JPH11176559A - Multiple-layered ceramic heater - Google Patents
Multiple-layered ceramic heaterInfo
- Publication number
- JPH11176559A JPH11176559A JP36201997A JP36201997A JPH11176559A JP H11176559 A JPH11176559 A JP H11176559A JP 36201997 A JP36201997 A JP 36201997A JP 36201997 A JP36201997 A JP 36201997A JP H11176559 A JPH11176559 A JP H11176559A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- zones
- temperature
- zone
- multilayer ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、セラミックスヒー
タ、特には半導体プロセスにおける昇降温工程に使用さ
れる複層セラミックスヒータに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater, and more particularly to a multilayer ceramic heater used in a temperature raising / lowering step in a semiconductor process.
【0002】[0002]
【従来の技術】従来、半導体プロセスに使用されるヒー
タとしては、アルミナ、窒化アルミニウム、ジルコニ
ア、窒化硼素等の焼結セラミックスからなる支持基板
に、発熱体としてモリブデン、タングステン等の高融点
金属の線材や箔を巻き付けるか、接着し、その上に電気
絶縁性セラミックス板を載せたものが用いられてきてい
る。また、これを改良したものとしては、電気絶縁性セ
ラミックス支持基板の上に導電性セラミックスの発熱層
を設け、その上に、電気絶縁性セラミックスの被覆を施
したセラミックスヒータが開発され、絶縁性、耐食性を
向上させている。2. Description of the Related Art Conventionally, heaters used in a semiconductor process include a support substrate made of sintered ceramics such as alumina, aluminum nitride, zirconia, and boron nitride, and a wire made of a high melting point metal such as molybdenum and tungsten as a heating element. A coil or foil is wound or adhered, and an electrically insulating ceramic plate is mounted thereon. As an improvement, a ceramic heater in which a heating layer made of conductive ceramic is provided on an electrically insulating ceramic support substrate, and a coating of electrically insulating ceramic is provided thereon, has been developed. Improves corrosion resistance.
【0003】一方、半導体素子の製造においては、ウエ
ーハの大口径化が進み、現在では直径200mmのシリ
コンウエーハが主流になってきており、2010年には
直径300mmとなる見通しである。また、大口径化が
進むと、従来のバッチ式処理装置では、プロセスの均一
性等の性能確保が難しくなり、その解決策としてウエー
ハを一枚づつ処理する枚葉式処理に置き代わるプロセス
が今後増加して行くことが予想される。On the other hand, in the manufacture of semiconductor devices, the diameter of wafers has been increasing, and silicon wafers having a diameter of 200 mm have become mainstream at present, and are expected to have a diameter of 300 mm in 2010. In addition, as the diameter increases, it becomes difficult to ensure performance such as process uniformity with conventional batch processing equipment, and as a solution to this, a process that replaces single-wafer processing, which processes wafers one by one, will be implemented in the future. It is expected to increase.
【0004】この枚葉式処理の加熱源として消費電力が
少なく、安定性の高い、セラミックスヒータは大いに期
待されており、その大口径化、性能向上も平行して進め
られている。そして、ウエーハの温度がウエーハ上に成
膜される膜の性質、成膜速度に大きな影響があるため、
ウエーハの大口径化に伴い、その均熱性をいかに制御す
るかが重要なポイントになる。そのため、加熱源である
セラミックスヒータは、例えば、径方向で複数分割し、
ガスの供給によって変化する温度変化に対応して均熱性
を維持するように各ゾーンで素早く温度制御することが
必要となってくる。[0004] Ceramic heaters having low power consumption and high stability as a heating source for the single-wafer processing are greatly expected, and their diameters and performance are also being improved. And since the temperature of the wafer has a great influence on the properties of the film formed on the wafer and the film formation rate,
As the diameter of a wafer increases, how to control the heat uniformity is an important point. Therefore, the ceramic heater as a heating source is, for example, divided into a plurality in the radial direction,
It is necessary to quickly control the temperature in each zone so as to maintain the uniform temperature in response to the temperature change that changes due to the gas supply.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、高温プ
ロセスでゾーン制御を行う場合には、セラミックス支持
基材自体の抵抗率が減少するため、ゾーン間の絶縁性が
問題となり、さらにヒータが大口径化すると、それにか
かる電力も面積に比例して増大するため、場合によって
は、高電圧、高電流が必要となる。それに従い、ゾーン
間の漏れ電流が大きくなると、各ゾーンでの制御性が落
ちて、半導体製造プロセスの連続処理での昇降温時後の
ウエーハの均熱化に時間を要し、最悪の場合には、ゾー
ン間の絶縁破壊によりショートしてヒータを破損させる
と言う危険性も含んでおり、所望の温度まで昇温出来な
いと言う欠点があった。However, when zone control is performed in a high-temperature process, the resistivity of the ceramic support substrate itself decreases, so that insulation between the zones becomes a problem, and the heater becomes larger in diameter. Then, since the electric power applied thereto also increases in proportion to the area, a high voltage and a high current are required in some cases. Accordingly, if the leakage current between the zones increases, the controllability in each zone decreases, and it takes time to equalize the temperature of the wafer after the temperature rise and fall in the continuous processing of the semiconductor manufacturing process, and in the worst case, However, there is a danger that the heater may be damaged due to short circuit due to dielectric breakdown between zones, and there is a disadvantage that the temperature cannot be raised to a desired temperature.
【0006】そこで、各ゾーン毎にヒータを完全に分離
して独立させる方法もあるが、各ゾーン毎に支持基板を
支持する支持ポイントを設置しなければならず、しかも
このポイントを通して放熱するため、ポイント近傍の温
度が低くなると共に、被加熱物であるウエーハの温度分
布を著しく悪化させてしまうと言う悪影響を及ぼす。従
って、支持ポイントの設置は、ヒータ外周部に最小限の
数に止めておくことが好ましく、ゾーン間の絶縁には別
の対策を立てなければならなくなった。Therefore, there is a method in which the heater is completely separated and independent for each zone. However, a support point for supporting the support substrate must be provided for each zone, and heat is radiated through this point. As the temperature near the point decreases, the temperature distribution of the wafer to be heated is significantly deteriorated. Therefore, it is preferable that the number of the support points be set to a minimum number on the outer periphery of the heater, and another measure must be taken for insulation between the zones.
【0007】本発明は、かかる課題を解決するために為
されたもので、高温プロセスで各ゾーン毎の温度制御を
行う場合においても、ゾーン間の漏れ電流が少なく、高
温まで昇温可能で、各ゾーンでの制御性を落さずにウエ
ーハの昇降温時のウエーハの均熱化を素早く収束させる
ことができると共に、支持ポイントをウエーハの温度分
布に影響のないヒータ外周部のみに設置した一体型の複
層セラミックスヒータを提供することを目的としてい
る。The present invention has been made in order to solve such a problem, and even when temperature control is performed for each zone in a high-temperature process, the leakage current between the zones is small, and the temperature can be raised to a high temperature. It is possible to quickly converge the soaking of the wafer when raising and lowering the temperature of the wafer without deteriorating the controllability in each zone, and to set the support points only on the outer periphery of the heater that does not affect the temperature distribution of the wafer. It is an object of the present invention to provide a body-shaped multilayer ceramic heater.
【0008】[0008]
【課題を解決するための手段】このような課題を解決す
るために、本発明の請求項1に記載した発明は、電気絶
縁性セラミックス支持基板の表面に、導電性セラミック
スまたは金属からなるヒータパターンが、少なくとも2
ゾーン以上に分割された状態で接合され、該ヒータパタ
ーンを覆って保護層を形成した一体型の抵抗加熱方式の
複層セラミックスヒータにおいて、該2ゾーン以上に分
割配置されたヒータパターンのヒータ温度範囲500〜
1500℃における各ゾーン間の抵抗が5×103 〜1
×1016Ωであることを特徴とする複層セラミックスヒ
ータである。In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention provides a heater pattern made of conductive ceramic or metal on a surface of an electrically insulating ceramic supporting substrate. But at least 2
In a multilayer ceramic heater of an integral resistance heating type in which a protection layer is formed so as to cover the heater pattern while being joined in a state divided into zones or more, the heater temperature range of the heater pattern divided and arranged in the two or more zones 500 ~
Resistance between each zone at 1500 ° C. is 5 × 10 3 -1
It is a multi-layer ceramic heater characterized by × 10 16 Ω.
【0009】このように構成すれば、高温プロセスで各
ゾーン毎に温度制御を行う場合においても、各ゾーン間
の漏れ電流が少なく、高温まで昇温可能である。また、
各ゾーンでの制御性は極めて良好であり、ウエーハの昇
降温時にウエーハの均熱化を急速に収束させることがで
きる。さらに、支持基板の支持ポイントをゾーン毎に設
置する必要はなく、ウエーハの温度分布に影響のないヒ
ータ外周部のみに設置すればよい。With this configuration, even when the temperature is controlled for each zone in the high-temperature process, the leakage current between the zones is small, and the temperature can be raised to a high temperature. Also,
The controllability in each zone is very good, and the uniformization of the wafer can be rapidly converged when the temperature of the wafer rises and falls. Further, it is not necessary to set the support point of the support substrate for each zone, and it is sufficient to set the support point only on the outer peripheral portion of the heater which does not affect the temperature distribution of the wafer.
【0010】そして、本発明の請求項2に記載した発明
は、電気絶縁性セラミックス支持基板の表面に、導電性
セラミックスまたは金属からなるヒータパターンが、少
なくとも2ゾーン以上に分割された状態で接合され、該
ヒータパターンを覆って保護層を形成した一体型の抵抗
加熱方式の複層セラミックスヒータにおいて、該2ゾー
ン以上に分割配置されたヒータパターンの各ゾーン境界
部に、支持基板の厚さ方向に、ゾーン間の電気絶縁用の
掘り溝または貫通溝を形成したことを特徴とする複層セ
ラミックスヒータである。また、請求項3では、前記掘
り溝または貫通溝が、ヒータ温度範囲500〜1500
℃における各ゾーン間の抵抗が5×103 〜1×1016
Ωとなるように形成されるようにした。According to a second aspect of the present invention, a heater pattern made of conductive ceramics or metal is joined to a surface of an electrically insulating ceramics support substrate in a state where the heater pattern is divided into at least two zones. A multi-layer ceramic heater of an integral resistance heating type in which a protective layer is formed by covering the heater pattern, in the thickness direction of the support substrate, at each zone boundary of the heater pattern divided into two or more zones. And a multi-layer ceramic heater characterized by forming a dug groove or a through groove for electrical insulation between zones. According to the third aspect, the dug groove or the through groove has a heater temperature range of 500 to 1500.
Resistance between each zone at 5 ° C is 5 × 10 3 to 1 × 10 16
Ω was formed.
【0011】このようにすれば、加工が容易で、簡単に
ゾーン間の絶縁性が良好なヒータを作製することができ
る。そして、各ゾーン毎にヒータを完全に分離して独立
させる方法と同様に、各ゾーン間の漏れ電流は極めて少
なくなり絶縁破壊を起こす危険性が回避され、高温にお
ける長期安定使用を確保することができる。また、各ゾ
ーン毎の温度制御性にも優れ、昇降温時のウエーハの均
熱化も素早く収束させることができると共に、支持基板
の支持ポイントをゾーン毎に設置する必要はなく、ウエ
ーハの温度分布に影響のないヒータ外周部のみに設置し
ておけばよい。In this way, a heater which is easy to process and has good insulation between zones can be easily manufactured. Then, similarly to the method of completely separating the heaters for each zone and independently, the leakage current between the zones is extremely reduced, the risk of causing dielectric breakdown is avoided, and long-term stable use at high temperatures can be ensured. it can. In addition, the temperature controllability of each zone is excellent, so that the temperature uniformity of the wafer at the time of temperature rise and fall can be quickly converged, and it is not necessary to set the supporting point of the supporting substrate for each zone, and the temperature distribution of the wafer can be improved. Need only be installed on the outer peripheral portion of the heater which does not affect the temperature.
【0012】また、本発明の請求項4に記載した発明
は、前記支持基板および保護層の材質が、AlN、B
N、AlNとBNとの複合体、PBNまたはSiO2 で
あり、前記ヒータパターンの材質がカーボン、高融点金
属、高融点金属合金、貴金属または貴金属合金であるこ
とを特徴とする複層セラミックスヒータである。Further, in the invention described in claim 4 of the present invention, the material of the support substrate and the protective layer is AlN, B
N, a composite of AlN and BN, PBN or SiO 2 , wherein the material of the heater pattern is carbon, a high melting point metal, a high melting point metal alloy, a noble metal or a noble metal alloy. is there.
【0013】このようにして選択した材質によりヒータ
を構成すると、上記掘り溝、貫通溝の形成加工も容易に
でき、機械的強度、耐熱性、耐食性に優れた長寿命の複
層セラミックスヒータとすることができる。When the heater is made of the selected material as described above, the formation of the digging groove and the through groove can be easily performed, and a long-life multilayer ceramic heater excellent in mechanical strength, heat resistance and corrosion resistance can be obtained. be able to.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明するが、本発明はこれらに限定され
るものではない。ここで、図1は本発明の複層セラミッ
クスヒータの一例を示したもので、(a)はその平面図
であり、(b)は内外ゾーン境界部に設けた掘り溝の縦
断面図である。図2は本発明の別の実施形態を示す複層
セラミックスヒータを示したもので、(a)はその平面
図であり、(b)は内外ゾーン境界部に設けた貫通溝の
縦断面図である。図3は従来技術による複層セラミック
スヒータの平面図である。Embodiments of the present invention will be described below in detail with reference to the drawings, but the present invention is not limited thereto. Here, FIG. 1 shows an example of the multilayer ceramic heater of the present invention, wherein (a) is a plan view thereof, and (b) is a longitudinal sectional view of a digging groove provided at the boundary between the inner and outer zones. . 2A and 2B show a multi-layer ceramic heater according to another embodiment of the present invention, wherein FIG. 2A is a plan view thereof, and FIG. 2B is a longitudinal sectional view of a through groove provided at an inner / outer zone boundary. is there. FIG. 3 is a plan view of a conventional multilayer ceramic heater.
【0015】本発明者等は、半導体プロセスにおけるC
VD装置やエッチング装置で使用される半導体ウエーハ
加熱用のヒータにおける分割ゾーン間の絶縁破壊につい
て種々検討した結果、ゾーン間に特定の絶縁抵抗を持た
せること、この抵抗値を得るためにゾーン境界部に掘り
溝または貫通溝を形成させればよいことに想到し、本発
明を完成させたものである。[0015] The present inventors have proposed that C
As a result of various studies on insulation breakdown between divided zones in a heater for heating a semiconductor wafer used in a VD apparatus or an etching apparatus, a specific insulation resistance was provided between the zones, and a zone boundary was obtained in order to obtain this resistance value. Thus, the present invention has been completed by conceiving that a digging groove or a through groove should be formed.
【0016】図1(a)および(b)において、本発明
の複層セラミックスヒータ1は、円板状の電気絶縁性熱
分解窒化硼素から成る支持基板4の表面に、導電性熱分
解グラファイトで作られた外ゾーン2および内ゾーン3
から成るヒータパターン(1ゾーン当たり2回線並列)
を持つヒータ発熱層5が接合され、さらに発熱層5を覆
って支持基板4と同じ材質の保護層6が形成され、この
発熱部両端には、端子7が設けられ、外部電源とは導線
で端子孔を通るボルト・ナットで接続されるようになっ
ている。また、ヒータとして使用する場合の温度制御は
外ゾーン2と内ゾーン3の二つの領域をそれぞれ別に行
うことができるようになっている。1 (a) and 1 (b), a multilayer ceramic heater 1 according to the present invention has a disk-shaped support substrate 4 made of electrically insulating pyrolytic boron nitride on a surface of a conductive pyrolytic graphite. Outer zone 2 and inner zone 3 made
Heater pattern (2 lines in parallel per zone)
Is formed, and a protective layer 6 of the same material as that of the support substrate 4 is formed so as to cover the heat generating layer 5. Terminals 7 are provided at both ends of the heat generating portion. They are connected by bolts and nuts that pass through the terminal holes. In addition, the temperature control when used as a heater can be performed separately for the two areas of the outer zone 2 and the inner zone 3.
【0017】図1(b)は図1(a)の内外ゾーン境界
部Aにおける縦断面図で、支持基板4の上の発熱層5は
内外ゾーンに分断されて隙間を作り絶縁されている。そ
して発熱層5の分断された端面は保護層6によって覆わ
れている。後述する掘り溝8は、この分断されて作られ
た隙間の支持基板4を切削して形成される。FIG. 1B is a longitudinal sectional view at the boundary portion A between the inner and outer zones in FIG. 1A. The heat generating layer 5 on the support substrate 4 is divided into inner and outer zones to form gaps and to be insulated. The divided end surface of the heat generating layer 5 is covered with the protective layer 6. A dug groove 8 described later is formed by cutting the support substrate 4 in the gap formed by the division.
【0018】ここで、本発明の特徴は、ヒータパターン
の内外ゾーン境界部Aの電気抵抗を、ヒータ温度範囲5
00〜1500℃における各ゾーン間の抵抗が5×10
3 〜1×1016Ωとなるようにしたことである。Here, the feature of the present invention is that the electric resistance of the inner / outer zone boundary portion A of the heater pattern is reduced by the heater temperature range 5.
Resistance between each zone at 00 to 1500 ° C is 5 × 10
3 to 1 × 10 16 Ω.
【0019】各ゾーン間の絶縁破壊によるショートを防
止するには、ゾーン境界部の間隔をより離せばよいが、
離すことによってその空間部では温度が低下するので均
一加熱ができなくなる。また離れた別々のゾーン毎に支
持ポイントを設けなければならず、この支持ポイントを
伝って放熱するのでこの付近の発熱層では温度が低下し
被加熱ウエーハの温度分布が著しく悪化するので好まし
い方法ではない。In order to prevent a short circuit due to dielectric breakdown between the zones, it is sufficient to increase the interval between the zone boundaries.
The separation lowers the temperature in that space, making uniform heating impossible. In addition, a supporting point must be provided for each of the separated zones, and heat is radiated along the supporting points. Therefore, the temperature in the heat generating layer in the vicinity decreases, and the temperature distribution of the wafer to be heated is significantly deteriorated. Absent.
【0020】そこで、この支持ポイントは放熱による温
度低下の影響の少ない、ヒータの外周部のみに設ければ
よいことにして、各ゾーン間を絶縁する抵抗を求めた結
果、ヒータ温度範囲500〜1500℃における各ゾー
ン間の抵抗が5×103 〜1×1016Ωの範囲にあれば
よいことがわかった。5×103 Ω未満では高温時の高
電圧、高電流に耐えられず絶縁破壊の危険性があり、1
×1016Ωを超える高抵抗では、それを持たせるのに絶
縁層によっても、空間によったとしても、ある程度の幅
(距離)が必要となり、その部分では温度低下が起こる
ので温度分布の不均一化を避けることができなくなる。Therefore, the support point may be provided only on the outer peripheral portion of the heater, which is less affected by the temperature drop due to heat radiation, and as a result of obtaining the resistance for insulating between the zones, the heater temperature range is 500 to 1500. It has been found that the resistance between the zones at ° C. should be in the range of 5 × 10 3 to 1 × 10 16 Ω. If it is less than 5 × 10 3 Ω, it cannot withstand high voltage and high current at high temperature and there is a danger of dielectric breakdown.
In the case of a high resistance exceeding × 10 16 Ω, a certain width (distance) is required even if it depends on an insulating layer or a space in order to have the resistance, and a temperature drop occurs in that part, so that the temperature distribution is not sufficient. Uniformity cannot be avoided.
【0021】次に、このヒータ温度範囲500〜150
0℃における各ゾーン間の抵抗を5×103 〜1×10
16Ωの範囲内にする方法として、本発明では、2ゾーン
以上に分割配置されたヒータパターンの各ゾーン境界部
に、支持基板の厚さ方向に、ゾーン間の電気絶縁用の掘
り溝または貫通溝を形成するようにした。図1(b)に
は各ゾーン境界部A[図1(a)参照]に設けた掘り溝
8の様子が示されており、この例では、掘り溝8の溝深
さdを支持基板4の厚さの1/2とし、溝深さdと溝幅
cとの比を1:1として、溝を切削加工し、所望の抵抗
値を得た。Next, the heater temperature range of 500 to 150
The resistance between each zone at 0 ° C. is 5 × 10 3 to 1 × 10
According to the present invention, a digging groove or a through hole for electrical insulation between zones is provided in the thickness direction of the support substrate at each zone boundary of the heater pattern divided into two or more zones. A groove was formed. FIG. 1B shows the state of the digging groove 8 provided at each zone boundary portion A (see FIG. 1A). In this example, the groove depth d of the digging groove 8 is , And the ratio between the groove depth d and the groove width c was set to 1: 1 to cut the groove to obtain a desired resistance value.
【0022】本発明の別の実施形態として貫通溝の例を
図2に示す。 図2(b)は各ゾーン境界部B[図2
(a)参照]に設けた貫通溝9の縦断面図で、この例で
は、貫通溝9の溝深さdを支持基板4の厚さに等しくし
て貫通させ、溝幅cを1/2・dとして、溝を切削加工
し、所望の抵抗値を得た。ただし、貫通溝の長さはこの
例ではゾーン境界部Bの全円周の約80%とし、残り約
20%は端子部用と内外ゾーンの結合強度を維持するた
め溝加工をしないまま残した。FIG. 2 shows an example of a through groove as another embodiment of the present invention. FIG. 2 (b) shows a zone boundary portion B [FIG.
(A)] is a longitudinal sectional view of the through groove 9 provided in this example. In this example, the through groove 9 is penetrated by making the groove depth d equal to the thickness of the support substrate 4 and the groove width c is 1 /. -As d, the groove was cut to obtain a desired resistance value. However, in this example, the length of the through groove is set to about 80% of the entire circumference of the zone boundary portion B, and the remaining about 20% is left without processing to maintain the bonding strength between the terminal portion and the inner and outer zones. .
【0023】このように、所望の抵抗値を持った掘り溝
または貫通溝を支持基板のゾーン境界部に沿って設ける
ことにより、最低限のゾーン間の隙間で高温時の高電
圧、高電流に耐える絶縁破壊防止用バリアーとすること
ができる。また、溝加工による支持基板の機械的強度の
低下も殆どなく、隙間も最低限に小さくしたので均一加
熱に悪影響を及ぼすことも殆どないし、この加工も容易
である。As described above, by forming a digging groove or a through groove having a desired resistance value along the zone boundary of the support substrate, it is possible to reduce a high voltage and a high current at a high temperature in a minimum gap between the zones. It can be a durable dielectric breakdown prevention barrier. Moreover, the mechanical strength of the supporting substrate is hardly reduced by the groove processing, and the gap is minimized, so that there is almost no adverse effect on uniform heating, and this processing is easy.
【0024】本発明が適用される複層セラミックスヒー
タの材質としては、支持基板および保護層の材質が、電
気絶縁性の高いセラミックスであるAlN、BN、Al
NとBNとの複合体、PBNまたはSiO2 等が適して
いる。また、ヒータパターンの材質は、耐熱性が高く、
適度な抵抗率を有するカーボン(グラファイト)、高融
点金属(鉄、銅、ニッケル、モリブデン、タンタル、タ
ングステン等)、高融点金属合金(Ni−Cr、Fe−
Cr、Fe−Cr−Al等)、貴金属(銀、白金、ロジ
ウム等)またはこれら貴金属合金(Pt−Rh等)等が
好ましい。As the material of the multilayer ceramic heater to which the present invention is applied, the support substrate and the protective layer are made of a material having a high electrical insulating property, such as AlN, BN, and Al.
A complex of N and BN, PBN or SiO 2 is suitable. The material of the heater pattern has high heat resistance,
Carbon (graphite) with appropriate resistivity, high melting point metal (iron, copper, nickel, molybdenum, tantalum, tungsten, etc.), high melting point metal alloy (Ni-Cr, Fe-
Cr, Fe-Cr-Al, etc.), noble metals (silver, platinum, rhodium, etc.) or alloys of these noble metals (Pt-Rh, etc.) are preferred.
【0025】本発明の複層セラミックスヒータは、一部
の金属発熱層を除いて、これを構成する支持基板、発熱
層及び保護層のいずれも化学気相蒸着法(CVD法)に
より製造されたものである。CVD法によれば均一で高
密度、高純度の蒸着層が得られ、ヒータとして漏れ電流
が少なく、高温まで昇温可能で、各ゾーンの制御性もよ
く、均熱加熱が容易に行え、長期安定運転が可能とな
る。In the multilayer ceramic heater according to the present invention, except for a part of the metal heat generating layer, all of the supporting substrate, the heat generating layer and the protective layer constituting the heater are manufactured by the chemical vapor deposition method (CVD method). Things. According to the CVD method, a uniform, high-density, high-purity deposited layer can be obtained, the leakage current as a heater is small, the temperature can be raised to a high temperature, the controllability of each zone is good, the uniform heating can be easily performed, and the Stable operation becomes possible.
【0026】[0026]
【実施例】以下、本発明の実施例を挙げて具体的に説明
するが、本発明はこれらに限定されるものではない。 (実施例1)CVD法により、アンモニアと三塩化硼素
とを100Torrの圧力下に1800℃で反応させて
厚さ2mmの熱分解窒化硼素製支持基材を作製し、その
上にメタンガスを1650℃、50Torrの条件下で
熱分解して厚さ100μmの熱分解グラファイト層を形
成し、図3に示したような外ゾーン2(2回線)と内ゾ
ーン3(2回線)から成るヒータパターンを加工した。
ついで、この基板に再びアンモニアと三塩化硼素とを1
00Torrの圧力下に1800℃で反応させて、厚さ
100μmの熱分解窒化硼素製保護層で発熱層を覆い、
外ゾーン2と内ゾーン3の2ゾーンからなる直径250
mmの複層セラミックスヒータを製造した。EXAMPLES The present invention will now be described specifically with reference to examples of the present invention, but the present invention is not limited to these examples. (Example 1) By a CVD method, ammonia and boron trichloride were reacted at 1800 ° C. under a pressure of 100 Torr to produce a 2 mm-thick support substrate made of pyrolytic boron nitride, and methane gas was heated at 1650 ° C. Pyrolytic graphite layer having a thickness of 100 μm is formed by thermal decomposition under the conditions of 50 Torr and 50 Torr, and a heater pattern composed of an outer zone 2 (two lines) and an inner zone 3 (two lines) as shown in FIG. 3 is processed. did.
Next, ammonia and boron trichloride were again added to the substrate for 1 hour.
The reaction was performed at 1800 ° C. under a pressure of 00 Torr, and the heating layer was covered with a 100 μm thick protective layer made of pyrolytic boron nitride.
Diameter 250 consisting of two zones, outer zone 2 and inner zone 3
mm multilayer ceramic heater was manufactured.
【0027】そして、図1のように、この支持基材4の
ゾーン境界部Aのみに、この基材の全厚さの1/2の深
さ(1mm)でかつこの深さと同寸法の幅(1mm)の
掘り溝8を設けた。この加工によって、シリコンウエー
ハ温度で800℃でのゾーン間の絶縁抵抗は、6×10
3 Ωになり(比較例1の約2倍)、昇温後のシリコンウ
エーハ温度で1000℃まで加熱可能となった。As shown in FIG. 1, only the zone boundary A of the support base material 4 has a depth (1 mm) of a half of the total thickness of the base material and a width of the same dimension as the depth. (1 mm) digging groove 8 was provided. By this processing, the insulation resistance between the zones at 800 ° C. at the silicon wafer temperature is 6 × 10
It became 3 Ω (about twice as large as that of Comparative Example 1), and it was possible to heat up to 1000 ° C. at the silicon wafer temperature after the temperature rise.
【0028】(比較例1)上記と同様にして、図3に示
したような、ゾーン境界部に溝のない従来から用いられ
ている外ゾーン2と内ゾーン3の2ゾーンからなる直径
250mmの複層セラミックスヒータを作製した。そし
て、この複層セラミックスヒータを10-2Torrの真
空下でゾーン制御しながら、シリコンウエーハを500
℃に加熱した。次いで、これを急昇温させようと電力を
投入し、シリコンウエーハ温度で800℃まで昇温した
ところ、内外ゾーン間の漏れ電流が大きくなり、これ以
上の昇温は不可能となった。この時のヒータ温度は12
00℃になっており、その原因は、ゾーン間の絶縁抵抗
が下がったためで、その時のゾーン間の抵抗は、3×1
03 であった。(Comparative Example 1) In the same manner as described above, as shown in FIG. 3, a conventional 250 mm diameter zone consisting of two zones, an outer zone 2 and an inner zone 3, having no groove at the zone boundary. A multilayer ceramic heater was manufactured. Then, while controlling the zone of the multilayer ceramic heater under a vacuum of 10 -2 Torr, the silicon wafer was moved 500 times.
Heated to ° C. Then, power was applied to raise the temperature rapidly, and the temperature was raised to 800 ° C. at the silicon wafer temperature. As a result, the leakage current between the inner and outer zones increased, and it was impossible to raise the temperature further. The heater temperature at this time is 12
00 ° C., because the insulation resistance between the zones was reduced, and the resistance between the zones at that time was 3 × 1
0 was 3.
【0029】(実施例2)上記と同様にして、図3に示
したような2ゾーンを有する直径250mmの複層セラ
ミックスヒータを作製した。これに図2のようにゾーン
境界部Bの全円周面積の80%に貫通溝を設けた。残部
20%は、内外ゾーンを一体で支持出来るように端子7
の近くに溝を作らないで残した。この加工によって、シ
リコンウエーハ温度で800℃でのゾーン間の絶縁抵抗
は、15×103 と比較例1の約5倍になり、昇温後の
シリコンウエーハ温度で1100℃まで加熱可能となっ
た。Example 2 In the same manner as described above, a multilayer ceramic heater having a diameter of 250 mm and having two zones as shown in FIG. 3 was produced. As shown in FIG. 2, a through groove was provided in 80% of the entire circumferential area of the zone boundary B. The remaining 20% has terminals 7 so that the inner and outer zones can be integrally supported.
Left without making a groove near. By this processing, the insulation resistance between the zones at 800 ° C. at the silicon wafer temperature is 15 × 10 3, which is about five times that of Comparative Example 1, and it is possible to heat up to 1100 ° C. at the silicon wafer temperature after the temperature rise. .
【0030】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は例示であり、本発明の
特許請求の範囲に記載された技術的思想と実質的に同一
な構成を有し、同様な作用効果を奏するものは、いかな
るものであっても本発明の技術的範囲に包含される。The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same effect. Within the technical scope of
【0031】例えば、上記では本発明の実施例として二
つの例を示したが、本発明はこのような例に限定される
ものではなく、被加熱物の形状や被加熱物に与える温度
分布の形状によっては、ヒータゾーンの分割数、その形
状、ヒータパターン等の変更を伴うが、各ゾーン境界部
の絶縁用溝はその絶縁抵抗値を所望の範囲内に適切に設
定したものであれば溝の形状、位置は限定されない。For example, although two examples have been shown above as embodiments of the present invention, the present invention is not limited to such examples, and the shape of the object to be heated and the temperature distribution given to the object to be heated are described. Depending on the shape, the number of divisions of the heater zone, the shape, the heater pattern, etc. are changed, but the insulation groove at the boundary of each zone is a groove if the insulation resistance value is appropriately set within a desired range. The shape and position of are not limited.
【0032】また、本発明の適用にあっては、CVD装
置における半導体ウエーハの加熱ヒータとして好適とさ
れるが、本発明はこのような例に限定されるものではな
く、真空蒸着、イオンプレーティング、ドライエッチン
グ等の半導体装置の加熱ヒータとして有効に使用され
る。In the application of the present invention, it is suitable as a heater for a semiconductor wafer in a CVD apparatus. However, the present invention is not limited to such an example. Used effectively as a heater for semiconductor devices such as dry etching.
【0033】[0033]
【発明の効果】本発明によれば、高温プロセス下で各ゾ
ーン毎の温度制御を行う場合において、ゾーン間の漏れ
電流を抑えて高温まで昇温することができ、各ゾーンで
の制御性が良好でかつウエーハの均熱化を素早く収束さ
せることができると共に、支持基板の支持ポイントをゾ
ーン毎に設置する必要はなく、ウエーハの温度分布に影
響のないヒータ外周部のみに設置した、高性能で長期安
定性に優れた複層セラミックスヒータを提供することが
できる。According to the present invention, when performing temperature control for each zone under a high-temperature process, it is possible to suppress the leakage current between the zones and raise the temperature to a high temperature, and the controllability in each zone is improved. It is good and can quickly converge the temperature uniformity of the wafer, and it is not necessary to set the support point of the support substrate for each zone, and it is installed only on the outer periphery of the heater that does not affect the temperature distribution of the wafer. Thus, a multilayer ceramic heater having excellent long-term stability can be provided.
【図1】本発明の複層セラミックスヒータの一例を示す
図面である。(a)平面図、 (b)A部縦断面図。FIG. 1 is a drawing showing an example of a multilayer ceramic heater of the present invention. (A) Plan view, (b) A section longitudinal section.
【図2】本発明の複層セラミックスヒータの別の例を示
す図面である。(a)平面図、 (b)B部縦断面
図。FIG. 2 is a drawing showing another example of the multilayer ceramic heater of the present invention. (A) Plan view, (b) B section longitudinal sectional view.
【図3】従来技術による複層セラミックスヒータの一例
を示す平面図である。FIG. 3 is a plan view showing an example of a conventional multilayer ceramic heater.
1…複層セラミックスヒータ、 2…外ゾーン、 3…内ゾーン、 4…支持基板、 5…発熱層、 6…保護層、 7…端子、 8…ゾーン境界掘り溝、 9…ゾーン境界貫通溝。 c…ゾーン境界溝幅、 d…ゾーン境界溝深さ。 DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic heater, 2 ... Outer zone, 3 ... Inner zone, 4 ... Support substrate, 5 ... Heat generation layer, 6 ... Protective layer, 7 ... Terminal, 8 ... Zone boundary digging groove, 9 ... Zone boundary penetration groove. c: zone boundary groove width, d: zone boundary groove depth.
Claims (4)
に、導電性セラミックスまたは金属からなるヒータパタ
ーンが、少なくとも2ゾーン以上に分割された状態で接
合され、該ヒータパターンを覆って保護層を形成した一
体型の抵抗加熱方式の複層セラミックスヒータにおい
て、該2ゾーン以上に分割配置されたヒータパターンの
ヒータ温度範囲500〜1500℃における各ゾーン間
の抵抗が5×103 〜1×1016Ωであることを特徴と
する複層セラミックスヒータ。A heater pattern made of conductive ceramics or metal is joined to a surface of an electrically insulating ceramic support substrate in a state divided into at least two zones, and a protective layer is formed to cover the heater pattern. In an integrated resistance heating type multilayer ceramic heater, the resistance between the zones in a heater temperature range of 500 to 1500 ° C. of the heater pattern divided into two or more zones is 5 × 10 3 to 1 × 10 16 Ω. A multilayer ceramic heater characterized by the following.
に、導電性セラミックスまたは金属からなるヒータパタ
ーンが、少なくとも2ゾーン以上に分割された状態で接
合され、該ヒータパターンを覆って保護層を形成した一
体型の抵抗加熱方式の複層セラミックスヒータにおい
て、該2ゾーン以上に分割配置されたヒータパターンの
各ゾーン境界部に、支持基板の厚さ方向に、ゾーン間の
電気絶縁用の掘り溝または貫通溝を形成したことを特徴
とする複層セラミックスヒータ。2. A heater pattern made of conductive ceramics or metal is joined to a surface of an electrically insulating ceramic supporting substrate in a state divided into at least two zones, and a protective layer is formed to cover the heater pattern. In an integrated resistance heating type multi-layer ceramic heater, a digging groove or a through hole for electrical insulation between zones is formed in the thickness direction of the support substrate at each zone boundary of the heater pattern divided into two or more zones. A multilayer ceramic heater characterized by forming grooves.
範囲500〜1500℃における各ゾーン間の抵抗が5
×103 〜1×1016Ωとなるように形成されることを
特徴とする請求項2に記載した複層セラミックスヒー
タ。3. The digging groove or the through groove has a resistance between each zone in a heater temperature range of 500 to 1500 ° C.
3. The multilayer ceramic heater according to claim 2, wherein the multilayer ceramic heater is formed so as to have a resistance of 10 < 3 > to 1 * 10 < 16 > [Omega].
lN、BN、AlNとBNとの複合体、PBNまたはS
iO2 であり、前記ヒータパターンの材質がカーボン、
高融点金属、高融点金属合金、貴金属または貴金属合金
であることを特徴とする請求項1〜請求項3のいずれか
1項に記載した複層セラミックスヒータ。4. The material of the support substrate and the protective layer is A
1N, BN, complex of AlN and BN, PBN or S
iO 2 , wherein the heater pattern is made of carbon,
The multilayer ceramic heater according to any one of claims 1 to 3, wherein the multilayer ceramic heater is a refractory metal, a refractory metal alloy, a noble metal, or a noble metal alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36201997A JP3560456B2 (en) | 1997-12-11 | 1997-12-11 | Multilayer ceramic heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36201997A JP3560456B2 (en) | 1997-12-11 | 1997-12-11 | Multilayer ceramic heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11176559A true JPH11176559A (en) | 1999-07-02 |
JP3560456B2 JP3560456B2 (en) | 2004-09-02 |
Family
ID=18475637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36201997A Expired - Fee Related JP3560456B2 (en) | 1997-12-11 | 1997-12-11 | Multilayer ceramic heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3560456B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001039552A1 (en) * | 1999-11-24 | 2001-05-31 | Ibiden Co., Ltd. | Ceramic heater |
JP2003515950A (en) * | 1999-11-30 | 2003-05-07 | ウエファーマスターズ, インコーポレイテッド | Single wafer furnace with resistance heating |
JP2005327846A (en) * | 2004-05-13 | 2005-11-24 | Nippon Telegr & Teleph Corp <Ntt> | Substrate heating apparatus |
EP1784050A2 (en) * | 2005-11-08 | 2007-05-09 | Shin-Etsu Chemical Company, Ltd. | Ceramic heater and method for producing ceramic heater |
EP1799014A2 (en) * | 2005-12-08 | 2007-06-20 | Shin-Etsu Chemical Company, Ltd. | Ceramic heater, method for producing ceramic heater, and heater power-supply component |
JP2007157552A (en) * | 2005-12-06 | 2007-06-21 | Ge Speciality Materials Japan Kk | Heating device made of quartz |
JP2010283364A (en) * | 2010-07-15 | 2010-12-16 | Sumitomo Electric Ind Ltd | Holder for semiconductor manufacturing device |
KR101172948B1 (en) * | 2006-12-25 | 2012-08-14 | 도쿄엘렉트론가부시키가이샤 | Film deposition apparatus and film deposition method |
JP2013089512A (en) * | 2011-10-19 | 2013-05-13 | Momentive Performance Materials Inc | Heater and manufacturing method of the same |
JP2013097943A (en) * | 2011-10-31 | 2013-05-20 | Momentive Performance Materials Inc | Heater and method of manufacturing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007157661A (en) * | 2005-12-08 | 2007-06-21 | Shin Etsu Chem Co Ltd | Ceramics heater and manufacturing method of the same |
JP2013004247A (en) * | 2011-06-15 | 2013-01-07 | Shin Etsu Chem Co Ltd | Ceramic heater |
-
1997
- 1997-12-11 JP JP36201997A patent/JP3560456B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001039552A1 (en) * | 1999-11-24 | 2001-05-31 | Ibiden Co., Ltd. | Ceramic heater |
JP2003515950A (en) * | 1999-11-30 | 2003-05-07 | ウエファーマスターズ, インコーポレイテッド | Single wafer furnace with resistance heating |
JP2005327846A (en) * | 2004-05-13 | 2005-11-24 | Nippon Telegr & Teleph Corp <Ntt> | Substrate heating apparatus |
EP1784050A3 (en) * | 2005-11-08 | 2008-09-24 | Shin-Etsu Chemical Company, Ltd. | Ceramic heater and method for producing ceramic heater |
EP1784050A2 (en) * | 2005-11-08 | 2007-05-09 | Shin-Etsu Chemical Company, Ltd. | Ceramic heater and method for producing ceramic heater |
JP2007157552A (en) * | 2005-12-06 | 2007-06-21 | Ge Speciality Materials Japan Kk | Heating device made of quartz |
EP1799014A2 (en) * | 2005-12-08 | 2007-06-20 | Shin-Etsu Chemical Company, Ltd. | Ceramic heater, method for producing ceramic heater, and heater power-supply component |
EP1799014A3 (en) * | 2005-12-08 | 2008-12-10 | Shin-Etsu Chemical Company, Ltd. | Ceramic heater, method for producing ceramic heater, and heater power-supply component |
KR101172948B1 (en) * | 2006-12-25 | 2012-08-14 | 도쿄엘렉트론가부시키가이샤 | Film deposition apparatus and film deposition method |
US8328943B2 (en) | 2006-12-25 | 2012-12-11 | Tokyo Electron Limited | Film forming apparatus and method |
JP2010283364A (en) * | 2010-07-15 | 2010-12-16 | Sumitomo Electric Ind Ltd | Holder for semiconductor manufacturing device |
JP2013089512A (en) * | 2011-10-19 | 2013-05-13 | Momentive Performance Materials Inc | Heater and manufacturing method of the same |
JP2013097943A (en) * | 2011-10-31 | 2013-05-20 | Momentive Performance Materials Inc | Heater and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3560456B2 (en) | 2004-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0964433B1 (en) | Multiple-layered ceramic heater | |
KR100497016B1 (en) | A heating apparatus | |
US6080970A (en) | Wafer heating apparatus | |
JP5911179B2 (en) | Three-dimensional ceramic heater | |
US8168926B2 (en) | Heating device | |
JP4640842B2 (en) | Heating device | |
KR101299496B1 (en) | Ceramics heater and method for manufacturing the ceramics heater | |
WO2004068541A2 (en) | Wafer handling apparatus | |
US7053339B2 (en) | Ceramic heater | |
JP3560456B2 (en) | Multilayer ceramic heater | |
JP2019508862A (en) | Cylindrical heater | |
US7332694B2 (en) | Heating resistances and heaters | |
WO2020153086A1 (en) | Ceramic heater | |
JP3918806B2 (en) | Heater member for placing object to be heated and heat treatment apparatus | |
KR100363062B1 (en) | wafer heater | |
JP3793554B2 (en) | Disc heater | |
JP3793555B2 (en) | Disc heater | |
JP2003045765A (en) | Wafer-supporting member | |
JP7169376B2 (en) | Ceramic heater and its manufacturing method | |
JP3844408B2 (en) | Multilayer ceramic heater | |
JP2009301796A (en) | Ceramic heater and its manufacturing method | |
JP4000236B2 (en) | Ceramic heater | |
JPH1064665A (en) | Uniform heat ceramic sensor | |
JP2014029784A (en) | Heater including connection structure consisting of three zone resistors | |
JP2001068255A (en) | Disk-shaped heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040525 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100604 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |