JPH11172484A - Gas diffusion electrode structural body and its production - Google Patents
Gas diffusion electrode structural body and its productionInfo
- Publication number
- JPH11172484A JPH11172484A JP9354166A JP35416697A JPH11172484A JP H11172484 A JPH11172484 A JP H11172484A JP 9354166 A JP9354166 A JP 9354166A JP 35416697 A JP35416697 A JP 35416697A JP H11172484 A JPH11172484 A JP H11172484A
- Authority
- JP
- Japan
- Prior art keywords
- porous layer
- hydrophilic porous
- cathode
- gas diffusion
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガス供給を円滑に行い
得るガス拡散電極構造体とその製造方法に関し、より詳
細にはガス供給を円滑にして水酸化ナトリウム製造や過
酸化水素製造用電解において大きな省エネルギー効果を
達成できるガス拡散電極構造体とその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas diffusion electrode structure capable of smoothly supplying a gas and a method for producing the same, and more particularly, to a gas diffusion electrode structure capable of smoothly supplying a gas and an electrolytic solution for producing sodium hydroxide and hydrogen peroxide. The present invention relates to a gas diffusion electrode structure capable of achieving a large energy saving effect and a method of manufacturing the same.
【0002】[0002]
【従来技術とその問題点】電気分解は化学工業におい
て、良好な製品の選択性、併産する物質が極めて少ない
こと、プロセスが比較的単純で取扱いが容易であるこ
と、製品の品質が高いこと等の理由から汎用される技術
であり、更に環境問題に関しても環境汚染よりむしろ環
境浄化に繋がるケースが多いことからも注目されてい
る。更に運転条件が比較的マイルドで原料の利用率が高
くかつ廃棄物が極めて少ないという特徴を有している。
従って前記電気分解はクロルアルカリ電解を代表とする
素材産業の中で重要な役割を果たしている。このように
重要な役割を持つが、クロルアルカリ電解に要する消費
エネルギーが大きく、日本のようにエネルギーコストが
高い国ではその省エネルギー化が大きな問題となる。例
えばクロルアルカリ電解では環境問題の解決とともに省
エネルギー化を達成するために、水銀法から隔膜法を経
てイオン交換膜法へと転換され、約25年で約40%の省エ
ネルギー化を達成してきた。しかしこの省エネルギー化
でも不十分で、エネルギーである電力コストが全製造費
の50%を占めている。現行の方法を使用する限りこれ以
上の電力節約は不可能なところまで来ている。さらなる
省エネルギー化を達成するためには、従来と異なる電極
反応を用いる等の抜本的に変えなければならない。その
例として通常の水溶液電解と殆ど同じ条件で運転できる
高分子固体電解質型燃料電池等で採用されているガス拡
散電極の使用は現在考えられる中で最も可能性が高く、
電力節約が大きい手段である。2. Description of the Related Art Electrolysis is a process in the chemical industry in which good product selectivity, extremely few co-produced substances, relatively simple process and easy handling, and high product quality It is a technology widely used for the reasons described above, and is also attracting attention in terms of environmental problems because it often leads to environmental purification rather than environmental pollution. Furthermore, it has the characteristics that the operating conditions are relatively mild, the utilization rate of raw materials is high, and the amount of waste is extremely small.
Therefore, the electrolysis plays an important role in the material industry represented by chloralkali electrolysis. Although it has such an important role, energy consumption required for chloralkali electrolysis is large, and energy saving is a major problem in countries with high energy costs such as Japan. For example, in chlor-alkali electrolysis, in order to solve environmental problems and achieve energy saving, the mercury method was switched to the ion exchange membrane method via the membrane method, and in about 25 years, about 40% energy saving has been achieved. However, this energy saving is not enough, and the power cost, which is energy, accounts for 50% of the total manufacturing cost. No further power savings are possible using current methods. In order to achieve further energy savings, drastic changes have to be made, such as using an electrode reaction different from the conventional one. As an example, the use of a gas diffusion electrode employed in a polymer solid electrolyte fuel cell or the like that can be operated under almost the same conditions as ordinary aqueous electrolysis is the most likely currently possible,
This is a means of saving power.
【0003】ガス拡散電極は、反応物質としてガスを電
極表面に供給しやすい性質を有することを特徴とし、燃
料電池等の用途を踏まえて開発されてきた。最近になっ
てガス拡散電極を工業電解に利用することが検討され始
め、例えば過酸化水素のオンサイト製造装置では酸素還
元反応を行なうための疎水性陰極が利用されている(In
dustrial Electrochemistry (2nd Edit.) p279〜、199
1) 。又アルカリ製造や各種回収プロセスでは対極反応
としての陽極の酸素発生或いは陰極の水素発生の代替と
して、陽極での水素酸化あるいは陰極での酸素還元反応
をガス拡散電極を用いて行ない、消費電力の低減を図っ
ている。又亜鉛採取等の金属回収あるいは亜鉛めっきの
対極としても水素陽極による減極が可能であることが報
告されている。しかしながらこれらの工業電解系では、
溶液やガスの組成あるいは運転条件が燃料電池の場合と
比較して単純でないために、前記電極の寿命や性能が十
分に得られないという問題点がある。[0003] Gas diffusion electrodes are characterized by having a property of easily supplying a gas as a reactant to the electrode surface, and have been developed in consideration of applications such as fuel cells. Recently, the use of gas diffusion electrodes for industrial electrolysis has begun to be considered. For example, an on-site hydrogen peroxide production apparatus uses a hydrophobic cathode for performing an oxygen reduction reaction (In
dustrial Electrochemistry (2nd Edit.) p279 ~, 199
1) In addition, in the production of alkalis and various recovery processes, as an alternative to the generation of oxygen at the anode or the generation of hydrogen at the cathode as a counter electrode, hydrogen oxidation at the anode or oxygen reduction at the cathode is performed using a gas diffusion electrode to reduce power consumption. Is being planned. It has also been reported that depolarization by a hydrogen anode is possible as a counter electrode for recovering metals such as collecting zinc or for galvanizing. However, in these industrial electrolysis systems,
Since the composition and operating conditions of the solution and gas are not as simple as those of a fuel cell, there is a problem that the life and performance of the electrode cannot be sufficiently obtained.
【0004】食塩電解による水酸化ナトリウム製造プロ
セスにおける一例を述べる。工業用原料として重要であ
る水酸化ナトリウム及び塩素は主として食塩電解により
製造されている。この電解プロセスは前述の通りの変遷
を経て、イオン交換膜を隔膜とし、過電圧の小さい活性
化陰極を使用するイオン交換膜法に移行してきた。この
間、水酸化ナトリウム1トンの製造の電力原単位は約20
00kWhまで減少した。更に従来法のように陰極で水素
発生を行なわせる代わりに水素発生を伴わない酸素還元
反応を行なわせれば、理論分解電圧は従来の2.19Vから
0.96Vとなり、1.23Vの低減が可能になり、大幅な省エ
ネルギー化が期待できる。又前記食塩電解の応用技術と
して、中和塩である硫酸ナトリウムの酸とアルカリへの
電解分離へのガス拡散電極の使用がある。従来は陽極と
して酸素発生電極を陰極として水素発生電極を使用して
いたが、陽極として水素ガス拡散電極を使用し該ガス拡
散電極に供給される水素として陰極で発生する水素を使
用することにより大幅な電圧低下を実現している。An example of a process for producing sodium hydroxide by salt electrolysis will be described. Sodium hydroxide and chlorine, which are important as industrial raw materials, are mainly produced by salt electrolysis. This electrolysis process has undergone the above-mentioned changes, and has shifted to an ion exchange membrane method using an ion exchange membrane as a diaphragm and an activated cathode with a small overvoltage. During this time, the power consumption per unit of production of 1 ton of sodium hydroxide is about 20
It decreased to 00 kWh. Furthermore, if the oxygen reduction reaction without hydrogen generation is performed instead of the hydrogen generation at the cathode as in the conventional method, the theoretical decomposition voltage is increased from the conventional 2.19V.
It becomes 0.96V, and the reduction of 1.23V becomes possible, and significant energy saving can be expected. As an application technique of the salt electrolysis, there is a use of a gas diffusion electrode for electrolytic separation of sodium sulfate, which is a neutralized salt, into acid and alkali. Conventionally, an oxygen-generating electrode was used as an anode and a hydrogen-generating electrode was used as a cathode.However, a hydrogen gas-diffusion electrode was used as an anode and hydrogen generated at the cathode was used as hydrogen supplied to the gas-diffusion electrode. Voltage drop.
【0005】従来の電解反応が、 陽極: H2 O→ 1/2O2 +2H+ +2e- E0 =1.23V 陰極: 2H2 O+2e- →H2 +2OH- E0 ′=−0.83V E0 −E0 ′=2.06V であり、ガス拡散電極を使用する電解反応は、 陽極: H2 →2H+ +2e- E0 =0.0 V 陰極: 2H2 O+2e- →H2 +2OH- E0 ′=−0.83V E0 −E0 ′=0.83V となり、理論的に約1.2 V、実際には電極過電圧が加わ
って約1.5 Vの差が出ており、実際の電解電圧でも50%
以上の電圧削減が可能になっている。これらの新プロセ
スを工業的に実現するためには高性能かつ上記電解系で
十分な安定性を有する酸素ガス拡散陰極(酸素を供給ガ
スとするガス拡散陰極)又は水素ガス拡散陽極(水素を
供給ガスとするガス拡散陽極)の開発が不可欠になる。
現在最も一般的に行なわれている酸素ガス拡散陰極を用
いた食塩電解槽の概略図を図1に示す。The conventional electrolytic reaction is as follows: anode: H 2 O → 1 / 2O 2 + 2H + + 2e − E 0 = 1.23 V Cathode: 2H 2 O + 2e − → H 2 + 2OH − E 0 ′ = −0.83 V E 0 −E 0 ′ = 2.06 V, and the electrolytic reaction using the gas diffusion electrode is as follows: anode: H 2 → 2H + + 2e − E 0 = 0.0 V Cathode: 2H 2 O + 2e − → H 2 + 2OH − E 0 ′ = −0.83 V E 0 −E 0 ′ = 0.83 V, a theoretical difference of about 1.2 V, and a difference of about 1.5 V due to the application of the electrode overvoltage.
The above voltage reduction is possible. In order to industrially realize these new processes, an oxygen gas diffusion cathode (gas diffusion cathode using oxygen as a supply gas) or a hydrogen gas diffusion anode (hydrogen supply The development of a gas diffusion anode, which becomes a gas, becomes indispensable.
FIG. 1 is a schematic view of a salt electrolysis cell using an oxygen gas diffusion cathode which is currently most commonly used.
【0006】この電解槽1では、陽イオン交換膜2によ
り該電解槽1が陽極室3と陰極室4に区画され、更に該
陰極室4は酸素ガス拡散陰極5により溶液室6とガス室
7に区画されている。原料となる酸素ガスはガス室7側
から酸素ガス拡散陰極5のガス相面に供給され、酸素ガ
ス拡散陰極5内を拡散し該陰極5内の触媒層で水と反応
して水酸化ナトリウムを生成する。従ってこの電解法に
用いられる陰極は、酸素のみを十分に透過し、かつ水酸
化ナトリウムの溶液室からガス室への透過を妨げ、いわ
ゆる気液分離型のガス拡散電極でなければならない。こ
のような要求を満たす電極として現在食塩電解用として
提案されている酸素ガス拡散陰極は、カーボン粉末とP
TFEを混合しシート状に成形した電極基体に銀、白金
等の触媒を担持させたガス拡散電極が中心となってい
る。従来の食塩電解における陽極反応及び陰極反応はそ
れぞれ次の通りであり、理論分解電圧は2.19Vとなる。 陽極反応:2Cl- →Cl2 + 2e (1.36V) 陰極反応:2H2 O + 2e → 4OH- + H2 (−0.83V)In this electrolytic cell 1, the electrolytic cell 1 is partitioned by a cation exchange membrane 2 into an anode chamber 3 and a cathode chamber 4, and the cathode chamber 4 is further separated by a solution chamber 6 and a gas chamber 7 by an oxygen gas diffusion cathode 5. Is divided into Oxygen gas as a raw material is supplied to the gas phase surface of the oxygen gas diffusion cathode 5 from the gas chamber 7 side, diffuses inside the oxygen gas diffusion cathode 5 and reacts with water in the catalyst layer inside the cathode 5 to convert sodium hydroxide. Generate. Therefore, the cathode used in this electrolysis method must be a so-called gas-liquid separation type gas diffusion electrode that sufficiently permeates only oxygen and prevents permeation of sodium hydroxide from the solution chamber to the gas chamber. Oxygen gas diffusion cathodes currently proposed for salt electrolysis as electrodes satisfying such requirements include carbon powder and P
The center is a gas diffusion electrode in which a catalyst such as silver or platinum is supported on an electrode substrate formed by mixing TFE and forming a sheet. The anodic reaction and the cathodic reaction in the conventional salt electrolysis are as follows, respectively, and the theoretical decomposition voltage is 2.19V. Anode reaction: 2Cl − → Cl 2 + 2e (1.36V) Cathodic reaction: 2H 2 O + 2e → 4OH − + H 2 (−0.83V)
【0007】ここで陰極に酸素を供給しながら電解する
と、水素が供給酸素で消費されて陰極反応は次のように
なる。 陰極反応:2H2 O+O2 +4e → 4OH- (0.40V) 従って理論的には1.23V、実用的電流密度範囲でも0.8
V程度の電力消費を低減でき、水酸化ナトリウム1トン
当たり700 kWhの節減になる。このような省エネルギ
ー化の観点から1980年代以降、ガス拡散電極を利用する
食塩電解の実用化が検討されているが、このタイプの電
極には次のような欠点があった。Here, when electrolysis is performed while supplying oxygen to the cathode, hydrogen is consumed by the supplied oxygen, and the cathode reaction is as follows. Cathode reaction: 2H 2 O + O 2 + 4e → 4OH − (0.40 V) Therefore, theoretically 1.23 V, 0.8 in the practical current density range
V power consumption can be reduced, saving 700 kWh per tonne of sodium hydroxide. From the viewpoint of energy saving, practical application of salt electrolysis using a gas diffusion electrode has been studied since the 1980s, but this type of electrode has the following disadvantages.
【0008】 電極材料として用いられるカーボンが
高温で水酸化ナトリウム及び酸素の共存下では容易に劣
化し、電極性能を著しく低下させる。 液圧の上昇及び電極の劣化に伴い発生する水酸化ナ
トリウムのガス室側へのリークを防止することが困難で
ある。 実用レベルで必要な大きさ(1m2 以上)の電極の
作製が困難である。 槽内の圧力は高さによって変化し、それを補償する
供給酸素ガス圧分布を与えることが困難である。 陰極液の溶液抵抗損失があり、又溶液の攪拌の動力
を必要とする。 実用化に際し、既存の電解設備の大幅な改良が必要
になる。 酸素ガスとして空気を利用すると、空気中の炭酸ガ
スが水酸化ナトリウムと反応して炭酸ナトリウムとして
ガス拡散電極の細孔に析出するため、ガス拡散能が低下
してしまう。[0008] Carbon used as an electrode material is easily degraded at high temperatures in the presence of sodium hydroxide and oxygen, and significantly lowers electrode performance. It is difficult to prevent the leakage of sodium hydroxide to the gas chamber side, which is caused by the rise of the liquid pressure and the deterioration of the electrode. It is difficult to produce an electrode of a required size (1 m 2 or more) at a practical level. The pressure in the tank varies with the height, and it is difficult to provide a supply oxygen gas pressure distribution that compensates for this. There is a solution resistance loss of the catholyte and power for stirring the solution is required. For practical use, it is necessary to significantly improve existing electrolytic equipment. When air is used as oxygen gas, carbon dioxide gas in the air reacts with sodium hydroxide and precipitates as sodium carbonate in the pores of the gas diffusion electrode, so that the gas diffusion ability is reduced.
【0009】これらの問題点を解決する電解法が図2に
示す電解槽を使用するセロギャップ型電解法である。こ
の電解法では、電解槽8の酸素ガス拡散陰極9とイオン
交換膜10を密着することにより図1の溶液室を無くし、
原料である酸素ガス及び水を供給し、又生成物である水
酸化ナトリウムも同じ側から回収することを特徴として
いる。この電解法を用いると、溶液室とガス室との間の
ガスリークが無くなるため、前記問題点が解消し、又
電極とイオン交換膜が密着した構造であるため従来のイ
オン交換膜法の電解設備をあまり改良することなく使用
できるため、前記問題点も解決される。この電解プ
ロセスに適した酸素ガス拡散陰極に要求される性能は、
ガス透過性が高いこと、水酸化ナトリウムによる湿潤を
避けるために必要な疎水性が高いこと、及び水酸化ナト
リウムが電極内を移動するのに必要な透過性が高いこと
である。このような目的のために前記酸素ガス拡散陰極
はニッケルや銀等の耐久性金属で作製されており,前記
問題点が解決されて、長時間の電解が期待できる。An electrolysis method which solves these problems is a cellogap type electrolysis method using an electrolytic cell shown in FIG. In this electrolysis method, the solution chamber shown in FIG. 1 is eliminated by bringing the oxygen gas diffusion cathode 9 of the electrolytic cell 8 into close contact with the ion exchange membrane 10.
It is characterized by supplying oxygen gas and water as raw materials and recovering sodium hydroxide as a product from the same side. When this electrolysis method is used, gas leakage between the solution chamber and the gas chamber is eliminated, so that the above-mentioned problem is solved. Further, since the electrode and the ion exchange membrane are in close contact with each other, the electrolytic equipment of the conventional ion exchange membrane method is used. Can be used without much improvement, so the above problem is also solved. The performance required of an oxygen gas diffusion cathode suitable for this electrolytic process is as follows:
High gas permeability, high hydrophobicity required to avoid wetting by sodium hydroxide, and high permeability required for sodium hydroxide to move through the electrode. For such a purpose, the oxygen gas diffusion cathode is made of a durable metal such as nickel or silver, so that the above-mentioned problems are solved and long-term electrolysis can be expected.
【0010】又この電解プロセスでは、酸素供給側に透
過してきた水酸化ナトリウムを回収するので,従来のよ
うに陰極により溶液室とガス室に区画することが不要に
なる。従って電極は液が透過性しても問題が起こらず、
大型化も比較的に容易になると考えられ、問題点が解
決される。溶液室が存在せず、従って高さ方向による液
圧変化を受けないため、当然問題点は起こりえない。
又生成した水酸化ナトリウムが、必然的に電極内部を通
って酸素供給側に移動するため、問題点が起こりにく
くなる。このようにガス拡散電極を工業電解系に適合さ
せる試みは継続的に行なわれ、種々の改良が施され、成
果が上がっている。しかし高さが1mにも達する既存の
電解槽を利用する場合には、上述の構造を有するガス拡
散電極でも本来の電解性能が充分に得られない。その理
由として、酸素供給側に移動するアルカリ溶液に加え
て、重力により高さ方向に移動した液が、電極内部に滞
留するので、ガス供給が阻害されることが挙げられる。
この欠点を解消するために、ガス拡散電極に凹凸を付け
あるいは一定高さごとに庇状の案内板を取り付けて電解
液の電解表面からの離脱を促進したりする試みが成され
ているが、特に大型電解槽の場合には十分な液離脱が達
成できずに電圧が高くなる傾向があり、完全な解決策が
提示されていないという問題点が残っていた。In this electrolysis process, since sodium hydroxide permeated to the oxygen supply side is recovered, it is not necessary to partition the solution chamber and the gas chamber by the cathode as in the conventional case. Therefore, the electrode has no problem even if the liquid is permeable,
It is considered that upsizing is relatively easy, and the problem is solved. Since there is no solution chamber, and therefore there is no change in the liquid pressure in the height direction, no problem can naturally occur.
In addition, since the generated sodium hydroxide necessarily moves to the oxygen supply side through the inside of the electrode, the problem hardly occurs. As described above, attempts to adapt the gas diffusion electrode to an industrial electrolysis system have been continuously made, and various improvements have been made and results have been obtained. However, when an existing electrolytic cell having a height of 1 m is used, the original electrolytic performance cannot be sufficiently obtained even with the gas diffusion electrode having the above structure. The reason is that, in addition to the alkali solution that moves to the oxygen supply side, the liquid that has moved in the height direction due to gravity stays inside the electrode, which hinders gas supply.
In order to solve this drawback, attempts have been made to make the gas diffusion electrode uneven or to attach an eaves-like guide plate at a certain height to promote separation of the electrolytic solution from the electrolytic surface. In particular, in the case of a large electrolytic cell, there is a tendency that sufficient liquid separation cannot be achieved and the voltage tends to increase, and a problem that a complete solution has not been proposed remains.
【0011】[0011]
【発明の目的】本発明は、前述の従来技術の問題点、つ
まりガス拡散電極方式の電解、例えば酸素ガス拡散電極
をイオン交換膜に密着させて電解を行なうゼロギャップ
型の食塩電解、水素ガス拡散電極を有する3室法電解槽
を使用する塩分離や過酸化水素生成電解におけるガス拡
散電極表面へのガス供給が円滑でないという問題点を解
決し、低電解電圧下で水酸化ナトリウムや過酸化水素等
を製造できるガス拡散電極構造体とその製造方法を提供
することを目的とする。An object of the present invention is to solve the above-mentioned problems of the prior art, namely, gas diffusion electrode type electrolysis, for example, zero gap type salt electrolysis in which an oxygen gas diffusion electrode is brought into close contact with an ion exchange membrane, and hydrogen gas. It solves the problem that gas supply to the gas diffusion electrode surface is not smooth in salt separation and hydrogen peroxide generation electrolysis using a three-chamber electrolytic cell having a diffusion electrode. An object of the present invention is to provide a gas diffusion electrode structure capable of producing hydrogen or the like and a method for producing the same.
【0012】[0012]
【問題点を解決するための手段】本発明に係わるガス拡
散電極構造体は、親水性多孔層、該親水性多孔層の片面
に形成された液及びガス透過性の電極物質層及び前記親
水性多孔層の他面に密着するイオン交換膜を含んで成る
ことを特徴とするガス拡散電極構造体であり、本発明に
係わるガス拡散電極構造体の製造方法は、親水性多孔層
の片面の少なくとも一部に電極物質を含有するペースト
を塗布し、加熱及び焼付けを行って前記親水性多孔層の
片面に液及びガス透過性の電極物質層を形成し、かつ前
記親水性多孔層の他面にイオン交換膜を密着させること
を特徴とするガス拡散電極構造体の製造方法であり、前
記親水性多孔層の焼結又は焼付けを電極物質層の焼付け
と同時に行っても良い。The gas diffusion electrode structure according to the present invention comprises a hydrophilic porous layer, a liquid and gas permeable electrode material layer formed on one surface of the hydrophilic porous layer, and the hydrophilic porous layer. A gas diffusion electrode structure comprising an ion-exchange membrane in close contact with the other surface of the porous layer, wherein the method for producing a gas diffusion electrode structure according to the present invention comprises the steps of: A paste containing an electrode substance is partially applied, and a liquid and gas-permeable electrode substance layer is formed on one surface of the hydrophilic porous layer by heating and baking, and on the other surface of the hydrophilic porous layer. A method for producing a gas diffusion electrode structure, characterized in that an ion exchange membrane is adhered, and the sintering or baking of the hydrophilic porous layer may be performed simultaneously with the baking of the electrode material layer.
【0013】以下本発明を詳細に説明する。従来からガ
ス拡散電極の食塩電解等の工業電解への適用は検討され
報告されている。例えば陰極室を酸素ガス拡散陰極によ
り溶液室とガス室とに区画するタイプの電解槽では、イ
オン交換膜と陰極間の液による液抵抗は無視できないほ
ど大きい。イオン交換膜と陰極を密着させるゼロギャッ
プタイプは、この液抵抗を低減させるために開発された
技術である。例えば食塩電解の場合、前述した陰極反
応:2H2 O+2e→4OH- +H2 がイオン交換膜と
陰極との界面で生じ、生成した水酸化ナトリウムは溶液
として酸素ガス拡散陰極を透過して該陰極のガス相側か
ら取り出される。この場合水酸化ナトリウムの流れ方向
と酸素含有ガスの流れ方向が逆であるため、溶液が酸素
電極内に滞留したり、ガス供給速度が遅くなったりす
る。Hereinafter, the present invention will be described in detail. Conventionally, application of gas diffusion electrodes to industrial electrolysis such as salt electrolysis has been studied and reported. For example, in an electrolytic cell of a type in which a cathode chamber is divided into a solution chamber and a gas chamber by an oxygen gas diffusion cathode, the liquid resistance due to the liquid between the ion exchange membrane and the cathode is not negligible. The zero-gap type in which the ion exchange membrane and the cathode are in close contact with each other is a technique developed to reduce the liquid resistance. For example, in the case of salt electrolysis, the above-described cathodic reaction: 2H 2 O + 2e → 4OH − + H 2 occurs at the interface between the ion exchange membrane and the cathode, and the generated sodium hydroxide permeates through the oxygen gas diffusion cathode as a solution to form the cathode. It is taken out from the gas phase side. In this case, since the flow direction of the sodium hydroxide and the flow direction of the oxygen-containing gas are opposite to each other, the solution stays in the oxygen electrode or the gas supply speed becomes slow.
【0014】例えば酸素ガス拡散陰極を食塩電解に使用
する場合とガス発生電極を食塩電解に使用する場合にお
ける電流密度の増加に対する電解電圧の上昇は、前者の
方が後者の約1.5 〜2倍であることが知られている。こ
れは酸素ガス拡散陰極の特性として捉えられ、その主要
因は反応の種類ではなく、電極反応以外の過電圧に依る
ものであることが判っている。その過電圧上昇の原因の
1つが酸素ガス拡散陰極に対する供給ガス不足であり、
例えば食塩電解の場合、ガス源を空気とする場合と純酸
素とする場合では前者の方が約200 mV過電圧が高くな
ることが知られている。又供給量を増加した方が過電圧
が低くなるが、生成物の取り出しに支障を来たし、結局
円滑なガス供給もできなくなる。For example, when the oxygen gas diffusion cathode is used for salt electrolysis and when the gas generating electrode is used for salt electrolysis, the increase in the electrolysis voltage with respect to the increase in current density is about 1.5 to 2 times that of the latter. It is known that there is. This is regarded as the characteristic of the oxygen gas diffusion cathode, and it has been found that the main factor is not the type of reaction but the overvoltage other than the electrode reaction. One of the causes of the overvoltage rise is a shortage of supply gas to the oxygen gas diffusion cathode,
For example, in the case of salt electrolysis, it is known that when the gas source is air or pure oxygen, the former has a higher overvoltage of about 200 mV. In addition, the overvoltage becomes lower when the supply amount is increased, but there is a problem in taking out the product, and as a result, the gas cannot be supplied smoothly.
【0015】本発明は、この酸素ガス拡散陰極を食塩電
解に使用する場合以外にも、水素ガス拡散陽極を3室法
の塩分離に使用する場合、及びガス拡散電極を過酸化水
素の電解製造に使用する場合等における電解生成物を含
む溶液の取り出しと原料ガスの供給を共に円滑に行ない
得る電解槽で使用するガス拡散電極構造体とその製造方
法を提供することも目的とし、これによりガス拡散電極
を使用する工業電解槽の実現の可能性が高くなる。本発
明では、イオン交換膜とガス拡散電極の電極物質層を密
着させて設置するゼロギャップ型電解槽の前記イオン交
換膜と電極物質層間に親水性多孔層を設けて、イオン交
換膜−親水性多孔層−電極物質層によりガス拡散電極構
造体を構成する。この親水性多孔層は、イオン交換膜で
生成する水酸化ナトリウムや過酸化水素を溶解した溶液
の全部又は一部を、該親水性多孔層を通して電極室の周
囲、特に下部に抜き出して前記溶液がイオン交換膜と電
極物質層間に滞留する時間を短くし、これにより電極物
質層背面からの酸素含有ガスや水素含有ガス等の原料ガ
スの供給を円滑に行なうようにしたものである。従って
本発明によると生成物を溶解した溶液の円滑な抜き出し
と原料ガスの円滑な供給という方向の異なる操作を最大
効率で行ない、電解電圧を従来以上に低減してガス拡散
電極を工業電解へ適用する道を大きく開くことを可能に
する。このガス拡散電極構造体は、食塩電解の酸素ガス
拡散陰極としても、塩分離の水素ガス拡散陽極として
も、過酸化水素製造用ガス拡散電極としても使用でき、
各種電解のガス拡散電極として有用である。[0015] The present invention is not limited to the case where the oxygen gas diffusion cathode is used for salt electrolysis, the case where the hydrogen gas diffusion anode is used for salt separation in a three-chamber method, and the case where the gas diffusion electrode is used for electrolytic production of hydrogen peroxide. Another object of the present invention is to provide a gas diffusion electrode structure used in an electrolytic cell and a method for producing the gas diffusion electrode, which can smoothly carry out both the removal of a solution containing an electrolytic product and the supply of a raw material gas in the case where the gas is used, and the like. The possibility of realizing an industrial electrolytic cell using a diffusion electrode is increased. In the present invention, a hydrophilic porous layer is provided between the ion exchange membrane and the electrode substance layer of the zero-gap type electrolytic cell in which the ion exchange membrane and the electrode substance layer of the gas diffusion electrode are placed in close contact with each other. The gas diffusion electrode structure is constituted by the porous layer and the electrode material layer. This hydrophilic porous layer extracts all or a part of the solution in which sodium hydroxide or hydrogen peroxide generated in the ion exchange membrane is dissolved through the hydrophilic porous layer to the periphery of the electrode chamber, particularly to the lower portion, and the solution is removed. The residence time between the ion-exchange membrane and the electrode material layer is shortened, so that the supply of a source gas such as an oxygen-containing gas or a hydrogen-containing gas from the back surface of the electrode material layer is performed smoothly. Therefore, according to the present invention, the operations in different directions such as the smooth extraction of the solution in which the product is dissolved and the smooth supply of the raw material gas are performed at the maximum efficiency, the electrolysis voltage is reduced more than before, and the gas diffusion electrode is applied to industrial electrolysis. To widen the path of doing things. This gas diffusion electrode structure can also be used as an oxygen gas diffusion cathode for salt electrolysis, as a hydrogen gas diffusion anode for salt separation, or as a gas diffusion electrode for hydrogen peroxide production,
It is useful as a gas diffusion electrode for various electrolysis.
【0016】液抵抗の面から見れば、イオン交換膜と電
極物質層との間には何も存在しないことが好ましいの
で、本発明の親水性多孔層を両者間に挿入しないほうが
良いことになり、挿入すれば電解電圧は上昇する。しか
し純水電解のようなイオン交換膜を固体電解質として利
用する場合以外はイオン交換膜と電極とが密着しなけれ
ばならない必然性はなく、前記親水性多孔層の挿入によ
る電解電圧の上昇分以上の効果が現れれば、全体として
の省エネルギー化が達成できる。本発明はまさにこの効
果を狙ったもので、前述の溶液を親水性多孔層を通して
取り出すことにより、ガス供給の円滑化を達成し、これ
により前記親水性多孔層の挿入による上昇分以上の電解
電圧の低減を行い、全体として省エネルギー化を図ろう
とするものである。From the viewpoint of the liquid resistance, it is preferable that nothing exists between the ion exchange membrane and the electrode material layer. Therefore, it is better not to insert the hydrophilic porous layer of the present invention between them. If inserted, the electrolytic voltage rises. However, there is no necessity that the ion exchange membrane and the electrode have to be in close contact with each other except when the ion exchange membrane such as pure water electrolysis is used as a solid electrolyte, and the insertion of the hydrophilic porous layer causes the increase in the electrolytic voltage or more. If the effect appears, energy saving as a whole can be achieved. The present invention aims exactly at this effect, and achieves smooth gas supply by taking out the above-mentioned solution through the hydrophilic porous layer, thereby increasing the electrolytic voltage by the amount of increase due to the insertion of the hydrophilic porous layer. And to save energy as a whole.
【0017】又親水性多孔層が連続した液層であると、
この液層の高さ方向に前記電極物質層へ掛かる圧力差が
生じ、大型化へのネックになる可能性がある。本発明に
係わるガス拡散電極構造体は、前述の通りイオン交換膜
−親水性多孔層−電極物質層により構成され、例えばこ
の構造体を食塩電解槽の酸素ガス拡散陰極としてイオン
交換膜と密着状態でガス室のみから成る陰極室に収容す
ると、該陰極室には溶液室がなく酸素ガス拡散陰極の背
面側にはガス圧が等しく掛かっていること、及び前記溶
液は前記親水性多孔層から実質的に液滴として抜き出さ
れ、該親水性多孔層内には連続的な液層が生じているの
ではなく途中で途切れた液膜状になっていると考えるこ
とが妥当であることから、高さ方向の圧力変化を酸素ガ
ス拡散陰極が受けることはない。これは本発明のガス拡
散電極構造体を3室法電解槽の水素ガス拡散陽極あるい
は過酸化水素製造用ガス拡散電極に適用した場合も同様
である。Further, when the hydrophilic porous layer is a continuous liquid layer,
A difference in pressure applied to the electrode material layer occurs in the height direction of the liquid layer, which may be a bottleneck for upsizing. As described above, the gas diffusion electrode structure according to the present invention is composed of an ion exchange membrane, a hydrophilic porous layer, and an electrode material layer. For example, this structure is used as an oxygen gas diffusion cathode of a salt electrolytic cell and is in close contact with the ion exchange membrane. When accommodated in a cathode chamber consisting of only a gas chamber, there is no solution chamber in the cathode chamber, the gas pressure is equally applied on the back side of the oxygen gas diffusion cathode, and the solution is substantially separated from the hydrophilic porous layer. It is appropriately extracted as a droplet, and it is appropriate to think that a continuous liquid layer is not generated in the hydrophilic porous layer but a liquid film that is interrupted in the middle, The oxygen gas diffusion cathode does not receive a pressure change in the height direction. The same applies to the case where the gas diffusion electrode structure of the present invention is applied to a hydrogen gas diffusion anode of a three-chamber electrolytic cell or a gas diffusion electrode for producing hydrogen peroxide.
【0018】本発明で使用する電極物質層は従来のガス
拡散電極の特徴を活かしたまま使用できる。例えばチタ
ン、ニオブ、タンタル、ステンレス、ニッケル、ジルコ
ニウム、カーボン、銀などの耐食性材料から成る金網、
粉末焼結体、金属繊維焼結体、発泡体等の材料を、必要
に応じて前処理洗浄して電極物質層とするか、又はその
表面に、白金、パラジウム、ルテニウム、イリジウム,
銅、銀、コバルト、鉛等の金属又はそれらの酸化物等を
担持した導電性グラファイトやカーボンブラック粉末、
又は金属銀粉末単独あるいは白金や白金族金属合金を担
持した酸化チタン等のセラミックをバインダーであるフ
ッ素樹脂と混練してペーストとし、このペーストを150
〜300 ℃で加熱又はホットプレスにより焼付けを行って
電極物質層とする。なお前記金網等の表面に、混練物を
塗布し焼き付けても良い。電極物質層の多孔性を更に高
めるためには前記ペースト中にアルコールやエチレング
リコール等の加熱により分解又は揮発する化合物を添加
しすれば良い。又このような分解性又は揮発性物質でな
く、発泡剤を添加しても良いことは勿論である。The electrode material layer used in the present invention can be used while utilizing the characteristics of the conventional gas diffusion electrode. For example, a wire mesh made of a corrosion-resistant material such as titanium, niobium, tantalum, stainless steel, nickel, zirconium, carbon, silver,
A material such as a powdered sintered body, a metal fiber sintered body, or a foamed body may be pretreated and washed as necessary to form an electrode material layer, or may be formed of platinum, palladium, ruthenium, iridium,
Copper, silver, cobalt, conductive graphite or carbon black powder carrying a metal such as lead or oxides thereof,
Alternatively, a metal silver powder alone or a ceramic such as titanium oxide carrying platinum or a platinum group metal alloy is kneaded with a fluororesin as a binder to form a paste.
It is baked by heating or hot pressing at ~ 300 ° C to form an electrode material layer. The kneaded material may be applied to the surface of the wire net or the like and baked. In order to further increase the porosity of the electrode material layer, a compound which is decomposed or volatilized by heating, such as alcohol or ethylene glycol, may be added to the paste. Of course, a foaming agent may be added instead of such a decomposable or volatile substance.
【0019】反応ガスの物質移動を速やかに行なうため
に、疎水性材料を、前記電極物質層や集電体に分散担持
することが好ましい。疎水性材料としては、フッ化ピッ
チ、フッ化黒鉛、フッ素樹脂等が望ましく、特にフッ素
樹脂は均一かつ良好な性能を得るために、200 から400
℃の温度において焼成することも好ましい。フッ素成分
の粉末の粒径は0.005 〜100 μmとすることが好まし
い。疎水性や親水性の部分は電極断面方向に沿ってそれ
ぞれ連続していることが望ましい。耐食性や経済性の観
点から、前記電極物質層に貴金属めっき特に銀めっきを
施すことが望ましい。疎水性銀めっき浴は、例えば、チ
オシアン化銀10〜50g/リットル、チオシアン化カリウ
ム200 〜400 g/リットルの水溶液中へ、PTFE粒子
10〜200 g/リットル、及び界面活性剤10〜200 g/
(g/PTFE)を添加して調製し、適度に攪拌しなが
ら、室温にて電流密度0.2 〜2A/dm2 で電着させる。め
っき厚としては1〜300 μmのときに良好な疏水性及び
耐食性を発現する。めっき後はアセトン等で充分に洗浄
することが好ましい。In order to quickly carry out the mass transfer of the reaction gas, it is preferable to disperse and carry a hydrophobic material on the electrode material layer and the current collector. Preferable examples of the hydrophobic material include pitch fluoride, graphite fluoride, and fluororesin. Particularly, fluororesin is preferably 200 to 400 to obtain uniform and good performance.
Firing at a temperature of ° C. is also preferred. The particle diameter of the fluorine component powder is preferably 0.005 to 100 μm. It is desirable that the hydrophobic and hydrophilic portions are respectively continuous along the electrode cross-sectional direction. From the viewpoint of corrosion resistance and economy, it is desirable to apply a noble metal plating, particularly silver plating, to the electrode material layer. The hydrophobic silver plating bath is, for example, a solution of PTFE particles in an aqueous solution of 10 to 50 g / l of silver thiocyanate and 200 to 400 g / l of potassium thiocyanate.
10-200 g / liter and surfactant 10-200 g /
(G / PTFE), and electrodeposited at room temperature with a current density of 0.2 to 2 A / dm 2 while stirring appropriately. Good hydrophobicity and corrosion resistance are exhibited when the plating thickness is 1 to 300 μm. After plating, it is preferable to sufficiently wash with acetone or the like.
【0020】本発明においてイオン交換膜とガス拡散電
極間に位置する親水性多孔層は電子の移動には寄与しな
いため、導電性は無くても良い。その材質は特に限定さ
れないが、例えば食塩電解では高濃度の水酸化ナトリウ
ムと約100 ℃で接触するため十分な耐性を有することが
必要である。又塩分離用陽極として使用する場合には電
位はほぼ同じであるが電解液が強酸になることが多いた
め、耐酸性の材料であることが必要である。更に電解槽
内に設置されるイオン交換膜は必ずしも完全な平面では
ないので、前記電極物質層もそれに沿ってある程度変形
できるフレキシビリティを有することが望ましく、換言
すると圧力の不均一が生ずる場合に変形して前記圧力を
吸収する材料であることが望ましい。前記親水性多孔層
の材質としては、例えば酸化ジルコニウム、酸化珪素及
び酸化チタン等の金属酸化物、カーボン、炭化珪素等の
セラミックス、親水性化したPTFE、EEP等の樹
脂、ニッケル、ステンレス、銀等の金属や合金などがあ
り、前記した樹脂以外の材料の場合はバインダーである
30%以下のフッ素樹脂とともに焼き付け、必要に応じて
前処理洗浄して親水性多孔層とする。In the present invention, since the hydrophilic porous layer located between the ion exchange membrane and the gas diffusion electrode does not contribute to the transfer of electrons, it does not have to have conductivity. Although the material is not particularly limited, for example, in the case of salt electrolysis, it needs to have sufficient resistance because it comes into contact with high concentration sodium hydroxide at about 100 ° C. When used as an anode for salt separation, the potential is almost the same, but since the electrolyte often becomes a strong acid, it is necessary to use an acid-resistant material. Further, since the ion exchange membrane installed in the electrolytic cell is not necessarily a perfect plane, it is desirable that the electrode material layer also has a flexibility to some extent along it, in other words, the electrode material layer is deformed when pressure unevenness occurs. Preferably, the material absorbs the pressure. Examples of the material of the hydrophilic porous layer include metal oxides such as zirconium oxide, silicon oxide and titanium oxide, ceramics such as carbon and silicon carbide, resins such as PTFE and EEP which have been made hydrophilic, nickel, stainless steel, silver and the like. There are metals and alloys, etc., in the case of materials other than the above-mentioned resin is a binder
It is baked together with 30% or less of a fluororesin and, if necessary, is subjected to pretreatment washing to obtain a hydrophilic porous layer.
【0021】前記親水性多孔層の形状は厚さが0.01〜10
mm、好ましくは0.1 〜1mmのシート状とすることが好ま
しく、更に電解液を常に保持し得る材料及び構造である
ことが好ましく、例えばその構造としては、網、織物、
不織物、発泡体があり、特に粉末を原料として孔形成剤
と各種バインダーでシート状に成形した後、溶剤により
孔形成粒子を除去した焼結板又はそれを重ねた物が好ま
しい。親水性多孔層を構成する粉末の平均気孔率はこれ
に限定されるものではないが50〜90%、望ましくは70〜
90%とする。気孔率が90%を越えると物理強度が弱くな
って取扱い上の問題が生じ、又50%未満では保水率及び
透水率が低くなり更に電解時の電気抵抗が大きくなる。
他の条件にも依るが、気孔率を50〜90%にするための親
水性多孔層材料の平均粒径は5〜10μm程度であり、粒
度分布はできるだけ小さくすることが好ましい。The hydrophilic porous layer has a thickness of 0.01 to 10
mm, preferably 0.1 to 1 mm, and more preferably a material and a structure that can always hold the electrolytic solution.
There are non-woven fabrics and foams, and particularly preferably a sintered plate obtained by forming a sheet from a powder as a raw material with a pore-forming agent and various binders and removing pore-forming particles with a solvent, or a laminate thereof. The average porosity of the powder constituting the hydrophilic porous layer is not limited to this, but is 50 to 90%, preferably 70 to 90%.
90%. If the porosity exceeds 90%, the physical strength is weakened and handling problems occur. If the porosity is less than 50%, the water retention and water permeability decrease, and the electric resistance during electrolysis increases.
Although depending on other conditions, the average particle size of the hydrophilic porous layer material for setting the porosity to 50 to 90% is about 5 to 10 μm, and the particle size distribution is preferably as small as possible.
【0022】該親水性多孔層の厚さは、イオン交換膜か
ら該電極物質層に向かって流れる電解液の量、つまり該
親水性多孔層により除去されるべき電解液の量に応じて
加減すれば良いが、前記厚さを500 〜1000μmと厚くす
る場合には、使用する粒子の平均粒径もそれに対応して
大きくすることが好ましい。該親水性多孔層が厚いと電
解電圧が高くなり電力原単位が悪くなることがある。又
該親水性多孔層を前述した金属酸化物等の粒子とバイン
ダーのみで構成すると強度が不十分になり取扱いが不便
になることがある。この場合には金属フォームや金属メ
ッシュあるいは炭素繊維やフッ素樹脂等を心材として使
用し、この心材の両面に前記粒子及びバインダーによる
多孔層を形成すれば良い。但しこの心材も前述した親水
性多孔層の材質に関して述べた特性が必要であり、例え
ば食塩電解の酸素ガス拡散陰極として使用する場合に
は、金属銀や銀めっきを施した銅やニッケルを使用する
ことが、又塩分離の水素ガス拡散陽極として使用する場
合には、耐酸性のあるチタンやジルコニウム又はハステ
ロイを使用することが望ましい。この心材も親水性多孔
層と同様に電子の移動には寄与しないため、導電性でも
非導電性でも良いが、電極としての作用はできるだけ小
さくすることが好ましい。The thickness of the hydrophilic porous layer is adjusted according to the amount of the electrolyte flowing from the ion exchange membrane toward the electrode material layer, that is, the amount of the electrolyte to be removed by the hydrophilic porous layer. However, when the thickness is increased to 500 to 1000 μm, it is preferable to increase the average particle size of the particles used accordingly. When the hydrophilic porous layer is thick, the electrolysis voltage is increased, and the power consumption may deteriorate. If the hydrophilic porous layer is composed of only the above-mentioned particles of metal oxide and the like and a binder, the strength becomes insufficient and the handling may be inconvenient. In this case, a metal foam, a metal mesh, carbon fiber, a fluororesin, or the like may be used as a core material, and a porous layer of the particles and the binder may be formed on both surfaces of the core material. However, this core material also needs the characteristics described with respect to the material of the hydrophilic porous layer described above. For example, when used as an oxygen gas diffusion cathode for salt electrolysis, copper or nickel plated with metallic silver or silver is used. When used as a hydrogen gas diffusion anode for salt separation, it is desirable to use acid-resistant titanium, zirconium or Hastelloy. Since this core material does not contribute to the transfer of electrons similarly to the hydrophilic porous layer, it may be conductive or non-conductive, but it is preferable that the function as an electrode is as small as possible.
【0023】このような心材を有する親水性多孔層を製
造するには、心材の両面に上述した原料粉末とフッ素樹
脂の混練物を塗布し、僅かに圧力を掛けながら例えば20
0 〜350 ℃程度の温度でホットプレスして成型すること
ができる。この親水性多孔層をイオン交換膜と電極物質
層間に配置するには、前記イオン交換膜と電極物質層間
に挟み、電解液の液高さによる水圧差0.1 〜30kgf/cm2
程度の圧力で一体化することができる。又前記親水性多
孔層を予め電極物質層の膜側表面又はイオン交換膜の電
極物質層側表面に形成し、該イオン交換膜及び電極物質
層を密着させて所定位置に配置するようにしても良い。
しかしながら液及びガス透過性を有する前記電極物質層
は、前記親水性多孔層の片面の少なくとも一部に該電極
物質層を構成する成分である電極物質の混練物を含有す
るペーストを塗布し、加熱及び焼付けを行って形成する
ことが望ましい。この加熱は例えば空気中200 〜350 ℃
で行うことができる。200 ℃未満でも加熱焼付けは可能
であるが、その場合は添加する化合物をより分解又は揮
発しやすいものとする。加熱温度が350 ℃を越えるとバ
インダーであるフッ素樹脂の分解が生じ始めるため短時
間での処理が必要になり、又高温度では触媒粒子同士の
焼結や不活性化が進行しやすくなる。このようにペース
ト塗布による電極物質層の形成条件は電極物質の種類や
バインダーの種類に応じて適宜設定する必要がある。In order to produce a hydrophilic porous layer having such a core material, a kneaded material of the above-described raw material powder and fluororesin is applied to both surfaces of the core material and, for example, 20
It can be molded by hot pressing at a temperature of about 0 to 350 ° C. In order to arrange the hydrophilic porous layer between the ion exchange membrane and the electrode material layer, the hydrophilic porous layer is sandwiched between the ion exchange membrane and the electrode material layer, and a water pressure difference of 0.1 to 30 kgf / cm 2 depending on the height of the electrolytic solution.
It can be integrated with a moderate pressure. Further, the hydrophilic porous layer may be formed in advance on the surface of the electrode material layer on the membrane side or on the surface of the ion exchange membrane on the electrode material layer, and the ion exchange membrane and the electrode material layer may be placed in a predetermined position in close contact with each other. good.
However, the electrode material layer having liquid and gas permeability is applied to at least a part of one surface of the hydrophilic porous layer with a paste containing a kneaded material of an electrode material which is a component constituting the electrode material layer, and heated. It is desirable to form by performing baking. This heating is performed, for example, in air at 200 to 350 ° C.
Can be done with Heat baking is possible even at a temperature lower than 200 ° C, but in that case, the compound to be added should be more easily decomposed or volatilized. If the heating temperature exceeds 350 ° C., decomposition of the fluororesin as a binder begins to occur, so that a short time treatment is required. At a high temperature, sintering and inactivation of the catalyst particles are liable to proceed. As described above, the conditions for forming the electrode material layer by applying the paste need to be appropriately set according to the type of the electrode material and the type of the binder.
【0024】更に親水性多孔層を前述の該多孔層形成粒
子とバインダーであるフッ素樹脂から成る加熱焼結前の
親水性多孔層前駆体とし、この前駆体の片面の少なくと
も一部に前述した通り電極物質層を構成する成分である
電極物質の混練物を含有するペーストを塗布し、これを
加熱焼結することにより親水性多孔層の焼結と電極物質
層の焼結を一度の加熱処理操作で行い、作業性の向上を
図ることもできる。このように構成されるこの親水性多
孔層付き電極物質層は電解槽内に収容される際に常にイ
オン交換膜に接触するように設置され、イオン交換膜−
親水性多孔層−電極物質層から成るガス拡散電極構造体
となる。Further, the hydrophilic porous layer is used as a precursor of the hydrophilic porous layer before heating and sintering composed of the particles for forming the porous layer and the fluorine resin as a binder, and at least a part of one surface of the precursor is provided as described above. A paste containing a kneaded material of the electrode material, which is a component of the electrode material layer, is applied, and then heated and sintered, whereby the hydrophilic porous layer and the electrode material layer are sintered in a single heat treatment operation. To improve the workability. The electrode material layer with the hydrophilic porous layer thus configured is installed so as to be always in contact with the ion exchange membrane when housed in the electrolytic cell.
A gas diffusion electrode structure composed of a hydrophilic porous layer and an electrode material layer is obtained.
【0025】食塩電解に本発明のガス拡散電極構造体を
使用する場合、イオン交換膜としてはフッ素樹脂系の陽
イオン交換膜が耐食性の面から好適である。陽極は通常
のDSAと呼ばれるチタン製の不溶性電極を使用するこ
とが望ましく、他の電極の使用も可能である。電解条件
は、例えば温度60〜90℃、電流密度10〜100 A/dm2 とす
ることが好ましく、必要に応じて供給酸素含有ガスを加
湿する。加湿方法としては、電解槽入口に70〜95℃に加
湿された加湿装置を設け、前記酸素含有ガスを通すこと
により制御する。現在市販されている膜の性能では、陽
極液の濃度を200 g/リットル以下、特に170 g/リッ
トル付近に維持すると、酸素含有ガスの加湿は不要にな
る。得られる水酸化ナトリウム濃度は25〜40%程度が適
当であるが、基本的にはイオン交換膜の性能により決定
される。When the gas diffusion electrode structure of the present invention is used for salt electrolysis, a fluorine resin-based cation exchange membrane is preferable as the ion exchange membrane from the viewpoint of corrosion resistance. As the anode, it is desirable to use a titanium insoluble electrode called ordinary DSA, and other electrodes can be used. The electrolysis conditions are preferably, for example, a temperature of 60 to 90 ° C. and a current density of 10 to 100 A / dm 2. The supplied oxygen-containing gas is humidified if necessary. As a humidification method, a humidification device humidified at 70 to 95 ° C. is provided at the inlet of the electrolytic cell, and the humidification is controlled by passing the oxygen-containing gas. In the performance of currently commercially available membranes, if the anolyte concentration is kept below 200 g / l, especially around 170 g / l, humidification of the oxygen-containing gas becomes unnecessary. The obtained sodium hydroxide concentration is suitably about 25 to 40%, but is basically determined by the performance of the ion exchange membrane.
【0026】本発明のガス拡散電極構造体を設置した電
解槽を使用して食塩電解を行なうと、酸素ガス拡散陰極
のイオン交換膜側表面近傍で主として生成する水酸化ナ
トリウムを前記親水性多孔層を通してつまり酸素ガス拡
散陰極を通さずに抜き出すことができる。その際に該親
水性多孔層がシード状であると、前記水酸化ナトリウム
がその周縁に達しなければ抜き出されず、抜き出しまで
に比較的長時間を要することがある。この問題点を解決
するために、本発明では、例えばシートを複数に分割し
て各分割シートの一端を、例えば1〜5mm幅のスリット
やガイドを形成した酸素ガス拡散陰極のこれらの隙間か
ら電極背面に達するように配置すると、生成水酸化ナト
リウムが周縁に達する前に、短時間でイオン交換膜と酸
素ガス拡散陰極間から抜き出される。When salt electrolysis is performed using an electrolytic cell provided with the gas diffusion electrode structure of the present invention, sodium hydroxide mainly generated near the surface of the oxygen gas diffusion cathode on the side of the ion exchange membrane is converted to the hydrophilic porous layer. Through, ie, without passing through the oxygen gas diffusion cathode. At this time, if the hydrophilic porous layer has a seed shape, the sodium hydroxide is not extracted unless it reaches the periphery, and a relatively long time may be required until the sodium hydroxide is extracted. In order to solve this problem, in the present invention, for example, a sheet is divided into a plurality of sheets, and one end of each divided sheet is formed, for example, from these gaps of an oxygen gas diffusion cathode formed with a slit or guide having a width of 1 to 5 mm. If it is arranged so as to reach the back surface, the produced sodium hydroxide is extracted from between the ion exchange membrane and the oxygen gas diffusion cathode in a short time before reaching the periphery.
【0027】図3は、本発明に係わる酸素ガス拡散陰極
を使用する食塩電解用電解槽の一例を示す縦断面図であ
る。電解槽本体11は、イオン交換膜12により陽極室13と
陰極室14に区画され、前記イオン交換膜12の陽極室13側
にはメッシュ状の不溶性陽極15が密着し、該イオン交換
膜12の陰極室14側にはシート状の親水性多孔層16が密着
し更に該親水性多孔層16の陰極室側には液透過型酸素ガ
ス拡散陰極17が密着し、該酸素ガス拡散陰極17にはメッ
シュ状の陰極集電体18が接続され該集電体18により給電
されるようになっている。なお19は陽極室底部近傍の側
壁に形成された陽極液(飽和食塩水)導入口、20は陽極
室上部近傍の側壁に形成された陽極液(未反応食塩水)
及び塩素ガス取出口、21は陰極室上部近傍の側壁に形成
された(加湿)酸素含有ガス導入口、22は陰極室底部近
傍の側壁に形成された水酸化ナトリウム及び過剰酸素の
取出口である。FIG. 3 is a longitudinal sectional view showing an example of an electrolytic cell for salt electrolysis using an oxygen gas diffusion cathode according to the present invention. The electrolytic cell body 11 is divided into an anode chamber 13 and a cathode chamber 14 by an ion exchange membrane 12, and a mesh-shaped insoluble anode 15 is in close contact with the ion exchange membrane 12 on the anode chamber 13 side. A sheet-shaped hydrophilic porous layer 16 is in close contact with the cathode chamber 14 side, and a liquid-permeable oxygen gas diffusion cathode 17 is in close contact with the cathode chamber side of the hydrophilic porous layer 16. A mesh-shaped cathode current collector 18 is connected and is supplied with power by the current collector 18. Reference numeral 19 denotes an anolyte (saturated saline) inlet formed on the side wall near the bottom of the anode chamber, and 20 denotes an anolyte (unreacted saline) formed on the side wall near the top of the anode chamber.
And a chlorine gas outlet, 21 is a (humidified) oxygen-containing gas inlet formed on the side wall near the top of the cathode chamber, and 22 is an outlet for sodium hydroxide and excess oxygen formed on the side wall near the bottom of the cathode chamber. .
【0028】この電解槽11の陽極室13に陽極液である飽
和食塩水を供給しかつ陰極室14に加湿した酸素含有ガス
例えば純酸素や空気を供給しながら両電極15、17間に通
電すると、イオン交換膜12の陰極室14側表面で水酸化ナ
トリウムが生成する。通常の電解槽ではこの水酸化ナト
リウムは水溶液として酸素ガス拡散陰極を透過してその
陰極室側表面に達する。しかし図示の電解槽11ではイオ
ン交換膜12と酸素ガス拡散陰極17の間に親水性多孔層16
が存在するため、前記水酸化ナトリウム水溶液は前記陰
極17内を透過するよりも抵抗が小さくなる、前記親水性
多孔層16内を分散し、特に重力により下降して該親水性
多孔層16の下端に達して液滴として陰極室14底部に落下
して貯留される。この電解槽を図2等の従来の電解槽と
比較すると、図2の従来型電解槽では、生成する水酸化
ナトリウム水溶液は密度の高い酸素ガス拡散陰極内を透
過しなければならず、従って電極内での滞留時間が長く
なり、供給される酸素含有ガスの円滑な透過を阻害し、
反応を律速するガス供給が不十分になるため見掛け上の
陰極過電圧が上昇し、槽電圧が高くなる。それに比べ図
3の電解槽では、生成する水酸化ナトリウム水溶液の反
応サイトからの取り出しが比較的抵抗の小さい親水性多
孔層内の分散により行なわれ、陰極内に殆ど滞留しない
ため、反応ガスの供給が円滑に行なわれ、従って低い電
圧が維持される。When a saturated saline solution as an anolyte is supplied to the anode chamber 13 of the electrolytic cell 11 and a humidified oxygen-containing gas such as pure oxygen or air is supplied to the cathode chamber 14, electricity is supplied between the electrodes 15 and 17. Then, sodium hydroxide is generated on the surface of the ion exchange membrane 12 on the cathode chamber 14 side. In a normal electrolytic cell, this sodium hydroxide permeates the oxygen gas diffusion cathode as an aqueous solution and reaches the cathode chamber side surface. However, in the illustrated electrolytic cell 11, a hydrophilic porous layer 16 is provided between the ion exchange membrane 12 and the oxygen gas diffusion cathode 17.
Due to the presence of the sodium hydroxide aqueous solution, the resistance is smaller than that passing through the inside of the cathode 17, the inside of the hydrophilic porous layer 16 is dispersed, and the lower end of the hydrophilic porous layer 16 is particularly lowered by gravity. , And falls as a droplet at the bottom of the cathode chamber 14 and is stored. When this electrolytic cell is compared with the conventional electrolytic cell shown in FIG. 2 and the like, in the conventional electrolytic cell shown in FIG. 2, the generated sodium hydroxide aqueous solution must pass through the dense oxygen gas diffusion cathode, and therefore The residence time in the inside becomes long, impeding the smooth permeation of the supplied oxygen-containing gas,
Since the gas supply for controlling the reaction is insufficient, the apparent cathode overvoltage increases, and the cell voltage increases. In contrast, in the electrolytic cell shown in FIG. 3, the generated sodium hydroxide aqueous solution is taken out from the reaction site by dispersion in the hydrophilic porous layer having relatively small resistance, and hardly stays in the cathode. Is smoothly performed, and thus a low voltage is maintained.
【0029】図4は、生成する水酸化ナトリウム水溶液
を更に円滑に取り出すことのできる図3の電解槽の一部
を改良した要部斜視図で、図4aは陰極を複数に分割し
た例、図4bは陰極にスリットを形成した例を示す。図
4aでは、酸素ガス拡散陰極17aを複数に分割して陰極
片17bとし、かつ親水性多孔層16aも対応する数の親水
性多孔層片16bに分割している。各親水性多孔層片bの
下端は前記陰極17b方向に折り曲げられ上下に隣接する
陰極17b間を通って該陰極17bの背面に達し、折曲片16
cを形成している。FIG. 4 is a perspective view of the main part of a part of the electrolytic cell of FIG. 3 in which a generated aqueous sodium hydroxide solution can be taken out more smoothly. FIG. 4A is an example in which a cathode is divided into a plurality of parts. 4b shows an example in which a slit is formed in the cathode. In FIG. 4a, the oxygen gas diffusion cathode 17a is divided into a plurality of cathode pieces 17b, and the hydrophilic porous layer 16a is also divided into a corresponding number of hydrophilic porous layer pieces 16b. The lower end of each hydrophilic porous layer piece b is bent in the direction of the cathode 17b, passes between vertically adjacent cathodes 17b, reaches the back of the cathode 17b, and is bent.
c is formed.
【0030】この電解槽を使用して電解を行なうと、図
3の電解槽の場合と同様に、イオン交換膜の陰極室側表
面で生成する水酸化ナトリウム水溶液が親水性の親水性
多孔層片16b内を透過する。該親水性多孔層16bが分割
されているので、前記水酸化ナトリウム水溶液は周縁部
まで移動せずに各親水性多孔層片16b内をその下端部ま
での比較的短い距離を移動すれば陰極17b方向に折り曲
げられた折曲片16cから液滴として落下する。それ故図
3の電解槽よりも円滑に液抜きを行なうことができる。
図4bは陰極を複数に分割せず、陰極17cに横長の四角
形の形状のスリット23を形成した例である。図4aのよ
うに陰極を複数に分割すると各分割片ごとに給電する必
要があって煩雑であるが、図4bのように陰極17cにス
リット23を形成し、このスリット23を通して陰極16bの
折曲片16cを陰極背面に位置させるようにすると、陰極
への給電を単一の集電体で行なえるため、更に好都合で
ある。When electrolysis is carried out using this electrolytic cell, an aqueous solution of sodium hydroxide generated on the surface of the ion exchange membrane on the side of the cathode compartment is converted into a hydrophilic porous layer piece in the same manner as in the electrolytic cell of FIG. Transmit through 16b. Since the hydrophilic porous layer 16b is divided, the aqueous solution of sodium hydroxide does not move to the peripheral portion but moves within each hydrophilic porous layer piece 16b a relatively short distance to the lower end thereof, so that the cathode 17b Drops fall from the bent piece 16c bent in the direction. Therefore, the liquid can be drained more smoothly than the electrolytic cell shown in FIG.
FIG. 4B shows an example in which the cathode 17c is not divided into a plurality of parts and the slit 17 is formed in the cathode 17c in a horizontally long rectangular shape. When the cathode is divided into a plurality of parts as shown in FIG. 4A, it is necessary to supply power to each divided piece, which is complicated. However, as shown in FIG. 4B, a slit 23 is formed in the cathode 17c, and the cathode 16b is bent through the slit 23. If the piece 16c is located on the back surface of the cathode, it is more convenient since the power supply to the cathode can be performed by a single current collector.
【0031】[0031]
【実施例】次に本発明に係わるガス拡散電極構造体の製
造方法及び該ガス拡散電極構造体を使用する食塩電解及
び塩分離の実施例を記載するが、該実施例は本発明を限
定するものではない。EXAMPLES Next, a method for manufacturing a gas diffusion electrode structure according to the present invention and examples of salt electrolysis and salt separation using the gas diffusion electrode structure will be described, but the examples limit the present invention. Not something.
【0032】[0032]
【実施例1】見掛け厚さ0.2 mmの炭素繊維の織物を心材
とし、該心材の両面に、平均粒径7μmの酸化ジルコニ
ウム粉末と、固形分として該酸化ジルコニウムの30重量
%に相当するフッ素樹脂を含むフッ素樹脂の水分散体で
あるデュポン社の30J(バインダー)の混練物を塗布
し、見掛け厚さ0.5 mmの板状体を作製し、この板状体に
1kg/cm2の圧力を掛けながら250 ℃で15分間ホットプレ
スして焼結して、親水性多孔層とした。この親水性多孔
層の片面に、平均粒径1μmの銀粒子表面に白金を焼き
付けた触媒物質の分散体を塗布した後、平均粒径3μm
の銀粒子を前記30Jをバインダーとして見掛け厚さ0.1
mmとなるように塗布した(白金担持量は3g/m2 )。
これを1kg/cm2の圧力を掛けながら200 ℃で15分間ホッ
トプレスして、前記親水性多孔層の片面に電極物質層を
作製した。EXAMPLE 1 A core material made of a woven fabric of carbon fiber having an apparent thickness of 0.2 mm, zirconium oxide powder having an average particle diameter of 7 μm, and a fluororesin equivalent to 30% by weight of the zirconium oxide as a solid content on both surfaces of the core material A 30 K (binder) kneaded product of DuPont, which is an aqueous dispersion of a fluororesin containing, is applied to form a plate having an apparent thickness of 0.5 mm, and a pressure of 1 kg / cm 2 is applied to the plate. While hot pressing at 250 ° C. for 15 minutes, sintering was performed to obtain a hydrophilic porous layer. On one surface of this hydrophilic porous layer, a dispersion of a catalyst substance obtained by baking platinum on the surface of silver particles having an average particle diameter of 1 μm was applied, and then the average particle diameter was 3 μm.
Silver particles having an apparent thickness of 0.1
mm (the amount of platinum carried was 3 g / m 2 ).
This was hot-pressed at 200 ° C. for 15 minutes while applying a pressure of 1 kg / cm 2 to form an electrode material layer on one surface of the hydrophilic porous layer.
【0033】この親水性多孔層付き電極物質層の該親水
性多孔層を、電解面積が100 cm2 (10cm×10cm)である
2室法の小型イオン交換膜電解槽の陰極室にデュポン社
製ナフィオン961 であるイオン交換膜と密着するように
設置し陰極を構成した。陰極室の集電体は厚さ1mmの銅
の穴明き板の表面に銀をめっきしたものを用いた。陽極
として、酸化ルテニウム系の電極物質を被覆したチタン
製のエクスパンドメッシュ基体から成る不溶性金属電極
を用い、前記陰極とともに前記イオン交換膜を相互に密
着するように挟み込んだ。陰極室にはドレーンを設け、
生成した陰極液は全て下方に抜くようにした。陽極室に
は180 g/リットルの食塩水を循環し、陰極室にはPS
A法により酸素富化した酸素濃度90%のガスを理論量の
1.2 倍供給しながら食塩電解による水酸化ナトリウムの
製造を行ったところ、電流密度が30A/dm2 で電解電圧が
2.01Vであり、100 時間以上の連続運転を行っても安定
した電解が可能であった。The hydrophilic porous layer of the electrode material layer having the hydrophilic porous layer was placed in a cathode chamber of a small-sized two-chamber ion exchange membrane electrolytic cell having an electrolysis area of 100 cm 2 (10 cm × 10 cm) manufactured by DuPont. The cathode was set up so as to be in close contact with the ion exchange membrane, Nafion 961. The current collector in the cathode chamber used was a copper perforated plate having a thickness of 1 mm, the surface of which was plated with silver. An insoluble metal electrode made of a titanium expanded mesh substrate coated with a ruthenium oxide-based electrode material was used as an anode, and the ion exchange membrane was sandwiched together with the cathode so as to be in close contact with each other. A drain is provided in the cathode compartment,
All generated catholyte was drained downward. A 180 g / liter saline solution is circulated in the anode compartment, and PS is supplied in the cathode compartment.
A 90% oxygen concentration gas enriched in oxygen by Method A
When sodium hydroxide was produced by salt electrolysis while supplying 1.2 times, the current density was 30 A / dm 2 and the electrolysis voltage was
2.01 V, and stable electrolysis was possible even after continuous operation for 100 hours or more.
【0034】[0034]
【比較例1】実施例1で使用した炭素繊維織物の表面
に、平均粒径1μmの銀粒子表面に白金を焼き付けた触
媒物質の分散体を塗布した後、平均粒径3μmの銀粒子
を前記30Jをバインダーとして見掛け厚さ0.1 mmとなる
ように塗布して電極物質層とした(白金担持量は3g/
m2 )。この電極物質層を陰極とし、直接イオン交換膜
に密着させたこと以外は実施例1と同一条件で電解を行
ったところ、初期電圧は2.0 Vであったが、徐々に電圧
が上昇し、8時間後には100 mV上昇した。電解を中断
して30分後に再開したところ、電圧は2.0 Vに戻ってお
り、電圧時間の経過とともに再度徐々に電圧上昇が起こ
った。これは電極物質層裏面に透過した電解液が酸素供
給を阻害しているからと推測できる。Comparative Example 1 A dispersion of a catalyst substance obtained by baking platinum on the surface of silver particles having an average particle diameter of 1 μm was applied to the surface of the carbon fiber fabric used in Example 1, and then the silver particles having an average particle diameter of 3 μm were coated on the surface. An electrode material layer was formed by applying 30 J as a binder so as to have an apparent thickness of 0.1 mm (the amount of platinum carried was 3 g /
m 2 ). Electrolysis was performed under the same conditions as in Example 1 except that this electrode material layer was used as a cathode and was directly adhered to the ion exchange membrane. The initial voltage was 2.0 V, but the voltage gradually increased. After an hour, it increased by 100 mV. When the electrolysis was interrupted and resumed 30 minutes later, the voltage returned to 2.0 V, and the voltage gradually increased again with the passage of the voltage time. This can be presumed to be because the electrolyte that has permeated to the back surface of the electrode material layer hinders the supply of oxygen.
【0035】[0035]
【実施例2】実施例1の見掛け厚さ0.5 mmの板状体を60
℃で乾燥して親水性多孔層とした。この親水性多孔層の
片面に、平均粒径0.3 μmの銀の超微粉とデキストリン
及びエチレングリコールから成るペーストを見掛け厚さ
3μmとなるようにドクターブレード法で塗布し乾燥し
た後、更に平均粒径7μmの銀粒子とフッ素樹脂分散液
デュポン社製30Jとの混練物を塗布し、1kg/cm2の圧力
を掛けながら300 ℃で30分間ホットプレスして、前記親
水性多孔層の片面に電極物質層を作製して親水性多孔層
付き電極物質層とした。この親水性多孔層付き電極物質
層の該親水性多孔層を、2室法イオン交換膜電解槽の陰
極室内にデュポン社製ナフィオン961 であるイオン交換
膜と密着するように設置し陰極を構成した。陽極とし
て、酸化ルテニウム系の電極物質を被覆した不溶性金属
電極を用い、前記陰極とともに前記イオン交換膜を相互
に密着するように挟み込んだ。陽極室には180 g/リッ
トルの食塩水を循環し、陰極室には水蒸気を飽和させた
酸素ガスを送りながら温度90℃、電流密度30A/dm2 で電
解を行ったところ、電解電圧は2.05Vであり、安定した
電解が継続できた。[Embodiment 2] The plate-like body having an apparent thickness of 0.5 mm of
It dried at ° C and became a hydrophilic porous layer. On one surface of this hydrophilic porous layer, a paste made of ultrafine silver powder having an average particle diameter of 0.3 μm, dextrin and ethylene glycol was applied by a doctor blade method so as to have an apparent thickness of 3 μm, dried, and then further dried. A kneaded mixture of 7 μm silver particles and a fluororesin dispersion liquid 30J manufactured by DuPont was applied and hot-pressed at 300 ° C. for 30 minutes while applying a pressure of 1 kg / cm 2 , and an electrode material was applied to one surface of the hydrophilic porous layer. The layer was prepared to form an electrode material layer with a hydrophilic porous layer. The hydrophilic porous layer of the electrode material layer having the hydrophilic porous layer was placed in the cathode chamber of a two-chamber ion exchange membrane electrolytic cell so as to be in close contact with an ion exchange membrane, Nafion 961 manufactured by DuPont, to form a cathode. . An insoluble metal electrode coated with a ruthenium oxide-based electrode material was used as an anode, and the ion exchange membrane was sandwiched together with the cathode so as to be in close contact with each other. Electrolysis was performed at a temperature of 90 ° C. and a current density of 30 A / dm 2 while circulating a 180 g / liter saline solution in the anode chamber and sending oxygen gas saturated with water vapor to the cathode chamber. V, and stable electrolysis could be continued.
【0036】[0036]
【実施例3】実施例1で使用した10cm×10cmの電極物質
層はそのままにし、これに密着している親水性多孔層の
縦方向の長さを下向きに1cm延ばして11cmとし、下端の
余っている長さをイオン交換膜の反対側に引出して導液
部とし、集電体の隙間を通して裏側に導いた。この親水
性多孔層付き電極物質層を10枚用意し縦方向に連結して
高さ100 cmの2室法イオン交換膜電解槽に組み込んだ。
このような構成の親水性多孔層付き電極物質層を使用し
たこと以外は実施例1と同一条件で電解を行ったとこ
ろ、電流密度30A/dm2 で電解電圧2.00Vであり、電解液
は前記導液部を通って電極物質層の外側に滴下している
ことが観察され、前記電極物質層を直接透過する該電極
物質層の裏側への滲み出しは殆ど見られずその量は液全
体の20%未満と推測できた。100 時間の連続電解でも電
圧変化は見られず、電流密度を40A/dm2 まで上昇させた
ところ電解電圧は2.15Vまで上昇したが、経時的な電圧
変化は見られなかった。Example 3 The electrode material layer of 10 cm × 10 cm used in Example 1 was left as it is, and the length of the hydrophilic porous layer in close contact with the electrode material layer was extended downward by 1 cm to 11 cm, and the lower end was left. The length was drawn out to the opposite side of the ion exchange membrane to form a liquid conducting portion, and was guided to the back side through the gap between the current collectors. Ten electrode material layers each having a hydrophilic porous layer were prepared, connected in the longitudinal direction, and incorporated into a two-chamber ion exchange membrane electrolytic cell having a height of 100 cm.
Electrolysis was performed under the same conditions as in Example 1 except that the electrode material layer with a hydrophilic porous layer having such a configuration was used. The electrolysis voltage was 2.00 V at a current density of 30 A / dm 2 , and the electrolytic solution was as described above. It is observed that the liquid has been dripped to the outside of the electrode material layer through the liquid guide part, and almost no seepage to the back side of the electrode material layer that directly penetrates the electrode material layer is observed, and the amount thereof is equal to the entire liquid. It was estimated that it was less than 20%. No voltage change was observed even after 100 hours of continuous electrolysis, and when the current density was increased to 40 A / dm 2, the electrolysis voltage increased to 2.15 V, but no time-dependent voltage change was observed.
【0037】[0037]
【実施例4】線径0.1 mmのチタン製の線を織って作製し
たメッシュを心材としてその表面全体に平均粒径10μm
の酸化チタン粉末とフッ素樹脂分散液30Jを混練したペ
ーストを塗布し300 ℃で焼き付けて親水性多孔層とし
た。該親水性多孔層の気孔率は約80%であった。該親水
性多孔層の片面に、塩化白金酸のエチレングリコール溶
液を塗布し、水素気流中で300 ℃に30分間保持すること
により白金金属を析出させて電極物質層とした。 Example 4 A mesh prepared by weaving titanium wires having a wire diameter of 0.1 mm was used as a core material, and the average particle size was 10 μm over the entire surface.
A paste obtained by kneading the titanium oxide powder and a fluororesin dispersion liquid 30J was applied and baked at 300 ° C. to form a hydrophilic porous layer. The porosity of the hydrophilic porous layer was about 80%. An ethylene glycol solution of chloroplatinic acid was applied to one surface of the hydrophilic porous layer, and kept at 300 ° C. for 30 minutes in a hydrogen stream to precipitate platinum metal to form an electrode material layer.
【0038】この親水性多孔層付き電極物質層を次のよ
うにして3室法による塩分離装置の陽極として使用し
た。つまり陽極室と中間室を陰イオン交換膜で、又中間
室と陰極室を陽イオン交換膜で区画した電解槽の陽極と
して、前記ガス拡散電極構造体を親水性多孔層が前記陰
イオン交換膜と密着するように設置し、対極である陰極
としてはニッケルメッシュを使用した。中間室に硝酸ナ
トリウム水溶液を供給し、陽極室には陰極室で発生した
水素とその10重量%に相当する水素をボンベから供給
し、陰極室には脱イオン水を滴下して生成する水酸化ナ
トリウム濃度が15%に保持されるよう調節しながら、温
度45℃、電流密度20A/dm2 で電解を行った(なお陽極室
には水蒸気を加えて硝酸濃度が10%となるように調節し
た)。この電解により、電解電圧2.4 Vで安定した塩分
離が進行し、陽極室で硝酸が、陰極室で水酸化ナトリウ
ムが電流効率80%で得られた。This electrode material layer with a hydrophilic porous layer was used as an anode of a salt separation apparatus by a three-chamber method as follows. In other words, the gas diffusion electrode structure is formed of a hydrophilic porous layer formed of the anion exchange membrane, wherein the anode chamber and the intermediate chamber are formed by an anion exchange membrane, and the intermediate chamber and the cathode chamber are formed by the cation exchange membrane. And a nickel mesh was used as a cathode as a counter electrode. An aqueous solution of sodium nitrate is supplied to the intermediate chamber, hydrogen generated in the cathode chamber and hydrogen equivalent to 10% by weight of the aqueous solution are supplied from a cylinder to the anode chamber, and deionized water is dropped into the cathode chamber to form a hydroxide. Electrolysis was performed at a temperature of 45 ° C. and a current density of 20 A / dm 2 while adjusting the sodium concentration to be maintained at 15% (adjusted to adjust the nitric acid concentration to 10% by adding steam to the anode chamber). ). By this electrolysis, stable salt separation proceeded at an electrolysis voltage of 2.4 V, and nitric acid was obtained in the anode chamber and sodium hydroxide was obtained in the cathode chamber at a current efficiency of 80%.
【0039】[0039]
【比較例2】陽極として酸素発生型の不溶性金属電極と
したこと以外は実施例4と同一条件で電解を行ったとこ
ろ、電解電圧は3.9 Vであった。Comparative Example 2 Electrolysis was performed under the same conditions as in Example 4 except that an oxygen-generating insoluble metal electrode was used as the anode. As a result, the electrolysis voltage was 3.9 V.
【0040】[0040]
【比較例3】親水性多孔層を形成していない電極物質層
を使用したこと以外は実施例4と同一条件で電解を行っ
たところ、一部の硝酸が分解するためか、陽極の電圧が
不安定で最大電流密度が10A/dm2 に制限され、それ以上
では電解が不可能であった。Comparative Example 3 Electrolysis was carried out under the same conditions as in Example 4 except that an electrode material layer without a hydrophilic porous layer was used. It was unstable and the maximum current density was limited to 10 A / dm 2 , above which electrolysis was not possible.
【0041】[0041]
【実施例5】線径0.1 mmのチタン製の線を織って作製し
たメッシュを心材とし、その両面に平均粒径5μmのシ
リカ粉末とシリコン系発泡材並びにフッ素樹脂水分散剤
を混練した物を塗布し乾燥して親水性多孔層とした。親
水性カーボンブラックとフッ素樹脂水分散剤30Jの混練
物を平面状に成型し、該成型体の片面に、塩化白金酸の
エチレングリコール溶液を塗布し、水素気流中で300 ℃
に30分間保持することにより白金金属を析出させて電極
物質層とした。前記親水性多孔層と電極物質層の白金析
出側を密着させ、1kg/cm2の圧力を掛けながら250 ℃で
ホットプレスして、前記親水性多孔層の片面に電極物質
層を作製して親水性多孔層付き電極物質層とした。この
親水性多孔層の気孔率は約85%であった。Example 5 A mesh prepared by weaving a titanium wire having a wire diameter of 0.1 mm was used as a core material, and a material obtained by kneading silica powder having an average particle size of 5 μm, a silicon-based foaming material, and a fluororesin aqueous dispersant was applied to both surfaces thereof. And dried to obtain a hydrophilic porous layer. A kneaded product of hydrophilic carbon black and a fluororesin aqueous dispersant 30J is molded into a flat shape, and an ethylene glycol solution of chloroplatinic acid is applied to one surface of the molded product, and the mixture is heated to 300 ° C. in a hydrogen stream.
For 30 minutes to deposit platinum metal to form an electrode material layer. The hydrophilic porous layer and the platinum deposition side of the electrode material layer are brought into close contact with each other, and hot-pressed at 250 ° C. while applying a pressure of 1 kg / cm 2 to form an electrode material layer on one surface of the hydrophilic porous layer. An electrode material layer with a porous layer was formed. The porosity of this hydrophilic porous layer was about 85%.
【0042】この親水性多孔層付き電極物質層を3室法
塩分離電解装置の陽極として使用し、実施例4と同様の
装置を構成した。中間室に200 g/リットルの硫酸ナト
リウムを供給し、陰極室には陰極液(水酸化ナトリウ
ム)濃度が100 g/リットルとなるように脱イオン水を
供給した。又陽極供給ガスとして、陰極発生水素に水を
再飽和したガスを使用した。温度45℃、電流密度10A/dm
2 で電解を行ったところ、電解電圧2.75V、電流効率85
%であり、100 時間の連続電解後も安定した運転が継続
できた。This electrode material layer with a hydrophilic porous layer was used as an anode of a three-chamber salt separation electrolysis apparatus, and the same apparatus as in Example 4 was constructed. 200 g / l of sodium sulfate was supplied to the intermediate chamber, and deionized water was supplied to the cathode chamber so that the catholyte (sodium hydroxide) concentration was 100 g / l. As the anode supply gas, a gas obtained by resaturating water with hydrogen generated by the cathode was used. Temperature 45 ° C, current density 10A / dm
When electrolysis was performed at 2 , the electrolysis voltage was 2.75 V and the current efficiency was 85
%, And stable operation could be continued even after 100 hours of continuous electrolysis.
【0043】[0043]
【発明の効果】本発明のガス拡散電極構造体は、親水性
多孔層、該親水性多孔層の片面に形成された液及びガス
透過性の電極物質層及び前記親水性多孔層の他面に密着
するイオン交換膜を含んで成ることを特徴とするガス拡
散電極構造体である。従来のガス拡散電極を使用する電
解槽特にガス拡散電極をイオン交換膜に密着させるゼロ
ギャップタイプの電解槽では、イオン交換膜表面で生ず
る目的生成物が比較的密度の高い前記ガス拡散電極を透
過してつまり供給される反応ガスの供給方向と反対方向
に、換言すると反応ガスの供給を阻害しながら前記ガス
拡散電極を透過しなければならず、生成物が増加するほ
ど反応ガスの反応サイトへの供給が阻害されて電解電圧
が上昇するという問題点があった。The gas diffusion electrode structure of the present invention comprises a hydrophilic porous layer, a liquid and gas permeable electrode material layer formed on one surface of the hydrophilic porous layer and the other surface of the hydrophilic porous layer. A gas diffusion electrode structure comprising an ion-exchange membrane in close contact. In a conventional electrolytic cell using a gas diffusion electrode, particularly in a zero-gap type electrolytic cell in which the gas diffusion electrode is in close contact with the ion exchange membrane, the target product generated on the surface of the ion exchange membrane permeates through the relatively high density gas diffusion electrode. In other words, the gas must pass through the gas diffusion electrode in a direction opposite to the supply direction of the supplied reaction gas, in other words, while inhibiting the supply of the reaction gas, and the more the products increase, the more the reaction gas reaches the reaction site. There is a problem in that the supply of oxygen is hindered and the electrolytic voltage rises.
【0044】これに対し本発明のガス拡散電極構造体で
は、電極物質層とイオン交換膜の間に親水性多孔層を配
置したため、従来はその殆ど全てが前記ガス拡散電極を
透過して取り出されなければならなかった水酸化ナトリ
ウム水溶液等の生成物がガス拡散電極(電極物質層)を
透過せずに前記親水性多孔層を通って反応ガスの供給方
向は対向することなくイオン交換膜表面から取り出すこ
とができる。従って生成物量が増加しても、反応ガス供
給には殆ど影響がなく、電圧を低く維持したまま、所定
の電解反応を継続できる。親水性多孔層は該多孔層構成
粒子とバインダーとの混練ペーストを焼き付けることに
より製造できるが、これのみでは強度が十分でない場合
があり、その際には心材を用い該心材の両面に前記ペー
ストを塗布し加熱することにより機械的強度の高いガス
拡散電極構造体とすることができる。On the other hand, in the gas diffusion electrode structure of the present invention, since the hydrophilic porous layer is disposed between the electrode material layer and the ion exchange membrane, almost all of the structure is conventionally extracted through the gas diffusion electrode. Products such as aqueous sodium hydroxide solution that had to be passed through the hydrophilic porous layer without passing through the gas diffusion electrode (electrode material layer) and the reaction gas was supplied from the surface of the ion exchange membrane without being opposed to each other. Can be taken out. Therefore, even if the amount of the product increases, the supply of the reaction gas is hardly affected, and the predetermined electrolytic reaction can be continued while the voltage is kept low. The hydrophilic porous layer can be produced by baking a kneaded paste of the porous layer constituting particles and a binder, but sometimes the strength alone is not sufficient.In this case, the paste is applied to both sides of the core using a core. By coating and heating, a gas diffusion electrode structure having high mechanical strength can be obtained.
【0045】本発明方法は、親水性多孔層の片面の少な
くとも一部に電極物質を含有するペーストを塗布し、加
熱及び焼付けを行って前記親水性多孔層の片面に液及び
ガス透過性の電極物質層を形成し、かつ前記親水性多孔
層の他面にイオン交換膜を密着させることを特徴とする
ガス拡散電極構造体の製造方法である。前述した本発明
に係わるガス拡散電極構造体は、別途製造した親水性多
孔層と電極物質層を圧力を加えることにより機械的に密
着させることにより構成しても良いが、前記方法のよう
に親水性多孔層表面に電極物質含有ペーストを塗布し加
熱すると両者が強く結合して機械的な強度が増強され
る。更に親水性多孔層と電極物質層が一体化するため運
搬等が簡単になり、取扱いが容易になる。更に焼結前の
親水性多孔層前駆体の片面の少なくとも一部に前記方法
と同様にペーストを塗布し加熱焼結することにより親水
性多孔層の焼結と電極物質層の焼結を一度の加熱処理操
作で行うことができ、これにより作業性の向上を図るこ
とができる。According to the method of the present invention, a paste containing an electrode substance is applied to at least a part of one surface of a hydrophilic porous layer, and heated and baked to form a liquid and gas permeable electrode on one surface of the hydrophilic porous layer. A method for producing a gas diffusion electrode structure, comprising forming a material layer and adhering an ion exchange membrane to the other surface of the hydrophilic porous layer. The gas diffusion electrode structure according to the present invention described above may be constituted by mechanically bringing a separately produced hydrophilic porous layer and an electrode material layer into close contact with each other by applying pressure. When an electrode substance-containing paste is applied to the surface of the porous porous layer and heated, the two are strongly bonded to each other to increase the mechanical strength. Further, since the hydrophilic porous layer and the electrode material layer are integrated, transportation and the like are simplified, and handling is facilitated. Further, by sintering the hydrophilic porous layer and the electrode material layer by applying a paste to at least a part of one surface of the hydrophilic porous layer precursor before sintering in the same manner as described above, and then sintering the electrode material layer. It can be performed by a heat treatment operation, whereby the workability can be improved.
【図1】従来の食塩電解槽の一例を示す概略図。FIG. 1 is a schematic diagram showing an example of a conventional salt electrolysis tank.
【図2】従来の食塩電解槽の他の例を示す概略図。FIG. 2 is a schematic diagram showing another example of a conventional salt electrolysis tank.
【図3】本発明に係わるガス拡散電極構造体を使用する
食塩電解用電解槽の一例を示す縦断面図。FIG. 3 is a longitudinal sectional view showing an example of an electrolytic cell for salt electrolysis using a gas diffusion electrode structure according to the present invention.
【図4】本発明に係わるガス拡散電極構造体を使用する
食塩電解用電解槽の他の例を示す縦断面図で、図4aは
陰極を複数の分解した例を、図4bは陰極にスリットを
形成し例を示す。4 is a longitudinal sectional view showing another example of the electrolytic cell for salt electrolysis using the gas diffusion electrode structure according to the present invention, FIG. 4a shows an example in which a plurality of cathodes are disassembled, and FIG. Is formed and an example is shown.
11・・・電解槽本体 12・・・イオン交換膜 13・・・
陽極室 14・・・陰極室 15・・・不溶性陽極 16・・
・親水性多孔層 17・・・酸素ガス拡散陰極 18・・・集電体11 ・ ・ ・ Electrolyzer main body 12 ・ ・ ・ Ion exchange membrane 13 ・ ・ ・
Anode compartment 14 ・ ・ ・ Cathode compartment 15 ・ ・ ・ Insoluble anode 16 ・ ・
・ Hydrophilic porous layer 17 ・ ・ ・ Oxygen gas diffusion cathode 18 ・ ・ ・ Current collector
───────────────────────────────────────────────────── フロントページの続き (72)発明者 島宗 孝之 東京都町田市本町田3006番地30 (72)発明者 田中 正志 神奈川県綾瀬市寺尾本町3−12−9 シャ ルマンI−401 (72)発明者 錦 善則 神奈川県藤沢市藤沢1丁目1番の23の304 (72)発明者 芦田 高弘 神奈川県座間市立野台2−7−6 (72)発明者 脇田 修平 神奈川県藤沢市辻堂元町5−5−9、II −3 ──────────────────────────────────────────────────続 き Continued on the front page (72) Takayuki Shimamune, Inventor 3006-30, Honmachida, Machida-shi, Tokyo (72) Inventor Masashi Tanaka 3-12-9, Terao-Honcho, Ayase-shi, Kanagawa Prefecture Shalman I-401 (72) Invention Person Yoshinori Nishiki 1-3-1304-1, Fujisawa, Fujisawa City, Kanagawa Prefecture (72) Inventor Takahiro Ashida 2-7-6, Nodai, Zama City, Kanagawa Prefecture (72) Inventor Shuhei Wakita 5-5 Tsujido Motomachi, Fujisawa City, Kanagawa Prefecture -9, II-3
Claims (4)
形成された液及びガス透過性の電極物質層及び前記親水
性多孔層の他面に密着するイオン交換膜を含んで成るこ
とを特徴とするガス拡散電極構造体。1. A device comprising a hydrophilic porous layer, a liquid and gas permeable electrode material layer formed on one surface of the hydrophilic porous layer, and an ion exchange membrane in close contact with the other surface of the hydrophilic porous layer. A gas diffusion electrode structure characterized by the above-mentioned.
記載のガス拡散電極構造体。2. The gas diffusion electrode structure according to claim 1, wherein the hydrophilic porous layer has a core material.
電極物質を含有するペーストを塗布し、加熱及び焼付け
を行って前記親水性多孔層の片面に液及びガス透過性の
電極物質層を形成し、かつ前記親水性多孔層の他面にイ
オン交換膜を密着させることを特徴とするガス拡散電極
構造体の製造方法。3. A paste containing an electrode material is applied to at least a part of one surface of the hydrophilic porous layer, and heated and baked to form a liquid and gas permeable electrode material layer on one surface of the hydrophilic porous layer. A method for manufacturing a gas diffusion electrode structure, comprising forming an ion exchange membrane in close contact with the other surface of the hydrophilic porous layer.
一部に電極物質を含有するペーストを塗布し加熱するこ
とにより前記親水性多孔層の焼結又は焼付け及び電極物
質層の焼付けを同時に行って前記親水性多孔層の片面に
液及びガス透過性の電極物質層を形成し、かつ前記親水
性多孔層の他面にイオン交換膜を密着させることを特徴
とするガス拡散電極構造体の製造方法。4. A sintering or baking of the hydrophilic porous layer and a baking of the electrode material layer are performed simultaneously by applying and heating a paste containing an electrode material on at least a part of one surface of the hydrophilic porous layer precursor. Producing a liquid and gas permeable electrode material layer on one surface of the hydrophilic porous layer, and adhering an ion exchange membrane to the other surface of the hydrophilic porous layer. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35416697A JP3625633B2 (en) | 1997-12-08 | 1997-12-08 | Gas diffusion electrode structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35416697A JP3625633B2 (en) | 1997-12-08 | 1997-12-08 | Gas diffusion electrode structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11172484A true JPH11172484A (en) | 1999-06-29 |
JP3625633B2 JP3625633B2 (en) | 2005-03-02 |
Family
ID=18435736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35416697A Expired - Lifetime JP3625633B2 (en) | 1997-12-08 | 1997-12-08 | Gas diffusion electrode structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3625633B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003028681A (en) * | 2001-07-17 | 2003-01-29 | Nippon Soda Co Ltd | Flowmeter |
JP2006004920A (en) * | 2004-05-17 | 2006-01-05 | Ibiden Co Ltd | Hydrophilic porous material, manufacturing method of the same, humidifying member for polymer electrolyte fuel cell, and separator for solid polymer fuel cell |
JP2007197740A (en) * | 2006-01-24 | 2007-08-09 | Permelec Electrode Ltd | Electrolytic cell for synthesizing perchloric acid compound and electrolytic synthesis method |
JP2012026037A (en) * | 2010-07-20 | 2012-02-09 | Bayer Materialscience Ag | Oxygen-consuming electrode and its manufacturing method |
JP2012126997A (en) * | 2010-12-10 | 2012-07-05 | Bayer Materialscience Ag | Method of installing oxygen-consuming electrode in electrochemical cell, and electrochemical cell |
EP4227439A1 (en) * | 2018-12-21 | 2023-08-16 | Mangrove Water Technologies Ltd. | Gas diffusion electrode |
-
1997
- 1997-12-08 JP JP35416697A patent/JP3625633B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003028681A (en) * | 2001-07-17 | 2003-01-29 | Nippon Soda Co Ltd | Flowmeter |
JP2006004920A (en) * | 2004-05-17 | 2006-01-05 | Ibiden Co Ltd | Hydrophilic porous material, manufacturing method of the same, humidifying member for polymer electrolyte fuel cell, and separator for solid polymer fuel cell |
JP2007197740A (en) * | 2006-01-24 | 2007-08-09 | Permelec Electrode Ltd | Electrolytic cell for synthesizing perchloric acid compound and electrolytic synthesis method |
JP2012026037A (en) * | 2010-07-20 | 2012-02-09 | Bayer Materialscience Ag | Oxygen-consuming electrode and its manufacturing method |
JP2012126997A (en) * | 2010-12-10 | 2012-07-05 | Bayer Materialscience Ag | Method of installing oxygen-consuming electrode in electrochemical cell, and electrochemical cell |
EP4227439A1 (en) * | 2018-12-21 | 2023-08-16 | Mangrove Water Technologies Ltd. | Gas diffusion electrode |
US11891710B2 (en) | 2018-12-21 | 2024-02-06 | Mangrove Water Technologies Ltd. | Li recovery processes and onsite chemical production for Li recovery processes |
US11932955B2 (en) | 2018-12-21 | 2024-03-19 | Mangrove Water Technologies Ltd. | Li recovery processes and onsite chemical production for Li recovery processes |
Also Published As
Publication number | Publication date |
---|---|
JP3625633B2 (en) | 2005-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3553775B2 (en) | Electrolyzer using gas diffusion electrode | |
KR101081468B1 (en) | Oxygen gas diffusion cathode for sodium chloride electrolysis | |
US7708867B2 (en) | Gas diffusion electrode | |
JP5178959B2 (en) | Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method | |
US5693213A (en) | Electrolytic process of salt water | |
JPH08333693A (en) | Electrolytic cell | |
JPH07278864A (en) | Gas diffusion electrode | |
JP3655975B2 (en) | Gas diffusion cathode and salt water electrolytic cell using the gas diffusion cathode | |
US4749452A (en) | Multi-layer electrode membrane-assembly and electrolysis process using same | |
JPH1025587A (en) | Liquid permeation type gas diffusion electrode | |
JPH11172484A (en) | Gas diffusion electrode structural body and its production | |
JP3553781B2 (en) | Electrolysis method using gas diffusion cathode | |
JP4115686B2 (en) | Electrode structure and electrolysis method using the structure | |
JP3645703B2 (en) | Gas diffusion electrode structure | |
JPH10140383A (en) | Electrode feeder, its production and electrolytic cell for producing hydrogen peroxide | |
JP4029944B2 (en) | Liquid-permeable gas diffusion cathode structure | |
JP3921300B2 (en) | Hydrogen generator | |
JP3344801B2 (en) | Gas electrode structure | |
JPH10204670A (en) | Sodium chloride electrolytic cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071210 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |