、 5.7重量%)とを含む抄紙体
(嵩密度0.05g/cm3 )を 160℃で加熱しながら加圧
し、結合剤としての炭化収率が65重量%のフェノール樹
脂(ベルパールS890:鐘紡株式会社製)47重量%を
溶融させて成形シート(嵩密度 0.7g/cm3 )を得た。
焼成および黒鉛化処理は、実施例1と同様にして燃料電
池用多孔質炭素板を製造した。得られた燃料電池用多孔
質炭素板の特性を測定したところ、表−1(表中のNo
5)に示す結果を得た。Example 5 A pitch-based carbon fiber having a fiber diameter of 1 μm and a paper basis weight of 50 g / m 2 (manufactured by Osaka Gas Co., Ltd.) was 50% by weight (94.3% by weight as a paper body), and the carbonization yield was 5%. Weight% polyester fiber (Nippon Textile Co., Ltd., 0.5 denier × 3mm) 3
Wt% (as the paper body, 5.7 wt%) and paper body (bulk density 0.05 g / cm 3) while heating pressurized at 160 ° C., carbonization yield is 65% by weight of phenolic resin as binder comprising 47% by weight (Bellpearl S890: manufactured by Kanebo Co., Ltd.) was melted to obtain a molded sheet (bulk density: 0.7 g / cm 3 ).
The calcination and graphitization were performed in the same manner as in Example 1 to produce a porous carbon plate for a fuel cell. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, Table 1 (No.
The result shown in 5) was obtained.
【0044】実施例6 実施例5における繊維径が1μmでペーパー目付が50g
/m2のピッチ系炭素繊維(大阪ガス株式会社製)に代え
て、繊維径が3μmでペーパー目付が50g/m2のピッチ
系炭素繊維(大阪ガス株式会社製)を用いた以外は、実
施例5と同様にして燃料電池用多孔質炭素板を製造し
た。得られた燃料電池用多孔質炭素板の特性を測定した
ところ、表−2(表中のNo6)に示す結果を得た。Example 6 The fiber diameter in Example 5 was 1 μm and the paper basis weight was 50 g.
/ M 2 pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) was replaced by pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) having a fiber diameter of 3 μm and a basis weight of 50 g / m 2. A porous carbon plate for a fuel cell was produced in the same manner as in Example 5. When the properties of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 2 (No. 6 in the table) were obtained.
【0045】[0045]
【表2】 [Table 2]
【0046】実施例7 繊維径が1μmでペーパー目付が50g/m2のピッチ系炭
素繊維(大阪ガス株式会社製)40重量%(抄紙体として
は、66.7重量%)と、炭化収率が5重量%のポリエステ
ル繊維(日本繊維株式会社製、 0.5デニール×3mm)20
重量%(抄紙体としては、33.3重量%)とを含む抄紙体
(嵩密度0.05g/cm3 )を 160℃で加熱しながら加圧
し、結合剤としての炭化収率が65重量%のフェノール樹
脂(ベルパールS890:鐘紡株式会社製)40重量%を
溶融させて成形シート(嵩密度 0.7g/cm3 )を得た。
焼成および黒鉛化処理は、実施例1と同様にして燃料電
池用多孔質炭素板を製造した。得られた燃料電池用多孔
質炭素板の特性を測定したところ、表−2(表中のNo
7)に示す結果を得た。Example 7 A pitch-based carbon fiber having a fiber diameter of 1 μm and a paper basis weight of 50 g / m 2 (manufactured by Osaka Gas Co., Ltd.) was 40% by weight (66.7% by weight as a papermaking body), and the carbonization yield was 5%. 20% by weight polyester fiber (Nippon Textile Co., Ltd., 0.5 denier × 3mm)
Wt% (as the paper body, 33.3 wt%) and paper body (bulk density 0.05 g / cm 3) while heating pressurized at 160 ° C., carbonization yield is 65% by weight of phenolic resin as binder comprising (Bellpearl S890: manufactured by Kanebo Co., Ltd.) was melted at 40% by weight to obtain a molded sheet (bulk density: 0.7 g / cm 3 ).
The calcination and graphitization were performed in the same manner as in Example 1 to produce a porous carbon plate for a fuel cell. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, Table 2 (No.
The result shown in 7) was obtained.
【0047】実施例8 実施例7における繊維径が1μmでペーパー目付が50g
/m2のピッチ系炭素繊維(大阪ガス株式会社製)に代え
て、繊維径が3μmでペーパー目付が50g/m2のピッチ
系炭素繊維(大阪ガス株式会社製)を用いた以外は、実
施例7と同様にして燃料電池用多孔質炭素板を製造し
た。得られた燃料電池用多孔質炭素板の特性を測定した
ところ、表−2(表中のNo8)に示す結果を得た。Example 8 The fiber diameter in Example 7 was 1 μm and the paper basis weight was 50 g.
/ M 2 pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) was replaced by pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) having a fiber diameter of 3 μm and a basis weight of 50 g / m 2. A porous carbon plate for a fuel cell was manufactured in the same manner as in Example 7. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 2 (No. 8 in the table) were obtained.
【0048】実施例9(請求項2に係る発明の抄紙体の
実施例) 繊維径が1μmでペーパー目付が50g/m2のピッチ系炭
素繊維(大阪ガス株式会社製)50重量%に、結合剤とし
ての炭化収率が65重量%のフェノール樹脂(ベルパール
S890:鐘紡株式会社製)50重量%を予め配合させた
抄紙体(嵩密度0.7g/cm3 )を、実施例1と同様にし
て焼成および黒鉛化処理し、燃料電池用多孔質炭素板を
製造した。得られた燃料電池用多孔質炭素板の特性を測
定したところ、表−2(表中のNo9)に示す結果を得
た。Example 9 (Example of papermaking body of the invention according to claim 2) Bonded to 50% by weight of pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) having a fiber diameter of 1 μm and a paper weight of 50 g / m 2. A papermaking body (bulk density 0.7 g / cm 3 ) preliminarily blended with 50% by weight of a phenol resin (Bellpearl S890: manufactured by Kanebo Co., Ltd.) having a carbonization yield of 65% by weight as an agent was prepared in the same manner as in Example 1. After firing and graphitization, a porous carbon plate for a fuel cell was manufactured. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 2 (No. 9 in the table) were obtained.
【0049】実施例10(請求項2に係る発明の抄紙体
の実施例) 実施例9における繊維径が1μmでペーパー目付が50g
/m2のピッチ系炭素繊維(大阪ガス株式会社製)に代え
て、繊維径が3μmでペーパー目付が50g/m2のピッチ
系炭素繊維(大阪ガス株式会社製)を用いた以外は、実
施例9と同様にして燃料電池用多孔質炭素板を製造し
た。得られた燃料電池用多孔質炭素板の特性を測定した
ところ、表−2(表中のNo10)に示す結果を得た。Example 10 (Example of the papermaking body of the invention according to claim 2) The fiber diameter in Example 9 was 1 μm and the paper basis weight was 50 g.
/ M 2 pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) was replaced by pitch-based carbon fiber (manufactured by Osaka Gas Co., Ltd.) having a fiber diameter of 3 μm and a basis weight of 50 g / m 2. A porous carbon plate for a fuel cell was produced in the same manner as in Example 9. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 2 (No. 10 in the table) were obtained.
【0050】比較例1 繊維径が7μmでペーパー目付が50g/m2のPAN系炭
素繊維(東レ株式会社製)40重量%と、炭化収率が5重
量%のポリエステル繊維(日本繊維株式会社製、 0.5デ
ニール×3mm)5重量%とを含む抄紙体(嵩密度0.05g
/cm3 )を 160℃で加熱しながら加圧し、結合剤として
の炭化収率が65重量%のフェノール樹脂(ベルパールS
890:鐘紡株式会社製)55重量%を溶融させて成形シ
ート(嵩密度 0.7g/cm3 )を得た。焼成および黒鉛化
処理は、実施例1と同様にして燃料電池用多孔質炭素板
を製造した。得られた燃料電池用多孔質炭素板の特性を
測定したところ、表−3(表中のNo1)に示す結果を得
た。Comparative Example 1 40% by weight of a PAN-based carbon fiber (manufactured by Toray Industries, Inc.) having a fiber diameter of 7 μm and a basis weight of 50 g / m 2 , and a polyester fiber having a carbonization yield of 5% by weight (manufactured by Nippon Textile Co., Ltd.) , 0.5 denier × 3 mm) and 5% by weight (bulk density: 0.05 g)
/ Cm 3 ) while heating at 160 ° C., and applying a phenol resin (Bellpearl S) with a carbonization yield of 65% by weight as a binder.
890: manufactured by Kanebo Co., Ltd.) was melted to obtain a molded sheet (bulk density: 0.7 g / cm 3 ). The calcination and graphitization were performed in the same manner as in Example 1 to produce a porous carbon plate for a fuel cell. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 3 (No. 1 in the table) were obtained.
【0051】[0051]
【表3】 [Table 3]
【0052】比較例2 繊維径が7μmでペーパー目付が50g/m2のPAN系炭
素繊維(東レ株式会社製)10重量%と、炭化収率が5重
量%のポリエステル繊維(日本繊維株式会社製、 0.5デ
ニール×3mm)50重量%とを含む抄紙体(嵩密度0.05g
/cm3 )を 160℃で加熱しながら加圧し、結合剤として
の炭化収率が65重量%のフェノール樹脂(ベルパールS
890:鐘紡株式会社製)40重量%を溶融させて成形シ
ート(嵩密度 0.7g/cm3 )を得た。焼成および黒鉛化
処理は、実施例1と同様にして燃料電池用多孔質炭素板
を製造した。得られた燃料電池用多孔質炭素板の特性を
測定したところ、表−3(表中のNo2)に示す結果を得
た。Comparative Example 2 10% by weight of a PAN-based carbon fiber (manufactured by Toray Industries, Inc.) having a fiber diameter of 7 μm and a paper weight of 50 g / m 2 , and a polyester fiber having a carbonization yield of 5% by weight (manufactured by Nippon Textile Co., Ltd.) , 0.5 denier x 3 mm) 50% by weight (bulk density 0.05 g)
/ Cm 3 ) while heating at 160 ° C., and applying a phenol resin (Bellpearl S) with a carbonization yield of 65% by weight as a binder.
890: Kanebo Co., Ltd.) was melted to obtain a molded sheet (bulk density: 0.7 g / cm 3 ). The calcination and graphitization were performed in the same manner as in Example 1 to produce a porous carbon plate for a fuel cell. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 3 (No. 2 in the table) were obtained.
【0053】比較例3 繊維径が7μmでペーパー目付が50g/m2のPAN系炭
素繊維(東レ株式会社製)50重量%と、炭化収率が5重
量%のポリエステル繊維(日本繊維株式会社製、 0.5デ
ニール×3mm)3重量%とを含む抄紙体(嵩密度0.05g
/cm3 )を 160℃で加熱しながら加圧し、結合剤として
の炭化収率が65重量%のフェノール樹脂(ベルパールS
890:鐘紡株式会社製)47重量%を溶融させて成形シ
ート(嵩密度 0.7g/cm3 )を得た。焼成および黒鉛化
処理は、実施例1と同様にして燃料電池用多孔質炭素板
を製造した。得られた燃料電池用多孔質炭素板の特性を
測定したところ、表−3(表中のNo3)に示す結果を得
た。Comparative Example 3 50% by weight of a PAN-based carbon fiber (manufactured by Toray Industries, Inc.) having a fiber diameter of 7 μm and a paper weight of 50 g / m 2 , and a polyester fiber having a carbonization yield of 5% by weight (manufactured by Nippon Textile Co., Ltd.) , 0.5 denier x 3 mm) 3% by weight
/ Cm 3 ) while heating at 160 ° C., and applying a phenol resin (Bellpearl S) with a carbonization yield of 65% by weight as a binder.
890: manufactured by Kanebo Co., Ltd. (47% by weight) was melted to obtain a molded sheet (bulk density: 0.7 g / cm 3 ). The calcination and graphitization were performed in the same manner as in Example 1 to produce a porous carbon plate for a fuel cell. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 3 (No. 3 in the table) were obtained.
【0054】比較例4 繊維径が7μmでペーパー目付が50g/m2のPAN系炭
素繊維(東レ株式会社製)40重量%と、炭化収率が5重
量%のポリエステル繊維(日本繊維株式会社製、 0.5デ
ニール×3mm)20重量%とを含む抄紙体(嵩密度0.05g
/cm3 )を 160℃で加熱しながら加圧し、結合剤として
の炭化収率が65重量%のフェノール樹脂(ベルパールS
890:鐘紡株式会社製)40重量%を溶融させて成形シ
ート(嵩密度 0.7g/cm3 )を得た。焼成および黒鉛化
処理は、実施例1と同様にして燃料電池用多孔質炭素板
を製造した。得られた燃料電池用多孔質炭素板の特性を
測定したところ、表−3(表中のNo4)に示す結果を得
た。Comparative Example 4 PAN-based carbon fiber (manufactured by Toray Industries, Inc.) having a fiber diameter of 7 μm and a basis weight of 50 g / m 2 , and a polyester fiber having a carbonization yield of 5% by weight (manufactured by Nippon Textile Co., Ltd.) , 0.5 denier x 3 mm) and 20% by weight (bulk density 0.05 g)
/ Cm 3 ) while heating at 160 ° C., and applying a phenol resin (Bellpearl S) with a carbonization yield of 65% by weight as a binder.
890: Kanebo Co., Ltd.) was melted to obtain a molded sheet (bulk density: 0.7 g / cm 3 ). The calcination and graphitization were performed in the same manner as in Example 1 to produce a porous carbon plate for a fuel cell. When the characteristics of the obtained porous carbon plate for fuel cells were measured, the results shown in Table 3 (No. 4 in the table) were obtained.
【0055】比較例5 繊維径が7μmでペーパー目付が50g/m2のPAN系炭
素繊維(東レ株式会社製)50重量%に、結合剤としての
炭化収率が65重量%のフェノール樹脂(ベルパールS8
90:鐘紡株式会社製)50重量%を予め配合させた抄紙
体(嵩密度 0.7g/cm3 )を、実施例1と同様にして焼
成および黒鉛化処理し、燃料電池用多孔質炭素板を製造
した。得られた燃料電池用多孔質炭素板の特性を測定し
たところ、表−3(表中のNo5)に示す結果を得た。Comparative Example 5 A PAN-based carbon fiber (manufactured by Toray Industries, Inc.) having a fiber diameter of 7 μm and a basis weight of 50 g / m 2 was added to 50% by weight of a phenol resin (Bellpearl) having a carbonization yield of 65% by weight as a binder. S8
90: manufactured by Kanebo Co., Ltd. A paper body (bulk density 0.7 g / cm 3 ) preliminarily blended with 50% by weight was calcined and graphitized in the same manner as in Example 1 to obtain a porous carbon plate for a fuel cell. Manufactured. When the characteristics of the obtained porous carbon plate for a fuel cell were measured, the results shown in Table 3 (No. 5 in the table) were obtained.
【0056】上記結果から、次のことが明らかであっ
た。嵩密度は同様でありながら、実施例の燃料電池用
多孔質炭素板の方が比較例に比べて平均気孔径を28μm
以下にコントロールでき、ガス透過性を向上できる。
強度を低下させることなく、実施例の燃料電池用多孔質
炭素板の方が比較例に比べて熱伝導率を大幅に向上でき
るとともに、多孔質炭素板とセパレーター間の接触抵抗
を大幅に低減できている。From the above results, the following was clear. Although the bulk density is the same, the average pore diameter of the porous carbon plate for the fuel cell of the example is 28 μm as compared with the comparative example.
It can be controlled as follows, and the gas permeability can be improved.
Without lowering the strength, the porous carbon plate for the fuel cell of the example can significantly improve the thermal conductivity as compared with the comparative example, and can greatly reduce the contact resistance between the porous carbon plate and the separator. ing.
【0057】[0057]
【発明の効果】以上の説明から明らかなように、請求項
1および請求項2に係る発明の抄紙体によれば、ガス拡
散電極板として製作したときに、同一炭素繊維含有率で
の繊維本数が多くなって、その内部での炭素繊維どうし
の接点数を増大できるから、内部の電気抵抗を低減でき
て電気伝導性を向上できる。また、平均気孔径を小さな
ものにコントロールできるから、ガス透過性を向上でき
る。しかも、同一炭素繊維含有率での繊維本数が多くな
るから、強度を低下させることがなく、かつ、例えば、
高分子型燃料電池における電極触媒担持用多孔質炭素板
とセパレーターとか、リン酸型燃料電池のリン酸保持体
としての多孔質炭素板とセパレーターとか、リン酸型燃
料電池のリン酸保持体としての多孔質炭素板と電極触媒
担持用多孔質炭素板といった他の部材との接触面積およ
び接触機会を増大でき、それらの間の接触抵抗を低減で
きて熱損失を減少できる。As is apparent from the above description, according to the papermaking bodies of the first and second aspects of the present invention, when manufactured as a gas diffusion electrode plate, the number of fibers with the same carbon fiber content is reduced. And the number of contacts between the carbon fibers in the inside can be increased, so that the internal electric resistance can be reduced and the electric conductivity can be improved. Further, since the average pore diameter can be controlled to be small, gas permeability can be improved. In addition, since the number of fibers at the same carbon fiber content increases, without decreasing the strength, and, for example,
A porous carbon plate and a separator for supporting an electrode catalyst in a polymer fuel cell, a porous carbon plate and a separator as a phosphoric acid support for a phosphoric acid fuel cell, and a phosphoric acid support for a phosphoric acid fuel cell The contact area and contact opportunity between the porous carbon plate and another member such as a porous carbon plate for supporting an electrode catalyst can be increased, the contact resistance between them can be reduced, and the heat loss can be reduced.
【0058】また、請求項3に係る発明の燃料電池用多
孔質炭素板の製造方法によれば、請求項1に係る発明の
抄紙体を用い、結合剤を均質に付着させ、燃料電池用多
孔質炭素板内において炭素繊維を均一に分散させるか
ら、ガス拡散電極板として製作したときに、ガス透過
性、電気伝導性、機械強度および接触抵抗面のいずれに
おいても優れた品質の多孔質炭素板を製造できるように
なった。According to the method for manufacturing a porous carbon plate for a fuel cell according to the third aspect of the present invention, the binder is uniformly attached to the papermaking body according to the first aspect of the invention, and Since the carbon fibers are uniformly dispersed in the porous carbon plate, when manufactured as a gas diffusion electrode plate, a porous carbon plate with excellent quality in all of gas permeability, electrical conductivity, mechanical strength and contact resistance surface Can now be manufactured.
Claims (3)
維、または、繊維径0.5〜3μmの炭素繊維10〜95重量
%と、炭化収率30重量%以下の有機繊維90〜5重量%と
から構成したことを特徴とする抄紙体。1. A fiber having a fiber diameter of 1 to 4 μm or a carbon fiber having a fiber diameter of 0.5 to 3 μm and a carbon fiber yield of 30 to 5% by weight and a carbonization yield of 30 to 5% by weight. And a paper body comprising:
維、または、繊維径0.5〜3μmの炭素繊維20〜50重量
%と、炭化収率40〜75重量%の結合剤15〜50重量%とを
含むことを特徴とする抄紙体。2. A fiber having a fiber diameter of 1 to 4 μm or a carbon fiber having a fiber diameter of 0.5 to 3 μm and a binder having a carbonization yield of 40 to 75% by weight and a binder of 15 to 50% by weight. %.
75重量%の結合剤15〜50重量%を均質に付着させた炭素
質予備成形体を圧縮成形した後、その圧縮成形品を炭化
または黒鉛化処理することを特徴とする燃料電池用多孔
質炭素板の製造方法。3. The papermaking body according to claim 1, wherein the carbonization yield is 40 to 40%.
After compression-molding a carbonaceous preform to which 15 to 50% by weight of a binder of 75% by weight is uniformly adhered, the compression-molded article is carbonized or graphitized. Plate manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9356992A JPH11185771A (en) | 1997-12-25 | 1997-12-25 | Manufacture of paper and porous carbon plate for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9356992A JPH11185771A (en) | 1997-12-25 | 1997-12-25 | Manufacture of paper and porous carbon plate for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11185771A true JPH11185771A (en) | 1999-07-09 |
Family
ID=18451823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9356992A Pending JPH11185771A (en) | 1997-12-25 | 1997-12-25 | Manufacture of paper and porous carbon plate for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11185771A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002015303A1 (en) * | 2000-08-16 | 2002-02-21 | Matsushita Electric Industrial Co., Ltd. | Fuel cell |
JP2007005004A (en) * | 2005-06-21 | 2007-01-11 | Tomoegawa Paper Co Ltd | Gas diffusion electrode for fuel cell, manufacturing method of the same, and fuel cell |
CN100336972C (en) * | 2002-04-17 | 2007-09-12 | 三菱丽阳株式会社 | Carbon fiber paper and porous carbon electrode substratefor fuel cell therefrom |
JP2011146373A (en) * | 2009-12-17 | 2011-07-28 | Toray Ind Inc | Manufacturing method of gas diffusion electrode base material |
WO2016159352A1 (en) * | 2015-04-02 | 2016-10-06 | 三菱レイヨン株式会社 | Porous electrode base material and manufacturing method therefor |
JP2020013723A (en) * | 2018-07-19 | 2020-01-23 | 株式会社グラヴィトン | Electrode and electrode manufacturing method |
-
1997
- 1997-12-25 JP JP9356992A patent/JPH11185771A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002015303A1 (en) * | 2000-08-16 | 2002-02-21 | Matsushita Electric Industrial Co., Ltd. | Fuel cell |
US7510626B2 (en) | 2001-10-09 | 2009-03-31 | Mitsubishi Rayon Co., Ltd. | Carbon fiber paper and porous carbon electrode substrate for fuel cell therefrom |
CN100336972C (en) * | 2002-04-17 | 2007-09-12 | 三菱丽阳株式会社 | Carbon fiber paper and porous carbon electrode substratefor fuel cell therefrom |
JP2007005004A (en) * | 2005-06-21 | 2007-01-11 | Tomoegawa Paper Co Ltd | Gas diffusion electrode for fuel cell, manufacturing method of the same, and fuel cell |
JP2011146373A (en) * | 2009-12-17 | 2011-07-28 | Toray Ind Inc | Manufacturing method of gas diffusion electrode base material |
WO2016159352A1 (en) * | 2015-04-02 | 2016-10-06 | 三菱レイヨン株式会社 | Porous electrode base material and manufacturing method therefor |
JPWO2016159352A1 (en) * | 2015-04-02 | 2017-04-27 | 三菱レイヨン株式会社 | Porous electrode substrate and method for producing the same |
CN107408707A (en) * | 2015-04-02 | 2017-11-28 | 三菱化学株式会社 | Porous electrode base material and its manufacture method |
JP2020013723A (en) * | 2018-07-19 | 2020-01-23 | 株式会社グラヴィトン | Electrode and electrode manufacturing method |
WO2020017623A1 (en) * | 2018-07-19 | 2020-01-23 | 株式会社グラヴィトン | Electrode and electrode manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4506028A (en) | Process for preparing a fuel cell electrode substrate comprising carbon fibers | |
US4064207A (en) | Fibrillar carbon fuel cell electrode substrates and method of manufacture | |
KR102169124B1 (en) | Graphitized carbon substrate for gas diffusion layer and gas diffusion layer emplying the same | |
JP2003504822A (en) | Electrode substrate for electrochemical cell based on low cost manufacturing method | |
JP4051714B2 (en) | Electrode substrate for polymer electrolyte fuel cell and method for producing the same | |
JPH076775A (en) | Electrolyte holding plate and manufacture thereof | |
JP2007273464A (en) | Gas diffusion medium and fuel cell | |
JPH082979A (en) | Porous carbon material and its production | |
CN112761025B (en) | Carbon paper for gas diffusion layer, preparation method thereof and fuel cell | |
JPH11185771A (en) | Manufacture of paper and porous carbon plate for fuel cell | |
KR100997418B1 (en) | Method of preparing gas diffusion layer having carbon nanotube and carbon compound for fuel cell | |
CN113882186B (en) | Carbon fiber paper and preparation method and application thereof | |
JPH09278558A (en) | Carbonaceous porous body and its production | |
KR101425305B1 (en) | Manufacturing method of carbon fiber paper using PAN fibrid | |
JPH05325984A (en) | Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell | |
JPH0543320A (en) | Production of carbonaceous form | |
JPH11263681A (en) | Production of carbonaceous porous body for fuel cell | |
JPH0517260A (en) | Production of carbonaceous porous body | |
JPH06135770A (en) | Carbonaceous preformed body, its production and production of electrode substrate | |
JPH09110407A (en) | Carbonaceous porous body and its production | |
JPH04284363A (en) | Manufacture of carbon plate | |
JPH0757741A (en) | Manufacture of carbonaceous preformed body and electrode substrate | |
JPH06329469A (en) | Preformed carbonaceous material and production of electrode substrate | |
JPH01253164A (en) | Fuel cell board resistant against corrosion and its manufacture | |
JPH0859360A (en) | Production of porous carbon material |